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Resumo Neste estudo, investigámos a bipartição de redes de pequeno mundo.
Utilizámos um modelo de Watts-Strogatz modificado para a geração
de redes de pequeno mundo a partir de redes quadradas. Comparámos
vários algoritmos de partição, tais como Monte Carlo com dinâmica
Kawasaki e Simulated Annealing, Extremal Optimization e Multilevel
K-way Based Partitioning.
Obtivemos os valores críticos do grau médio das redes na transição
de percolação e os valores limite na transição de partição para redes
ao longo do espetro entre uma rede quadrada e uma rede aleatória.
Obtivemos os expoentes de variação do custo de partição mínimo em
função da grau médio da rede na proximidade do valor limite de par-
tição, assim como o expoente de escalonamente em função do tamanho
da rede. Este é o primeiro trabalho a estudar este problema, tanto
quanto sabemos.
Observou-se que as redes modificadas apresentam os mesmos ex-
poente, independemente do número de arestas modificadas, enquanto
que a rede quadrada tem um comportamento distinto de todas as re-
des de pequeno mundo. Os valores dos expoentes para a rede aleatória
estão em concordância com resultados prévios.





Abstract We studied the bipartitioning of small-world networks. We gener-
ated small-world networks from a square lattice via a modified Watts-
Strogatz algorithm. We compared several partitioning algorithms, such
as Monte Carlo with Kawasaki dynamics and Simulated Annealing, Ex-
tremal Optimization and Multilevel K-way partitioning.
We obtained the critical percolation values of the mean degree and
the threshold partition values for several networks in the continuum
between a square lattice and a random network. We obtained the ex-
ponents of the minimum partition cost as a function of the mean degree
in the vicinity of the bipartition threshold, as well as the exponent of
finite size scaling. To the best of our knowledge, this is the first work
to tackle this issue.
We observed that all small-world networks have the same exponents,
different from those of the square lattice, regardless of the number of
modified edges. The values for the exponents of the random network
are in accordance with previous results.
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Chapter 1

Introduction

1.1 Motivation

The Graph Bipartitioning Problem (GBP) is easy to formulate, but hard to solve.
Take n vertices, where n is an even number, and where a portion of the vertices pairs
are connected by an edge. Then divide the vertices into two sets of equal number n/2
such that the number of edges connecting both sets, the partition cost B, is minimized.
The global constraint that the division of vertices be equal makes the GBP one of the
hardest problems in combinatorial optimization, since determining the exact solution
would require a computational effort that grows faster than any power of n [1].

The GBP has been studied extensively, due to its impact in circuit design [2], com-
puter vision [3], social network analysis [4] and load scheduling in parallel processing
units [5].

In this work, we focus on the GBP in bond percolating small-world networks. In
particular, we are interested in obtaining the exponents of the minimum partition cost
at the graph bipartition threshold of these networks. To our knowledge, this is the first
work to approach this issue.

The subject of bond percolation is also well trodden, due to its impact in network
security [6] and disease spread, such as in the SI/R (susceptible-infected-recovered)
models [7].

The small-world model was introduced by Watts and Strogatz [8] as a simple model
of real world networks, such as social networks or networks of physical contact through
which a disease could spread.
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1.2 Outline

We give in Chapter 2 a brief introduction of network theory concepts, including the
small-world model and percolation, and four methods for solving the GBP: Parallel
Tempering, Simulated Annealing, Extremal Optimization and Multilevel K-way Par-
titioning. In Chapter 3 we present the methods we used and explain our choices. In
Chapter 4 we present results that validate our approach as well as novel results for the
exponents of the partition cost at the percolation threshold.

1.3 Related work

The subject of partitioning percolating networks has been approached from various
perspectives.

The works we take most inspiration from are the works by Boettcher et al [9] and
Percus [10].

Both works use Extremal Optimization to determine the partition cost for geometric
and random networks.

The paper by Boettcher [9] compares Simulated Annealing and Extremal Optimiza-
tion according to the quality of the partitions they create, their runtime and the scaling
exponent, for random and geometric graphs and dilute ferromagnets with varying mean
connectivity.

The paper by Percus [10] uses the concept of expander graphs to determine that
random graph bisection is replica symmetric up to and beyond the partition threshold.

We evaluate the quality of our results against what is shown in those papers.
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Chapter 2

Theoretical Concepts

2.1 Network theory concepts

A network G can be described as the collection of a set of vertices V and a set
of edges E and is usually denoted by G = (V,E) [11]. Edges can be directed or
undirected. Directed edges point from one vertex to another, while undirected edges
have no such property. We denote the cardinality of sets V and E, |V | and |E|, by n
and m, respectively.

The degree or connectivity k of a vertex of a network is the number of edges that
are incident to the vertex.

An important quantity in the characterization of networks is the clustering coeffi-
cient C, given by the fraction of paths of length two in the network that are closed,
i.e.,

C =
3×#triangles

#connected triples
. (2.1)

One must also take care in the definition of distance in the context of network
theory. We take the distance between vertices to be the “geodesic distance”, given by
the number of edges in the shortest path between the vertices.

Using this definition, the characteristic path length of the network is given by the
median of the average path length

L = med


∑
j(6=i)

dij

n− 1

 , (2.2)

where dij is the distance between vertices i and j.

We take the dimensionality of a network to be given by the Hausdorff dimension

3



dH = lim
r→∞

∂ logN(≤ r)

∂ log r
, (2.3)

where N(≤ r) is the cumulative distribution of the number of vertices within a distance
r of another vertex, i.e.,

N(≤ r) =
∑
i

N(≤ r, i), (2.4)

where N(≤ r, i) is the number of vertices within distance r of vertex i.
A matchingM in a graph G is a set of edges in which no two edges share a common

vertex. A maximal matching is a matching of G with the property that if any edge not
in M is added to M it is no longer a matching. This concept is the cornerstone of one
our chosen partition algorithms, Multilevel K-way Partitioning.

2.2 Random networks

A random network is, in general, a network where some specific set of parameters
take fixed values, but the network is random in others. One of the simplest example
of this type of graph is where we fix only the number of vertices n and the number of
edges m. This model is known as G(n,m) [11].

Another straightforward and well studied model for the creation of such a network
is the G(n, p) model, also known as the Erdős-Rényi model. In G(n, p) we fix not the
number but the probability of edges. We again have n vertices, but we place an edge
between each distinct pair with probability 0 < p < 1. To be more specific, G(n, p) is
an ensemble of networks with n vertices in which each simple graph G (a graph with
no loops or multiple edges) appears with probability

P (G) = pm(1− p)(
n
2)−m, (2.5)

where m is the number of edges in the graph and
(
n
2

)
is the number of all possible

assignments of n vertices into pairs.
One of the most important quantities in this model, one which we will use at length

in the following work, is the mean degree k. The total probability of drawing a graph
with m edges from the ensemble given by Eq. (2.5) is given by

P (m) =

((n
2

)
m

)
pm(1− p)(

n
2)−m. (2.6)

.
The mean value of m is then given by

4



〈m〉 =

(n
2)∑

m=0

mP (m) =

(
n

2

)
p. (2.7)

It follows that k is given by

k =
2〈m〉
n

=
2

n

(
n

2

)
p = (n− 1)p. (2.8)

This relation shows that to produce a graph with average degree k, independent of
n, we should consider a probability p that decreases with n according to

p =
k

n− 1
. (2.9)

2.3 Small-world networks

Real world networks present something known as small-world effect, the observation
that the largest distance in the network is small. Specifically, a small-world network
is defined as a network where the characteristic path length L grows proportionally to
the logarithm of the number of vertices n in the network, i.e.,

L ∝ log(n). (2.10)

Watts-Strogatz model
The Watts-Strogatz Model (WSM) is an attempt to model real world networks, which
simultaneously display high clustering coefficients and short average path lengths [8].

The original model constructs a simple small-world network by starting with an
underlying network, going through each of its edges in turn and, with some rewiring
probability pr, connecting one of its end vertices with a randomly chosen vertex of the
network.

The parameter pr in this model interpolates between the underlying network and
the random graph. When pr = 0, no edges are rewired and we retain the original
graph. When pr = 1, all edges are rewired to random positions and we have a random
graph. For intermediate values, we get networks that lie in between. Notice that for
pr = 0, this model shows clustering but no small-world effect, while for pr = 1 it shows
the reverse. As a result, there is a substantial range of intermediate values for which
the model shows both effects simultaneously, as expected.

In our modification of this model, besides connecting one of the end vertices of
the chosen edge to a randomly chosen one, the rewiring step also deletes the chosen

5



(a) pr = 0 (b) pr = 0.3

Figure 2.1: Random rewiring procedure for interpolating between a square lattice and
a random network. We start with a lattice of 16 vertices, each connected to its 4 closest
neighbours with periodic boundary conditions.

edge, keeping m constant. We also introduce a second parameter, the edge deletion
probability pd, which controls the mean connectivity of the network. The relationship
between these two is given by

k = k0(1− pd), (2.11)

where k0 is the mean connectivity of the underlying lattice.

In this work we start with a square lattice of n vertices, connecting nearest neigh-
bours vertices on the lattice, going through each of the edges in turn and, with some
probability pr, rewiring that edge by replacing one of the randomly chosen end vertices
with a randomly chosen vertex and deleting the chosen edge. After this step, we again
go through each of the edges and, with some probability pd, delete it.

In this context, we have
k = 4(1− pd). (2.12)

2.4 Percolation and the Giant Connected Component

Percolation is the process by which networks are damaged by the deletion of vertices
or the deletion of edges while keeping the number of vertices constant [11].

This process results in the creation of components, subgraphs in which any two
vertices are connected to each other, either directly or indirectly through other vertices
belonging to the component, and which is connected to no additional vertices in the
network. A network component whose size grows with n is called a giant component,
or, in the context of percolating networks, a giant connected component (GCC).

6
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Figure 2.2: Graphical solution for the size of the GCC in random networks, with y
given by the right hand side of Eq. (2.13). For the bottom curve there is only one
intersection, at n∞ = 0, and there is no GCC. For the top curve there is a solution
at n∞ = 0.583. The middle curve is the threshold between those two regimes, which
occurs at k = 1.

Random graphs

In a random graph with mean degree k the fraction of vertices belonging to the
GCC, denoted by n∞, is given asymptotically almost surely (a.a.s.) by

n∞ = 1− e−kn∞ , (2.13)

as seen in Ref. [11].

We can find the critical value of k by plotting the right hand size of Eq. (2.13)
against n∞ as seen in Fig. 2.2. The transition between regimes falls at the point where
the gradient of the curves and the gradient of the dashed line match at n∞ = 0. That
is, the transition takes place when

d

dn∞
(1− e−kn∞) = 1, (2.14)

which gives us

ke−kn∞ = 1. (2.15)

Setting n∞ = 0, we get kc = 1 as the percolation threshold for a random network.
In the context of bond percolation, it is usual to express this threshold as a critical
occupation probability pc, obtained from Eq. (2.9)

7



pc =
kc

n− 1
=

1

n− 1
. (2.16)

This corresponds to values pr = 1 and pd = pd,c = 0.75 in our modified WSM,
where pd,c was obtained using Eq. (2.12).

Only clusters of finite size exist above the percolation threshold (since pd is a dele-
tion probability), with a characteristic length smax. The probability per vertex that a
randomly chosen vertex belongs to a cluster of size s, denoted by ns, obeys the forms

ns ∝ s−τf(s/smax) (2.17)

and

smax ∝ |p− pc|−1/σ. (2.18)

Note that ns is also the average number of finite clusters of size s that exist per
vertex in the network.

The values for the critical exponents in the random network are τ = 5/2 and
σ = 1/2 [12].

Square Lattice

The critical probability of bond percolation on the square lattice is pc = 0.5 [13],
which results in a mean connectivity kc = 2. This corresponds to values pr = 0 and
pd = pd,c = 0.5 in our modified WSM.

The values for the critical exponents in the square lattice are τ = 187/91 and
σ = 36/91 [12].

Small-world networks

Small-world networks have two competing length scales, the percolation correlation
length ξ and the crossover length ζ [14, 15], given by

ξ ∝ |p− pc|−ν (2.19)

and

ζ ∝
(

1

2prpkd

)1/d

, (2.20)

8



where k is the number of connected neighbours in each direction, d is the dimension of
the underlying network and p is the probability for a given edge to be present.

The crossover length is the linear dimension on the volume on the underlying lattice
which contains the end of one shortcut on average.

In Ref. [14] the small-world model with long-range shortcuts was studied and it was
found that, in the limit of infinite size, any observable must satisfy a scaling relation
of the form

Q ≈ ξdαζ−dβf(ξ/ζ), (2.21)

where α and β are scaling exponents and f(x) is an universal scaling function.

Making use of equation (2.20) and the fact the ξd is the number of sites 〈s0〉 in a
region of length ξ on the underlying network [12], we obtain

Q ≈ 〈s0〉α(prpkd)βF (2prpkd〈s0〉), (2.22)

where F (x) is another universal scaling function.

Taking Q = 〈s〉, being 〈s〉 the average size of a cluster to which a randomly chosen
site belongs, which must take the square lattice value 〈s0〉 for pr = 0, we immediately
obtain α = 1 and β = 0, and

〈s〉
〈s0〉

= F (2prpkd〈s0〉). (2.23)

It was shown in [14] that the scaling function takes the form

F (x) =
1

1− x. (2.24)

Thus, the percolation transition occurs at x = 1, when the two length scales are
equal ξ = ζ and the average finite cluster size diverges.

A possible interpretation of this result is that the effect of the shortcuts is to connect
clusters of average size 〈s0〉 in the starting underlying network. When there is at least
one shortcut on average connecting one of these clusters to another one, i.e., when
ξ = ζ, there occurs a percolation transition.

Moore and Newman obtained the values τ = 5/2 and σ = 1/2 for the one-
dimensional small-world network in [16], using arguments that could be easily ex-
trapolated to the two-dimensional model that we use. These values are the same as in
the mean field case, which seems reasonable since the dimensionality of both models
in the limit of large systems is infinite.

In light of this, we expect random networks and small-world networks to exhibit

9



the same critical percolation behaviour.

2.5 Graph Bipartitioning

The GBP has an interesting phase structure. The minimum partition cost, defined
as

Bmin =
∑
i

Bi

2
, (2.25)

where Bi is the number of edges connecting vertex i to vertices of the other set in an
optimal partitioning, becomes null for values of k < kp.

Taking this into account, it is evident that kp must satisfy the condition

n∞
(
kp
)

= 1/2, (2.26)

by considering that at this point there are two groups of size n/2, the GCC and the
finite clusters outside of it, that have no connecting edges. For values of n∞ less than
1/2, one can always group the GCC with isolated finite clusters, creating a partition
with no edges between the two sets of vertices, resulting in a null partition cost.

The minimum partition cost undergoes a continuous transition at this point, i.e.,
it obeys a power law of the form

Bmin = C(n)(pd,p − pd)a, (2.27)

where C(n) is the finite size scaling coefficient, pd refers to the edge deletion probability
of the modified WSM and pd,p can be obtained by rearranging Eq. (2.12)

pd,p = 1− kp
4
, (2.28)

.

Random graphs
Inputting n∞ = 1/2 in Eq. (2.13), we obtain

1

2
= 1− e−kp/2, (2.29)

which gives us kp = 2 log 2 for a random network. This corresponds to the values pr = 1

and pd = pd,p = 1− 2 log 2
4

= 0.6534 in our modified WSM model.
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For a given kRSB > kp the solution space undergoes a structural transition that cor-
responds to replica symmetry breaking [17]. For kRSB > k > kp, any two partitionings
of the graph are connected by a path of adjacent solutions. The solution space can be
though of as a single cluster. But when k > kRSB, the cluster fragments into multiple
non-adjacent clusters [10], and finding optimal solutions by local optimization becomes
computationally much harder.

Square lattice
There is no analogous equation to (2.13) in the context of the square lattice, and as
such we cannot obtain an exact value of pd,p.

We can, however, approximate it, given that we are sufficiently close to the perco-
lation threshold, making use of the equation

n∞ ∝ |pd − pd,c|β, (2.30)

where β has the value 5/36 [12].
Inputting n∞ = 1/2, we get

|pd,p − pd,c| ≈
(

1

2

)1/β

. (2.31)

.
The right hand side term is of the order 10−3, which means that the value of pd,p is

expected to be close to that of pd,c.

2.6 Bipartitioning Algorithms

The GBP is a NP-hard problem [1], and as such, there exists no exact method to
solve it which runs in useful time. To see why this is, consider that there are

(
n
n/2

)
ways of choosing a subset of size n/2. For a graph with size n = 100 this value is of
the order of 1029, and as such, an exhaustive search procedure is completely out of the
question. We must then search for approximate solutions, which can be found much
more quickly.

2.6.1 Monte Carlo methods

We first make use of the Ising Model, which has the Hamiltonian

H = −
∑
i,j

Jijsisj, (2.32)
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where Jij is a coupling factor, which, for our purposes, can be

Jij =

1 if there is an edge between i and j,

0 otherwise,
(2.33)

and si is the Ising spin of vertex i, which can take two values si = ±1. Notice that H
can be written as

H =
∑
i

Hi, (2.34)

where Hi is given by

Hi = −si
∑
j

Jijsj. (2.35)

An important quantity of this model is the total magnetization M , given by

M =
∑
i

si. (2.36)

In this context, a solution for the GBP is a state of minimum energy of the model
with null magnetization, where we can associate the spin +1 to a vertex belonging
to one of the sets of the partition and −1 belonging to the other set. The minimum
partition cost is then given by

Bmin =
∑
i

Bi

2
=
∑
i

ki +H0,i

4
=
m+H0

2
, (2.37)

where ki is the connectivity of vertex i and H0,i is the contribution of vertex i to the
state of minimum energy. We make use of the equalities Bi = ki−Gi and Bi = H0,i+Gi,
where Gi is the number of unique “good edges”, connecting i to vertices of the same
set. The optimal partition should thus correspond to states of minimum energy in the
system.

Monte Carlo (MC) schemes almost always rely on Markov processes as the gener-
ating engine for the set of used states [18]. A Markov process is a stochastic process
which, given a system in one state µ, generates a new state of that system ν. The
probability of generating state µ from ν is called the transition probability, denoted by
P (µ→ ν).
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Spin exchange

As mentioned in the previous section, the GBP amounts to a system of null mag-
netization. As such, we must make use of a magnetization conserving spin dynamics,
such as the Kawasaki spin exchange [19]. In this method, each update simultaneously
reverses the state of neighbouring antiparallel spins, i.e., exchanges their value. To
decide whether to exchange a randomly chosen pair of spins, we calculate the change
in energy and accept or reject the move based on the Metropolis transition probability
(also known as Metropolis acceptance probability)

P (µ→ ν) =

e−β∆H if ∆H > 0,

1 otherwise,
(2.38)

where ∆H = H(ν)−H(µ).

More succinctly,

P (µ→ ν) = min{1, e−β∆H}. (2.39)

This algorithm is ergodic, in that it can reach any configuration of the solution
space in a finite number of steps, and satisfies the condition of detailed balance [18].

However, since we are not interested in the way in which we reach equilibrium but
only in the final result, we have no need to limit ourselves to spin exchanges between
neighbouring sites. We can reach equilibrium much more quickly by using non local
MC moves. A simple non local move is to exchange a random pair of antiparallel spins,
based on the Metropolis acceptance probability. One can show, by the same line of
arguments used for the Kawasaki spin exchange, that these non local dynamics are
ergodic and satisfy the detailed balance condition.

Parallel Tempering

Parallel Tempering (or replica simulation) is a simulation method that tackles the
problem of most Markov Chain Monte Carlo (MCMC) simulations, by which they are
trapped in local minima and are not able to reach a global minimum.

This method uses several replicas of the system at different temperatures, usually
increasing from the target temperature of the test case [20]. Each replica is simulated
simultaneously and independently for a few Monte Carlo steps (MCS). Each replica is
in contact with its own heat bath, at different temperatures, resulting in the partition
function for the extended ensemble
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Z = Tr{X} exp

(
−

R∑
i=1

βiH(Xi)

)
=

R∏
i=1

Z(βi), (2.40)

where {X} = {X1, X2, . . . XR} is a state of the extended ensemble, βi is the tempera-
ture of a given replica and Z(βi) is the partition function of the same replica.

Replicas at higher temperatures can reach a larger portion of the configuration
space. The reachable spaces by neighbour temperatures overlap, and as such, we can
create a new update for the system composed of the two replicas at βi and βj.

In order to ensure that the system remains in equilibrium when two replicas are
exchanged, we must impose the detailed balance condition

P (. . . ;X, βi; . . . ;X
′, βj; . . .)W (X ′, βi;X, βj|X, βi;X ′, βj)

= P (. . . ;X ′, βi; . . . ;X, βj; . . .)W (X, βi;X
′, βj|X ′, βi;X, βj),

(2.41)

where P ({X, β}) is given by

P ({X, β}) =
R∏
i

Z−1(βi) exp(−βiH(Xi)) (2.42)

and W (X ′, βi;X, βj|X, βi;X ′, βj) is the probability of exchanging replicas i and j.
From (2.42) we obtain

W (X ′, βi;X, βj|X, βi;X ′, βj)
W (X, βi;X ′, βj|X ′, βi;X, βj)

= e(βj−βi)(H(X′)−H(X)), (2.43)

and the replica-exchange probability can then be expressed as

W (X ′, βi;X, βj|X, βi;X ′, βj) = min
(

1, e(βj−βi)(H(X′)−H(X))
)
. (2.44)

It is usual to set j = i+ 1 such that we limit the exchange to neighbouring replicas,
since the probability of exchange decreases with the distance between replicas.

Simulated Annealing

Simulated Annealing (SA) is based on the heuristics of the real world physics of
annealing (slow cooling) of solids [21]. It is known that a hot material, such as a molten
metal, will, if cooled sufficiently slowly to a low enough temperature, eventually find
its ground state.

The SA algorithm consists of a discrete-time inhomogeneous MCMC with the
Metropolis acceptance probability seen in Eq. (2.39), but with a time varying β(t),
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corresponding to the system temperature at time t. SA makes use of a decreasing
temperature cooling schedule.

As T (t) decreases, the probability distribution is concentrated on the set of global
minima [22]. To see why this is, consider a Markov chain at temperature T . Assuming
that the Markov chain is irreducible and aperiodic, it is then also reversible, and its
probability distribution is given by

F(µ) =
1

ZT
exp

(−H(µ)

T

)
, (2.45)

where µ is a given state of the system and ZT is a normalization constant.
It is evident that as T approaches 0, values of minimum energy will be preferred.
A key feature of the SA algorithm is that it is guaranteed to find an optimal solution

asymptotically [22]. To be more specific, SA converges if

lim
t→∞

T (t) = 0 (2.46)

and

∞∑
t=1

e−d
∗T (t) =∞, (2.47)

where d∗ is a measure of the difficulty of escaping from local minima and go from
a suboptimal state to a state in the set of global minima. This behaviour must be
taken into account when choosing a cooling schedule. In practical application, the
computational effort to find the optimal solution may be very large.

A schematic view of the algorithm can be seen in Alg. 1.

Algorithm 1 Generic Simulated Annealing algorithm
Initialize configuration of S at will.
Define a temperature schedule.
while |∆H0| > ε ∨ total number of iterations < Niter do

Update temperature.
for i < n do

Choose random pair of antiparallel spins.
Exchange them according to Metropolis acceptance rule.
If exchange is accepted, H ← H + ∆H.

end for
if H < H0 then

H0 ← H
end if

end while
return H0
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Algorithm 2 Generic Extremal Optimization algorithm
Initialize configuration S at will.
Sbest ← S
while total number of iterations < Niter do

Evaluate λi for each variable si of the current solution S.
Sort the variables si into ranking π based on their fitness λi.
Choose the rank k according to a suitable distribution probability
so that the variable sj with j = π(k) is selected.

Choose S ′ such that sk = s′k,∀k 6= j and sj 6= s′j.
Accept S ← S ′ unconditionally.
if λ(S) < λ(Sbest) then

Sbest ← S
end if

end while
return Sbest and λ(Sbest)

2.6.2 Extremal Optimization and the Multilevel Framework

Extremal Optimization

Extremal Optimization (EO) is a simulation method based on the phenomenon
of Self-Organized Criticality (SOC) first introduced by Per Bak and Kim Sneppen in
their seminal paper [23]. Species in the Bak-Sneppen model are located on sites of a
lattice, and each one has a fitness λ represented by a value between 0 and 1. At each
step, one of the smallest values (representing one of the most poorly adapted species)
is discarded and replaced by a new value drawn randomly from a flat probability
distribution defined between [0, 1]. Without any interactions, all the fitnesses in the
system would eventually approach 1. But interdependencies between species provide
constraints for balancing the system’s overall condition with that of its members: the
change of fitness of one species impacts the fitness of an interrelated species. Therefore,
at each update step, the Bak-Sneppen model replaces the fitness values on the sites
neighbouring the smallest value with new random numbers as well (see Alg. 2).

No explicit definition is provided for the mechanism by which these neighbouring
species are related. Yet, after a certain number of updates, the systems organizes itself
into a highly correlated state. This state is what is known as SOC. In that state,
almost all species have reached a fitness above a certain threshold. But these species
only possess what is called self-punctuated equilibrium: since only one’s weakened
neighbour can undermine one’s own fitness, the systems undergoes long periods of
stasis, with a fitness above the threshold, interrupted by bouts of activity. This co-
evolutionary activity cascades in a chain reaction, known as avalanche, through the
system.
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In this model, the high degree of adaptation of most species is obtained by the
elimination of poorly adapted ones rather that by an “engineering” of better ones.
While such dynamics may not result in an optimal solution as could be engineered
under specific circumstances, it provides near-optimal results with a high degree of
latency for a rapid adaptation response to changes in the resources that drive the
system.

In this work, after computing the initial fitness λ for all vertices (playing the role
of species) of the system, we then rank them in order of least to most fitness. In each
step we swap two vertices according to the probability distribution k−τ , where k is the
index after ranking, recalculate the fitness, and rank every vertex once again. After a
sufficient number of iterations, the system should reach a state of equilibrium.

One of the great advantages of this algorithm over an algorithm such as SA is that
EO can arguably escape local minima with less computational effort and without the
need for fine-tuning algorithmic SA parameters such as the cooling schedule.

Multilevel Framework

One of the most common approaches to solve the GBP is the Multilevel Framework
(MF), where a graph is approximated by a sequence of smaller graphs [24]. The main
idea of this framework is to reduce the size of the graph, find a partition for the coarsest
graph and project it back to the original one. The most evident advantage of the MF
is that size of the graph can be reduced without losing its topological properties and
thus the problem can be solved much faster.

In this work, we used Multilevel K-way Partitioning (MLK). This algorithm is
divided in three phases: coarsening, initial partitioning and uncoarsening.

Coarsening phase During the coarsening phase, a sequence of smaller graphs Gi =

(Vi, Ei) is constructed from the original graph G0 = (V0, E0), such that ni > ni+1 [25].
Graph Gi+1 is obtained from Gi by finding a maximal matching Mi ⊆ Ei of Gi and
collapsing the vertices that are incident on the edge of the matching. When vertices
u, v ∈ Vi are collapsed to form vertex w ∈ Vi+1, the weight of vertex w is set to the
sum of the weights of vertices v and u, and the edges incident on w are set to the union
of edges incident on u and v minus the edge (v, u). Thus, during successive coarsening
levels, the weight of both vertices and edges increases. If no initial weights are assigned,
we assume all weights equal to 1.

Vertices which are not incident on each edge of the matching are copied to Gi+1.
Since the goal of this collapse of edges is to decrease the size of the graph Gi, the
matching must be maximal.
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Maximal matchings can be computed in a number of ways. MLK uses a modified
Heavy Edge Matching, as seen in Ref. [24].

Partitioning phase The second phase of the MLK is to compute a k-partitioning of
the coarsest graph Gm such that each partition contains roughly n0/k vertex weight of
the original graph. Any sufficiently accurate partitioning method can be used at this
step, since the graph is small.

Uncoarsening phase Finally, during the uncoarsening phase, the partitioning of
the coarsest graph is projected back to the original graph by going through the graphs
Gm, Gm−1, . . . , G1. Since each vertex u ∈ Vi+1 contains a distinct subset U of vertices
of Vi, the projection of the partitioning from Gi+1 to Gi is achieved by simply assigning
the vertices in U to the same partition in Gi to which vertex u belongs in Gi+1. After
the partitioning is projected, a local refinement algorithm must be used, due to the now
larger number of degrees of freedom, which allows for further minedge minimization.
The most commonly used algorithm is the Kernighan-Lin heuristic.

Kernighan-Lin heuristic The Kernighan-Lin heuristic seeks to compute partitions
by minimizing a cost function T [26]. In essence, we start with any arbitrary partition
A,B of a set S of n points, with an associated cost matrix C = (cij) and cost function
T =

∑
A⊗B cab. By a series of interchanges of subsets of A and B, we seek to decrease

the initial cost, until no further improvement is possible. At this point, the partition
A′, B′ is locally minimum.

Of course, we cannot consider all possible choices of subsets of A and B, and we
must make an approximation. To do this, we define for each a ∈ A an external cost

Ea =
∑
y∈B

cay (2.48)

and an internal cost

Ia =
∑
x∈A

cax. (2.49)

In similar fashion, we define Eb and Ib for each b ∈ B. It can be shown that the
reduction in the cost from interchanging a and b is given by

∆T = Da +Db − 2cab, (2.50)

where Dx = Ex − Ix.
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The algorithm begins by computing D values for all elements of S. We then choose
a, b ∈ A,B such that

gi = Dai +Dbi − 2cai,bi (2.51)

is maximum. We then recalculate D for the elements of A− {ai} and B − {bi}

Dx′ = Dx + 2cxai − 2cxbi , x ∈ A− {ai} (2.52)

Dy′ = Dy + 2cybi − 2cyai , y ∈ B − {bi} (2.53)

and choose another pair of vertices to interchange such that the cost of the move
is maximum. We continue in such a fashion until all vertices have been exhausted,
identifying the pairs (ai, bi) . . . (an, bn) and the corresponding maximum gains gi . . . gn.

We now choose a cutoff l that maximizes the partial sum Gsum =
∑l

i=1 gi. If
Gsum > 0, a reduction in cost can be made by interchanging {a1 . . . al} and {b1 . . . al}.
After this is done, the resulting partition is treated as the initial partition, and the
process is repeated. If Gsum = 0, we have reached an optimal partition.

This method is quite exhaustive, and, as such, not suitable for the partition of large
graphs. But, for the purposes of local refinement, it results in optimal partitions with
a great degree of certainty.
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Chapter 3

Methods

3.1 General considerations

We were interested in obtaining a description of the behaviour of the minimum
partition cost in the vicinity of the bipartition threshold point for a wide range of
rewiring probabilities.

The runtime and memory usage of our implementation of PT were too large for
the number of networks we wanted to analyse. So, even though its results should
be satisfactory, we chose other bipartition algorithms, using PT instead to establish
baseline values for the random network, i.e, pr = 1, in conjunction with the results
obtained by Percus et al.

We then tested SA. We discovered that SA is quite susceptible to the initialization
scheme, and that the results if offers in the vicinity of the bipartition threshold are
quite distant from the expected theoretical values for pr = 0 and pr = 1. This makes
it a unsatisfactory candidate for the task at hand.

We then tested EO and MLK, expecting a more satisfactory performance at the
threshold point.

We compared initialization schemes, according to quality of produced partitions
and runtime, settling on the scheme described in Section 3.4.

3.2 Network generation

We used a modified WSM, with the addition of a probability of edge deletion pd to
the existing rewiring probability, which we denote by pr.

We start with a square lattice with periodic boundary conditions. In this work
we use square lattices with

√
n values of 16, 32, 64 and 128. We also use square

lattices with
√
n equal to 256 and 512 to validate some of our assumptions regarding
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the prevalence of finite size effects in the graph bipartitioning threshold.
The network generating algorithm is divided into a rewiring and a deletion phase.

The rewiring phase begins by choosing nr = pr × m random unique edges to be un-
conditionally rewired. From each of these edges we choose a random end vertex which
will then be connected to a random vertex of the network, followed by the deletion of
the chosen edge. This completes the rewiring step. The deletion step goes in a similar
fashion, choosing nd = pd × m random unique edges which are then unconditionally
deleted.

At any point of the process we only allow any given vertex to be connected to a
maximum kmax of 20 other vertices, in order to lessen the memory requirements of the
algorithm.

3.3 Threshold value determination

In our model of small-world networks, a high value of pd results in clusters of small
size, while a low value of pd results in the appearance of a GCC. As the clusters of small
size are absorbed into the GCC, the mean cluster size of finite clusters should increase
and then decrease again. We can conclude then that the percolation threshold occurs
at the maximum value of the mean cluster size, given that we ignore the contribution
of the GCC.

The probability that a randomly chosen vertex not belonging to the GCC belongs
to a cluster of size s is given by

ωs =
sns∑
s sns

, (3.1)

where ns is the average number of finite clusters of size s per vertex.
It follows that the mean finite cluster size is given by

χ =
∑
s

sws =

∑
s s

2ns∑
s sns

. (3.2)

This quantity is the susceptibility for the percolation problem that diverges at the
percolation threshold.

The percolation threshold of a finite system of size n can be estimated by

pd,c(n) = argmax
pd

χ. (3.3)

The partitioning threshold is given by the probability pd,p such that

n∞(pd,p) = 1/2. (3.4)
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We have simply to find the value for which this condition is met, and we obtain
pd,p.

In this work, we calculated these values using 1001 values of pd for each of 101
values of pr, for a combined total of 101101 networks for each size.

3.4 Network initialization

As discussed in Section 3.1, the minimum partition cost for values of n∞ < 1/2

should be null. Taking this into account, we employ two initialization schemes accord-
ing to whether n∞ is larger or smaller than 1/2.

Take wihout loss of generality a partition given by two sets ↑ and ↓. Then, our
initialization schemes can be summarized as follows:

n∞ > 1/2

Place all finite clusters in the ↑ set and the GCC in the ↓ set. Select the least connected
↓ vertexs within the GCC and place them in the ↑ set. Update the connectivity between
vertexs of the ↑ and ↓ sets within the GCC. Iterate until null magnetization is reached.

If the GCC takes up more than half of the vertices in the network, edges connecting
the two set of the optimal partition must occur inside the GCC. This scheme focuses
on interfaces within the GCC, resulting in a better final result, with shorter runtimes.

n∞ < 1/2

Place finite clusters in the ↑ set and the GCC in the ↓ set. Choose finite cluster of size
Nc such that n/2 − |↓| − Nc is minimized and place it in the ↓ set. Iterate until null
magnetization is reached.

3.5 Partitioning algorithms

For the determination of the behaviour of the minimum partition cost in the vicinity
of the bipartition threshold point, we generated 441 networks (21 values of pd for each of
21 values of pr) in the case of the MLK algorithm and 111 networks (11 values of pd for
each of 11 values of pr) in the case of the EO algorithm. This difference in the number
of simulated networks, on account of the longer runtime of EO, should not greatly affect
the quality of our results. We chose values of pd such that 0.6× pd,c ≥ pd ≥ 0.4× pd,c
for each rewiring probability, as seen in Ref. [10]. This gives us a good coverage of the
overall solution space, without sacrificing performance.
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3.5.1 Simulated Annealing

We used a temperature schedule of nsteps = 107 from βhigh = 0.01 to βlow = 1000,
given by

βi = βhigh exp

(
i− 1

γ

)
, (3.5)

with γ given by

γ =
nsteps − 1

log (βlow/βhigh)
. (3.6)

We used the non local version of the Kawasaki method.
In order to lessen the runtime of the algorithm, we keep updated lists of which sites

belong to which set. We then randomly draw a site from each set, which ensures that
our selected pair is always antiparallel.

3.5.2 Extremal Optimization

We considered each vertex of a graph as an individual species with its own fitness.
We assigned to each vertex i the fitness

λi =


Gi

Gi +Bi

if ki > 0,

1 otherwise,
(3.7)

as seen in Ref. [9]. Notice that λ can only take values between 0 and 1.
The first case of the previous equation can be written as

λi =
1

2
+

si
ki∑
j=1

sj

2ki
, (3.8)

by making use of the equalities Bi +Gi = ki and Gi −Bi = si
∑ki

j=1 sj.
The partition cost can then be given by

b =
∑
i

ki(1− λi)
2n

. (3.9)

In each update step, only two spins i and j and are exchanged. This gives us

∆b = −
si

ki∑
l=1

sl + sj
kj∑
l=1

sl

2n
. (3.10)
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... 113 ... 11 ...
... 511

n/2

10 300 ... 512

kmax + 1

Figure 3.1: Schematic representation of our doubly linked list.

When the chosen spins are neighbours, the previous expression must be corrected,
resulting in

∆bneigh = ∆b− sisj
2
. (3.11)

This means that we need to explicitly calculate only the initial fitness. In every
update step, the variation of the partition cost depends only on the value of the spin
of the vertices which will be exchanged and the spins of their neighbours. The result
is an algorithm of reduced computational effort and more efficient memory usage.

Notice that the fitness can only take a certain number of discrete values, and as
such it can be stored in a doubly linked list (Fig. 3.1). This data structure allows for
insertion and deletion in O(1), greatly increasing the algorithm’s performance.

We choose a bucket size nb = 1
kmax

. This bucket size does not allow for a perfect
ordering of the fitnesses (some of the values will be of the form 1/p, p being some prime,
which are not divisible), but this algorithm will nonetheless converge to a suitable value
given enough iterations. A constant bucket size allows for a much shorter runtime,
making up for the necessity of more iterations, and makes for simpler code.

As in our SA implementation, we keep a tally of which vertices belong to which set.
In this case, this means keeping two bucket lists, one for each set.

We draw a bucket 1 ≤ c ≤ kmax + 1 from each list, with probability
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F(c) = Fsum

(
c∑

l = 1

nl

)
−Fsum

(
c−1∑
l = 1

nl

)
, (3.12)

where nl is the number of vertices in bucket l and Fsum(k) is given by

Fsum(k) =
k∑
j=1

F(j), (3.13)

with F(j) given by

F(j) =
j−τ

n/2∑
j=1

j−τ
. (3.14)

We then randomly draw a vertex from each bucket. These vertices will be uncon-
ditionally swapped. This process is repeated in every step.

We ran the algorithm for 10n2 steps, which we found to be sufficient for convergence
in our test cases. We used τ = 1.45, as seen in Refs. [9, 10].

3.5.3 Multilevel K-way partitioning

We used the Python and Fortran implementation of the METIS software suite [24]
with default parameters. The default partitioning algorithm for the MLK implemen-
tation in METIS is the multilevel bisection algorithm described in Ref. [24].

3.6 Statistics

The data generated with these algorithms was randomly chosen from the ensemble
of possible realizations of the network. This choice was made by using different seeds
for the random number generators in Fortran (Linear feedback shift register [27]) and
Python (Mersenne Twister [28]), comprising a total of 100 realizations (samples) for
each network. Each realization was given equal weight in the ensemble average.
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Chapter 4

Results

4.1 Threshold values

In Fig. 4.1 we plot the phase diagrams of networks with
√
n values of 16, 32, 64,

128, 256 and 512. There is a clear influence of the size in the quality of the results
of the percolation threshold, but this effect is almost non existent in the bipartition
threshold. This is in accordance to our expectations, since the correlation length does
not diverge in the bipartition transition [10]. As discussed in sections 2.4 and 2.5 we
expected that, for a random graph, the percolation threshold value should be kc = 1

and the partition threshold value should be kp = 2 log 2, while for a square lattice
they should be kp ≈ kc = 2 [13]. These values are plotted as straight lines, and it is
clear that, as the size of the network increases, the experimental data comes closer to
theoretically expected values, reaching a 1% margin for

√
n = 512.

4.2 Validation

In this work, we made the assumption that the minimum partition cost should
have the same exponents for networks of all sizes, since the finite size effect should
not play a great role in the bipartition transition. If this assumption is true, then
the bipartition threshold values should not vary much with the size of network. This
can be seen in Fig. 4.1, but in order to be more precise, we compare the bipartition
threshold values of networks with

√
n values of 16, 32, 64, 128 and 256 directly, as seen

in Fig. 4.2. Although the data for
√
n = 16 is quite noisy, its deviation from the values

for
√
n = 256 is small enough to justify our approach.

We also verified that the finite cluster size distribution obeys a power law at the
percolation threshold of the form ns ∝ s−τ , where s is the size of a given cluster,
normalized by the total number of vertices in the network. We plot ns against s in
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Fig. 4.3 for networks with
√
n values of 16, 32, 64, 128 and 256, as well as theoretically

expected values. The data is quite noisy for large values of s, so we took a logarithmic
sampling and averaging of s with 16 windows. In the smallest networks the curves
deviate from theoretically expected curves but this deviation visibly diminishes as the
size increases.

4.3 Algorithm comparison

We compare three partitioning algorithms using the initialization scheme laid out
in Section 3.4 for a network of size 1024 and four values of pr along the spectrum, so as
to give a wide sample of each algorithm’s behaviour. We choose deletion probabilities
that lie in the middle region of the sampling space, as explained in Sec. 3.5. The
results can be seen in Fig. 4.4. We also show the results obtained by EO with random
initialization.

EO with our initialization scheme produces the best results in all cases. The results
obtained with MLK improve as we approach the bipartition threshold point, while the
results obtained with SA, although close to MLK for values of pd distant from the
bipartition threshold, are poor in all cases, especially for pr = 0. We hypothesize that
this stark difference between the algorithms is due to the varying susceptibility of each
method to the initialization of the system, MLK being the most impervious to this
effect. In conjunction with this, the poor quality of the results of SA for pr = 0 can be
attributed to the highly ordered structure of the network, which results in the algorithm
becoming stuck in local minima. The results of EO with random initialization show
how susceptible the algorithm is to the initial configuration of the system, resulting in
poor values for the minimum partition cost.

4.4 Minimum partition cost

The minimum partition cost in the vicinity of the bipartition threshold point can
be seen in Figs. 4.5 and 4.6. As of now, there is no precise description of what its
behaviour should be in the full parameter space, so we can only base our analysis on
the fact that it becomes null above the partition threshold, as expected, that it behaves
differently for pr = 0 and pr 6= 0, and that it obeys a power law as a function of pd,p−pd,
all of which can be seen in the data.

We obtained the parameters of this power law with an ordinary least squares (OLS)
regression of the experimental data to the linearisation of Eq. (2.27)

31



0.10 0.15 0.20 0.25 0.30

10

20

30

40

50

60

70

80

90

0.15 0.20 0.25 0.30 0.35

50

100

150

200

250

0.15 0.20 0.25 0.30 0.35

50

100

150

200

250

300

0.15 0.20 0.25 0.30 0.35

50

100

150

200

250

300

0.0 0.2 0.4 0.6 0.8 1.0
pd,p − pd

0.0

0.2

0.4

0.6

0.8

1.0

B
m

in

EO with random initialization

EO

SA

MLK

Figure 4.4: Comparison between algorithms for a network of size 1024 with pr =
0, 0.3, 0.7 and 1, from left to right and top to bottom, In green we have the values
obtained with SA, in orange the values obtained with MLK and in blue the values
obtained with EO. The same initialization scheme was used for all three algorithms.
We also show in black the values obtained with EO with random initialization.

32



logB = logC(n) + a log (pd,p − pd). (4.1)

The complete results of this fit can be seen in Table 4.1 for EO and in Table 4.2
for MLK. We also overlay the fitted curves in figures 4.5 and 4.6. As we approach the
limit of the random network, the fitted curves grow closer and their slope increases,
until it converges on a ≈ 1.4. For pr = 0, we obtain values closer to 1. Both sets of
results follow this trend, and the results shown for pr = 1 are in agreement with those
obtained by Boettcher and Percus in Refs. [9, 10]. As discussed in Section 2.4, small-
world networks have the same critical percolation behaviour as random networks, so it
is reasonable that the partition exponents are also the same.

We also investigate how the coefficient of finite size scaling C(n) in Eq. (2.27)
behaves across the rewiring spectrum. It is known that this quantity obeys a power
law at the partition threshold of the form

logC(n) = c log n+ C0. (4.2)

For random graphs, it is known that c must be 1, since any global property of
these graphs is extensive. The same can be said of small-world networks, since the
introduction of long-range shortcuts introduces extensivity. Thus, for all values of
pr 6= 0.0, this value should be 1. For random geometric graphs, the work in Ref. [9]
obtained a value of 0.6. This value should be the same for the square lattice, since
the critical percolation behaviour of these two types of graphs is the same [29]. Most
likely, the value of c is 0.5, since the optimal partition of a square lattice should create
an interface between the sets of length proportional to

√
n, i.e., the minimum partition

cost should scale as n1/2.
In order to obtain this value, we fitted the values of the intercept, which we denote

by C(n), obtained from the fit of Eq. (4.1) to experimental data, to the equation with
OLS. The results of this fit can be seen in Fig. 4.7, and in more detail in Tables 4.3
and 4.4. We obtain a value of c ≈ 1 for most values of pr 6= 0, with the exception of
pr = 0.05 with MLK, which comes closer to 0.8. This might be due to the crossover
between the square lattice and small-world network, most visible in smaller networks.
That the values for pr = 0.1 are in agreement for both methods, and much closer to
the theoretical value of 1, lends more credence to this hypothesis. With EO, we obtain
a value of c = 0.5 for the square lattice, which is in accordance with our expectations.
With MLK we obtain a value of c ≈ 0.55, closer to what is seen in Ref. [9].
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Table 4.3: Results of the fit of logC(n) = c log n + C0 to experimental data obtained
with EO.

pr intercept slope r2

0.0 1.40 0.510 0.984466
0.1 -0.90 0.960 0.999614
0.2 -1.02 1.019 0.999877
0.3 -0.80 1.020 0.999619
0.4 -0.76 1.011 0.999992
0.5 -0.71 1.011 0.999911
0.6 -0.66 1.003 0.999990
0.7 -0.62 1.001 0.999997
0.8 -0.69 1.010 0.999908
0.9 -0.72 1.010 0.999782
1.0 -0.50 0.990 0.999676

Table 4.4: Results of the fit of logC(n) = c log n + C0 to experimental data obtained
with MLK.

pr intercept slope r2

0.00 1.210 0.5520 0.999489
0.05 -0.300 0.8400 0.997112
0.10 -0.700 0.9500 0.999301
0.15 -0.690 0.9750 0.999937
0.20 -0.710 0.9940 0.999990
0.25 -0.660 0.9990 0.999984
0.30 -0.650 1.0070 0.999952
0.35 -0.600 1.0050 0.999976
0.40 -0.610 1.0090 0.999891
0.45 -0.540 1.0040 0.999973
0.50 -0.497 1.0003 0.999999
0.55 -0.520 1.0040 0.999972
0.60 -0.520 1.0040 0.999972
0.65 -0.500 1.0020 0.999984
0.70 -0.510 1.0030 0.999900
0.75 -0.590 1.0100 0.999795
0.80 -0.540 1.0060 0.999934
0.85 -0.500 1.0020 0.999989
0.90 -0.530 1.0050 0.999933
0.95 -0.490 1.0000 0.999974
1.00 -0.550 1.0070 0.999941
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Chapter 5

Conclusions and future work

In this work, we analysed the behaviour of the Graph Bipartitioning Problem at the
partition threshold for small-world networks along the spectrum between the square
lattice and a random network. We used a modified Watts-Strogatz to interpolate
between these two extrema.

We obtained the partition and percolation threshold values for several networks of
varying size along the spectrum, and found that the partition threshold value has very
little dependence on the size of the network.

We tested several bipartition algorithms and concluded that Extremal Optimization
and Multilevel K-way Partitioning had superior performance. We found that a proper
initialization scheme is vital for quality results in the case of EO.

We obtained the exponents of the minimum partition cost in the vicinity of the
partition threshold for networks of several sizes, and found that, regardless of size, the
introduction of any number of shortcuts in the square lattice changes the behaviour of
the network. We replicated the expected theoretical values for the exponents in the
square lattice and the random network. The values of both methods for the square
lattice are approximately 1, and values for networks in the spectrum start to converge
to 1.4 when we approach the random network.

The finite size scaling exponents obtained with our methods are c = 0.5 for the
square lattice and c = 1 for all other networks in the spectrum, in agreement with
previous work and theoretically expected values.

For future work, we could study the GBP with site percolation and give a more
thorough analysis of the interplay between the two length scales of small-world net-
works. It would also be interesting to use an exact method such as Parallel Tempering
to give a more robust description of the problem and study the effect of initialization
of EO using the MLK algorithm to produce initial configurations. For pr = 0 it was
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found that for larger systems and close to pd,p the EO algorithm may have problems
finding the optimal solution.
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