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Abstract

Brain-derived neurotrophic factor (BDNF) is an important mediator of long-term synaptic potentiation (LTP) in the
hippocampus. The local effects of BDNF depend on the activation of translation activity, which requires the
delivery of transcripts to the synapse. In this work, we found that neuronal activity regulates the dendritic
localization of the RNA-binding protein heterogeneous nuclear ribonucleoprotein K (nnRNP K) in cultured rat
hippocampal neurons by stimulating BDNF-Trk signaling. Microarray experiments identified a large number of
transcripts that are coimmunoprecipitated with hnRNP K, and about 60% of these transcripts are dissociated
from the protein upon stimulation of rat hippocampal neurons with BDNF. In vivo studies also showed a role for
TrkB signaling in the dissociation of transcripts from hnRNP K upon high-frequency stimulation (HFS) of medial
perforant path-granule cell synapses of male rat dentate gyrus (DG). Furthermore, treatment of rat hippocampal
synaptoneurosomes with BDNF decreased the coimmunoprecipitation of hnRNP K with mRNAs coding for
glutamate receptor subunits, Ca®*- and calmodulin-dependent protein kinase I3 (CaMKIIB) and BDNF. Down-
regulation of hnRNP K impaired the BDNF-induced enhancement of NMDA receptor (NMDAR)-mediated mEPSC,
and similar results were obtained upon inhibition of protein synthesis with cycloheximide. The results demonstrate

(s )

Brain-derived neurotrophic factor (BDNF) is an important mediator of long-term synaptic potentiation (LTP)
in the hippocampus, which is thought to underlie learning and memory formation. In this work we report the
role of heterogeneous nuclear ribonucleoprotein K (hnnRNP K) as a novel mediator of the effects of BDNF on
RNA metabolism in the dendritic compartment of hippocampal neurons. We found that at excitatory
synapses BDNF reduces the interaction of hnRNP K with transcripts coding for synaptic proteins, including
glutamate receptor subunits. This is likely to play an important role in synaptic plasticity mechanisms since
hnRNP K was found to mediate the BDNF-induced enhancement of the activity of synaptic NMDA receptors
\(NMDARS), an effect that is dependent on protein synthesis. /
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that BDNF regulates specific populations of hnRNP-associated mRNAs in neuronal dendrites and suggests an
important role of hnRNP K in BDNF-dependent forms of synaptic plasticity.

Key words: BDNF; local translation; long-term synaptic potentiation; neurotrophins; NMDA receptors; RNA

transport

Introduction

The neurotrophin brain-derived neurotrophic factor
(BDNF) plays an important role on long-term synaptic
potentiation (LTP) induced by high-frequency stimulation
(HFS) of hippocampal Schaffer collateral-CA1 synapses
(Korte et al., 1995, 1996; Kang et al., 1997; Minichiello
et al.,, 1999) and at medial perforant path-granule cell
synapses of the dentate gyrus (DG; Panja et al., 2014).
Activation of BDNF-TrkB signaling also has a facilitatory
effect on CA1 synapses, through stimulation of the protein
synthesis machinery (Kang and Schuman, 1996; Schratt
et al., 2004; Takei et al., 2004; Leal et al., 2014a; Panja
and Bramham, 2014), and translation activity is required
for the induction and consolidation of LTP following infu-
sion of BDNF into the DG of anesthetized rats (Messaoudi
et al., 2007; Panja et al., 2014). The BDNF-induced syn-
thesis of proteins at the synapse relies on the local avail-
ability of the translation machinery (Steward and Levy,
1982), and on the presence of transcripts that are trans-
ported by motor proteins which travel along the microtu-
bule tracks present in dendrites (Kanai et al., 2004; Santos
et al., 2010; Leal et al., 2014a). The transport of RNAs
along dendrites is made in large structures, the RNA
granules, where the transcripts interact with specific pro-
teins that stabilize them (Kanai et al., 2004; Elvira et al.,
2006; Kosik, 2016). Studies performed in cultured hip-
pocampal neurons showed that BDNF induces the disso-
ciation of P-bodies, a class of RNA granules that may
participate in the translational control of dendritically
localized mRNAs, which may allow translation activity
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(Zeitelhofer et al., 2008). However, the identity of the
extracellular signals and the downstream mechanisms
that regulate RNA metabolism in dendrites are poorly
understood.

The RNA-binding protein heterogeneous nuclear ribo-
nucleoprotein K (hnRNP K) was identified as a component
of RNA transport granules in neurons (Elvira et al., 2006),
and was detected in synaptoneurosomal fractions (Liao
et al., 2007) as well at the postsynaptic densities in hip-
pocampal neurons (Proepper et al.,, 2011; Folci et al.,
2014). hnRNP K has a modular structure with three K
homology (KH) domains that interact with RNA and ss-
DNA, and a K interactive region (KI), which recruits a wide
variety of factors, including kinases and regulators of
splicing, mRNA stability and translation (Bomsztyk et al.,
2004; Geuens et al., 2016). Given the presence of multiple
domains for interaction with other molecules, it was pro-
posed that hnRNP K may act as a docking platform to
integrate signaling cascades by promoting the cross-talk
between kinases and molecules involved in nucleic acid
metabolism (Bomsztyk et al., 2004). At the postsynaptic
density of hippocampal neurons hnRNP K interacts with
Abelson-interacting protein 1 (Abi 1), a protein that plays
an important role in the regulation of cytoskeleton reor-
ganization and synaptic maturation (Courtney et al.,
2000). Accordingly, hnRNP K was recently found to reg-
ulate the dendritic spine density in cultured hippocampal
neurons (Folci et al., 2014). However, the role played by
hnRNP K in the regulation of translation activity at the
synapse remains to be characterized.

In this work we report a previously undescribed role of
hnRNP K as a mediator of the effects of BDNF in RNA
metabolism in the dendritic compartment of hippocampal
neurons. We found that neuronal activity induces the
punctate accumulation of hnRNP K in dendrites by a
mechanism dependent of BDNF. At the synapse, BDNF
reduces the interaction of hnRNP K with transcripts cod-
ing for synaptic proteins, including glutamate receptor
subunits. This may be relevant for synaptic plasticity
mechanisms since hnRNP K was found to play an impor-
tant role in BDNF-induced enhancement of the activity of
synaptic NMDA receptors (NMDARsS).

Materials and Methods

Hippocampal cultures

High-density hippocampal cultures were prepared from
the hippocampi of embryonic day E18-E19 Wistar rat
embryos, after treatment with trypsin (0.06%; 15-min in-
cubation at 37°C; Gibco, Life Technologies) and DNase |
(5.36 mg/ml) in Ca®* - and Mg® " -free HBSS (5.36 mM KClI,
0.44 mM KH,PO,, 137 mM NaCl, 4.16 mM NaHCQO,, 0.34
mM Na,HPO,-2H,0, 5 mM glucose, 1 mM sodium pyru-
vate, 10 mM HEPES, and 0.001% phenol red). The hip-
pocampi were then washed with HBSS containing 10%
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fetal bovine serum (Gibco, Life Technologies), to stop
trypsin activity, and transferred to Neurobasal medium
(Gibco, Life Technologies) supplemented with SM1 sup-
plement (1:50 dilution, STEMCELL Technologies), 25 uM
glutamate, 0.5 mM glutamine, and 0.12 mg/ml gentamy-
cin (Gibco, Life Technologies). The cells were dissociated
in this solution and then plated in six-well plates (90 x 10°
cells/cm?) coated with poly-D-lysine (0.1 mg/ml) for bio-
chemical purposes (Western blotting and RNA coimmu-
noprecipitation), or on poly-D-lysine-coated coverslips
(80 x 102 cells/cm?) for the analysis of NMDAR-mediated
miniature EPSCs (MEPSCs). Cultures were maintained in
a humidified incubator of 5% CO,/95% air at 37°C for
14-17 d and then stimulated with 50 ng/ml BDNF (Pep-
rotech) for the indicated periods of time.

Low-density hippocampal cultures were prepared as
previously described (Kaech and Banker, 2006). Briefly,
hippocampi were dissected from E18 rat embryos, and
the cells were dissociated using trypsin (0.02%) before
plating in neuronal plating medium (MEM supplemented
with 10% horse serum, 0.6% glucose, and 1 mM pyruvic
acid), at a final density of 1.43 X 10* cells/cm? on poly-
D-lysine-coated glass coverslips. After 2-4 h, coverslips
were flipped over an astroglial feeder layer in Neurobasal
medium (Invitrogen) supplemented with SM1 supplement
(1:50 dilution, STEMCELL Technologies), 25 uM gluta-
mate, 0.5 mM glutamine, and 0.12 mg/ml gentamycin
(Gibco, Life Technologies). The neurons grew face down
over the feeder layer but were kept separate from the glia
by wax dots on the neuronal side of the coverslips. To
prevent overgrowth of glial cells, neuron cultures were
treated with 5 uM cytosine arabinoside (Sigma-Aldrich)
after 3 days in vitro (DIV). Cultures were maintained in a
humidified incubator with 5% C0O,/95% air, at 37°C, for
up to two weeks, feeding the cells once per week. At
DIV14-DIV15, neurons were stimulated for 30 min with
100 ng/ml BDNF (Peprotech) or with 50 uM bicuculline
(Tocris), 2.5 mM 4-AP (Tocris), and 10 uM glycine (Sigma-
Aldrich) to stimulate glutamate release and to increase
synaptic activity. Where indicated, cells were pretreated
for 30 min with the Trk receptor inhibitor SHN722 (1 uM;
Martin et al., 2011; Gomes et al., 2012) or with the scav-
enger of extracellular ligands of TrkB receptors TrkB-Fc (1
ng/ml; R&D Systems) before stimulation with 100 ng/ml
BDNF (Peprotech) or with the cocktail solution containing
bicuculline (50 uM bicuculline, 2.5 mM 4-AP, and 10 uM
glycine), respectively. Experiments were performed in a
basal saline solution (132 mM NaCl, 4 mM KCI, 1.4 mM
MgCl,, 2.5 mM CaCl,, 6 mM glucose, and 10 mM HEPES
at a final pH 7.4). Cells were then processed for immuno-
cytochemistry.

Immunocytochemistry

Hippocampal neurons were fixed in 4% sucrose/para-
formaldehyde (in PBS) for 15 min at room temperature
and permeabilized with 0.3% Triton X-100 in PBS. Neu-
rons were then incubated with 10% BSA in PBS, for 30
min at 37°C, to block nonspecific staining, and incubated
overnight at 4°C with the primary antibodies diluted in 3%
BSA in PBS. The following primary antibodies and dilu-
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tions were used: anti-hnRNP K (sc-28380, 1:200; Santa
Cruz Biotechnology), anti-GFP (598, 1:500, MBL Interna-
tional), and anti-MAP2 (ab5392, 1:10.000, Abcam). The
cells were washed six times with PBS for 2 min and
incubated with Alexa Fluor 568 (1:500, Invitrogen), Alexa
Fluor 488 (1:500; Invitrogen), and aminomethylcoumarin
(AMCA) (1:200; Jackson ImmunoResearch) conjugated
secondary antibodies, for 45 min at 37°C. After washing
the cells six times with PBS for 2 min, the coverslips were
mounted with a fluorescence mounting medium (DAKO).

Microscopy and quantitative fluorescence analysis

Imaging was performed on a Zeiss Observer Z.1 micro-
scope using a 63 X 1.4 NA oil objective. Images were
quantified using the Imaged image analysis software. For
quantitation, sets of cells were cultured and stained si-
multaneously, and imaged using identical settings. The
protein signals were analyzed after setting the thresholds,
and the recognizable clusters under those conditions
were included in the analysis. Regions of interest (ROI)
were drawn in secondary dendrites with no segmentation
performed. The integrated intensity, area, and number of
hnRNP K particles was determined only within the ROI
and represented per dendritic area (as assessed by MAP2
staining). All analyses were performed blind to the exper-
imental condition.

Preparation of hippocampal culture extracts
Hippocampal cultures with 15 DIV (90 x 10° cells/cm?)
were washed twice with ice-cold PBS, and once more
with PBS buffer supplemented with 1 mM dithiothreitol
(DTT) and a cocktail of protease inhibitors [0.1 mM phe-
nylmethylsulfonyl fluoride (PMSF) and CLAP (1 ug/ml chy-
mostatin, 1 wg/ml leupeptin, 1 pg/ml antipain, and 1
ng/ml pepstatin; Sigma)]. The cells were then lysed with
RIPA (150 mM NaCl, 50 mM Tris-HCI, pH 7.4, 5 mM
EGTA, 1% Triton, 0.5% DOC, and 0.1% SDS at a final pH
7.5) supplemented with 50 mM sodium fluoride (NaF), 1.5
mM sodium ortovanadate (NazVO,), and the cocktail of
protease inhibitors. After sonication and centrifugation at
16,100 X g for 10 min at 4°C, protein in the supernatants
was quantified using the bicinchoninic acid (BCA) assay
kit (Pierce). Samples were then denaturated with 2 con-
centrated denaturating buffer (125 mM Tris, pH 6.8, 100
mM glycine, 4% SDS, 200 mM DTT, 40% glycerol, 3 mM
NazVO,, and 0.01% bromophenol blue) for 5 min at 95°C,
and proteins of interest were analyzed by Western blot-
ting. Alternatively, extracts were performed in a lysis buf-
fer supplemented with 50 U/ml of RNase inhibitor
(SUPERaseln, Ambion Applied Biosystems) and samples
processed for RNA coimmunoprecipitation experiments.

Synaptoneurosome preparation

Synaptoneurosomes were prepared as previously de-
scribed with slight modifications (Yin et al., 2002). Briefly,
six to eight hippocampi were dissected from adult male
and female Wistar rats, and the tissue was minced with
scissors and homogenized with a glass homogenizer in a
buffer containing 0.32 M sucrose, 10 mM HEPES-Tris, pH
7.4, and 0.1 mM EGTA. After centrifugation for 3 min at
1000 X g, the supernatant was collected and passed
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initially through nylon membranes (150 and 50 um, VWR)
and finally through an 8-um pore size filter (Millipore). The
flow-through was centrifuged for 15 min at 10,000 X g,
and the pellet was resuspended in incubation buffer (8
mM KCI, 3 mM CaCl,, 5 mM Na,HPO,, 2 mM MgCl,, 33
mM Tris, 72 mM NaCl, and 100 mM sucrose). All the
procedure was done at 4°C. Synaptoneurosomes were
incubated or not with 50 ng/ml BDNF (Peprotech) or 20
ng/ml PDGF (Peprotech) for 10 min at 30°C and were then
centrifuged at maximum speed, in a Minispin microcen-
trifuge for 30 s. For each time point considered a control
experiment was also performed in the absence of the
neurotrophic factors. The pellet was resuspended in RIPA
buffer supplemented as indicated for the hippocampal
culture extract preparation, followed by sonication and
protein quantification using the BCA method. Proteins of
interest were analyzed by Western blotting. For RNA
coimmunoprecipitation experiments, RIPA buffer was
supplemented with 50 U/ml of the RNase inhibitor
SUPERase.In (Ambion Applied Biosystems).

Lactate dehydrogenase (LDH) activity

Synaptoneurosomes were centrifuged at top speed for
30 s to separate the pellet containing the synaptic fraction
and the “extracellular” fraction, and the pellet was lysed in
15 mM Tris-HCI, pH 7.1 (t = 0 min). Alternatively, synap-
toneurosomes were maintained in incubation buffer for 45
min at 30°C and processed in the same way. The con-
centration of protein in the synaptoneurosomes extract
was quantified using the Bio-Rad method and 25 ug of
total protein were used to assay LDH activity. LDH activity
was also measured in the extracellular fraction. The ac-
tivity of the enzyme was measured at 340 nm in 100 mM
Tris-HCI, pH 7.1, supplemented with 0.3 mM NADH
(Sigma) and 10 mM pyruvate (Sigma). The absorbance of
NAD" was measured at 37°C during 5 min, with intervals
of 50 s. A negative control was performed in the absence
of pyruvate. LDH activity in each sample was calculated
by subtracting the slope of the negative control. LDH
activity for each fraction was calculated as the ratio to the
total LDH activity.

Western blotting

Samples were resolved by SDS-PAGE in 10% poly-
acrylamide gels. For Western blot analysis, proteins were
transferred onto a PVDF membrane (Millipore) by electro-
blotting (40 V, overnight at 4°C). The membranes were
blocked for 1 h with skin milk and 0.1% Tween 20 in TBS
(20 mM Tris, 137 mM NaCl, pH 7.6; TBS-T), and probed
with the primary antibody overnight at 4°C. Following
several washes with TBS-T, the membranes were incu-
bated with an alkaline phosphatase-conjugated IgG sec-
ondary antibody (anti-mouse or anti-rabbit, depending on
the primary antibody host-species) for 1 h at room tem-
perature. The membranes were then washed again and
immunostaining was visualized by the enhanced chemif-
luorescence method (ECF) on a Storm 860 Gel and Blot
Imaging System (GE Health Care). For the analysis of total
extracts from DG homogenates, horseradish peroxidase
(HRP)-conjugated secondary antibodies were used and
immunostaining was developed using chemilumines-
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cence reagents (ECL, GE Healthcare). In this case the
blots were scanned using Gel DOC EQ (Bio-Rad). Anti-
bodies used in Western blotting experiments were the
following: anti-hnRNP K (sc-28380, 1:1000; Santa Cruz
Biotechnology), anti-p-Akt S304 (1:1000; Cell Signaling),
anti-pERK1/2 Thr202/Tyr204 (1:500; Promega), anti-HR3
(1:1000; Millipore), anti-PSD-95 (1:2000; Cell Signaling
Technology), anti-vesicular GABA transporter (VGAT;
1:2000; Synaptic Systems), anti-GFAP (1:1000; Onco-
gene), and anti-synaptophysin (1:1000; Abcam). When
indicated, anti-B-tubulin (T7816, 1:30,000; Sigma-Aldrich),
anti-GAPDH (sc32233, 1:5000; Santa Cruz Biotechnology),
or anti-B-actin (A5441, 1:5000; Sigma-Aldrich) antibodies
were used as loading control.

Immunoprecipitation and mRNA extraction

Antibody-immobilized beads were prepared by incu-
bating 6 ug of hnRNP K or mouse IgG antibodies with 100
ul of Protein G PLUS-Agarose beads (Santa Cruz Bio-
technology), overnight at 4°C in NT, 2X buffer containing
100 mM Tris-HCI, 300 mM NaCl, 2 mM MgCl,, 0.1%
IGEPAL, pH 7.4, and supplemented with 1 mM DTT and a
cocktail of protease inhibitors [0.1 mM PMSF and CLAP
(Sigma)]. The immobilized antibodies were incubated with
1 mg of protein for 1 h at 4°C, and the beads were washed
four times (2-min centrifugations, 2000 X g) with NT, 1x
buffer at 4°C. The supernatant was discarded and the final
pellet, containing the immunoprecipitated hnRNP bound
to the antibody-immobilized beads, was used for further
analysis. For RNA coimmuprecipitations, NT, buffer was
supplemented with 50 U/ml of RNase inhibitor (SUPERa-
seln, Ambion Applied Biosystems), and the TRIzol Re-
agent (Invitrogen) was immediately added to the pellet
and the RNA extracted according to manufacturer’s in-
structions.

For the RNA coimmunoprecipitations performed using
total extracts from DG homogenates, the same procedure
was performed with minor changes: 50 ul of Protein G
Sepharose 4 Fast Flow (GE Health Care) beads and 500
ug of protein were used for the immunoprecipitations and
the NT, buffer was supplemented with cOmplete, Mini
EDTA-free protease inhibitors cocktail (Roche) and 40
U/ml RiboLockRNase inhibitor (Thermo Fischer).

For the microarray analysis, RNA coimmunoprecipita-
tions were performed with the following modifications:
cellular extracts were prepared using the RiboCluster Pro-
filer RIP-Assay kit (MBL International Corporation) supple-
mented with 50 mM NaF, 1:200 Protease Inhibitor
Cocktail Set Ill (Calbiochem, Merck), 1 mM DTT, and 80 U
of RNase inhibitor (SUPERaseln, Ambion Applied Biosys-
tems). Immunoprecipitated mMRNAs were isolated using
the RiboCluster Profiler RIP-Assay kit (MBL International
Corporation).

In all cases, parallel experiments were performed in
which the nonspecific binding of RNAs to Protein G
PLUS-Agarose beads (or Protein G Sepharose 4 Fast
Flow beads) was determined and the RNAs were resus-
pended in the same volume of RNase-free water. The
RNA concentration was determined using NanoDrop
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(Thermo Scientific), and samples were stored at —80°C
until further use.

Gene expression microarray

The RNA isolated from the hnRNP/IgG immunoprecipi-
tates was subjected to microarray analysis using the One-
Color Microarray-Based Gene Expression Protocol v6.0.
The Low Input Quick Amp Labeling (Agilent Technologies)
protocol was used for the preparation and labeling of the
biological targets, hybridization, washing, scanning, and
data analysis, as recommended by the manufacturer. The
Whole Rat Genome Microarray kit (4 X 44K, Agilent Tech-
nologies) was used and analyzed with a high-resolution
microarray scanner (G2565AA, Agilent Technologies). hn-
RNP K-bound mRNAs were identified by setting a cutoff
value of the fold variation between the hnRNP K and IgG
samples. For this identification, we have used a cutoff
value of 5, i.e., only transcripts showing at least 5-fold
variation in their abundance in the hnRNP K immunopre-
cipitates when compared with the IgG controls were con-
sidered specifically associated with the RNP. Transcripts
regulated by BDNF were identified after subtracting the
results obtained in extracts incubated with mouse IgG,
and then by comparing the hnRNP K immunoprecipitates
microarray data obtained for control and BDNF-treated
hippocampal neurons. Calculation of the fold variation in
RNA-hnRNP K interaction induced by BDNF showed sig-
nificant changes (p < 0.05) for 9509 transcripts.

The list of all mMRNAs that coimmunoprecipitated with
hnRNP K (16,015) and those that were significantly regu-
lated by BDNF (9509) are provided in Extended Data
Tables 1-1, 1-5, respectively. The PANTHER classification
system (Mi et al., 2013a) was used to evaluate functional
categories present and enriched in the list of mMRNAs that
associate with hnRNP K and are regulated by BDNF. The
Gene Ontology (GO) analysis included the most enriched
biological processes associated with transcripts bound to
hnRNP K and those that were regulated by BDNF. Only
categories showing at least a 2-fold increase, when com-
paring the number of mRNAs obtained in each category
with the expected number considering the size of our lists,
were considered for analysis. Categories were then or-
dered according to the highest -log (p value).

Reverse transcription and quantitative PCR (qPCR)

For mRNA measurement, 500 ng to 1 ug of total RNA
was reverse transcribed using a blend of oligo (dT) and
random hexamer primers, and iScript Reverse Transcrip-
tase (iScriptcDNA Synthesis kit, 170-8891; Bio-Rad).
Primers for qRT-PCR were designed by Beacon Designer
7 software (Premier Biosoft International). The following
considerations were taken: (1) GC content ~50%; (2)
annealing temperature (Ta) between 55 + 5°C; (3) sec-
ondary structures and primer dimers were avoided; (4)
primer length 18-24 bp; and (5) final product length 100-
200 bp.

Primer sequences were as follows: Grial (GluA1), FW-
ACTACATCCTCGCCAATCTG; REV-AGTCACTTGTCCTC-
CATTGC; Gria2 (GluA2), FW-TCTCTTCTAACAGCATACA;
REV-AAACTGAACCATCCCTAG; Grin1 (GluN1), FW-CG-
GCTCTTGGAAGATACAG; REV-GAGTGAAGTGGTCGTTGG;
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Camk2b (CaMKIIB), FW-GCTATACGAGGATATTGG; REV-
TCTTGGTGTTAATGATCT; Hnmpk (hnRNP K), FW-AACACT-
CAGACAACAATCA; REV-TCCTCCAATAAGAACAACTG;
Hprt1 (Hprt), FW-CCTTGACTATAATGAGCACTTC; REV-
GCCACATCAACAGGACTC; Npas4 (NPAS4), FW-AATG-
GAGATATTCAGGCT; REV-TAGTTATTGGCAGTAATAGG;
Nitrk2 (TrkB), FW-GATCTTCACCTACGGCAAGC; REV-TCG
CCAAGTTCTGAAGGAGT; and Bdnf (BDNF), FW-TAAC-
CTCGCTCATTCATTA; REV-TCAACTCTCATCCACCTT.
An additional set of primers was used for mMRNA measure-
ments from DG total homogenates: bdnf (BDNF), FW-
TGGGACTCTGGAGAGCGTGAATGG; REV-CGGGACTTT
CTCCAGGACTGTGAC.

gPCR was performed using SsoFast EvaGreen Super-
mix (172-5201; Bio-Rad). A total of 2 ul of 1:5 diluted
cDNA (1:4 for microarray analysis) was used and the final
concentration of each primer was 250 nM in a 20 pl final
volume. The thermocycling reaction was initiated with
activation of Taqg DNA polymerase by heating at 95°C
during 30 s, followed by 45 cycles of a 10s denaturation
step at 95°C, a 30-s annealing step at the optimal primer
temperature of annealing and a 30-s elongation step at
72°C. The fluorescence was measured after the extension
step by the iQ5 Multicolor Real-Time PCR Detection Sys-
tem (Bio-Rad). After the thermocycling reaction, the melt-
ing step was performed with slow heating, starting at
55°C and with a rate of 0.5°C per 10 s, up to 95°C, with
continuous measurement of fluorescence allowing de-
tection of nonspecific products. To analyze the mRNA
coimmunoprecipitated with hnRNP K from DG total
homogenates, the qRT-PCR was performed in a final
volume of 8 ul with 2X SYBR Green Master Mix (Bio-
Rad), and using a LightCycler 480 (Roche). The reaction
was initiated with a preamplification step of 3 min at
95°C, followed by 45 cycles of a 10-s denaturation step
at 95°C, a 10-s annealing step at the optimal primer
temperature of annealing, a 10-s elongation step at
72°C, and warming from 65°C to 95°C for the melting
curve.

qPCR data analysis

The comparative threshold cycle (Ct) method was used
to quantitate the relative gene expression across the ex-
perimental conditions. The Ct represents the detectable
fluorescence signal above background resulting from the
accumulation of amplified product, and is a proportional
measure of the starting target sequence concentration. Ct
was measured on the exponential phase and, for every
run, Ct was set at the same fluorescence value. Data
analysis of the log-transformed expression data were per-
formed using GenEx (MultiD Analysis) software for real-
time PCR expression profiling.

Animals and presurgical treatment

Animals used in the in vivo experiments were Sprague
Dawley outbreed strain (M&B A/S) weighing 250-300 g at
the time of use. Animals were housed in a temperature-
and light-controlled vivarium (21 = 1°C; 12/12 h light/dark
artificial circadian rhythm) and supplied with a high protein
diet type MR1 (Special Diet Services) and water for at
least one week before surgery. Animals were retrieved

eNeuro.org


https://doi.org/10.1523/ENEURO.0268-17.2017.t1-1
https://doi.org/10.1523/ENEURO.0268-17.2017.t1-5

eMeuro

from the animal facility in a separate cage into the labo-
ratory where they were anesthetized with Urethane (250
mg/ml; 1.4-1.8 mg/kg) according to their individual
weight. Urethane was administered via intraperitoneal in-
jection. The first injection contained 1/3 of the total dos-
age and after 5 min the animal was weighed for accurate
measurements, and the final 2/3 of the anesthetic was
given.

Stereotaxic surgery and electrode positioning

Male Sprague Dawley rats were positioned in a stereo-
taxic frame (David Kopfs Instruments) with the upper
incisor bar 2 mm below the interaural line (skull flat posi-
tion), the ear bars placed at the side of the head in the
natural jaw sockets and a nose-and-tooth bar supported
by the upper jaw of the animal. If required, supplemental
doses of urethane were given to maintain a surgical level
of anesthesia. Rectal temperature was maintained at 36°C
with a thermostatically controlled electric heating pad. A
scalpel was used to make a 1.5-cm longitudinal cut on the
top of the animal’s head. Four bulldog clamps (FST) were
used to reflect the skin giving open access to the scalp.
The surface of the scalp was kept dry and free from blood.
Burr holes were drilled in the appropriate location for the
insertion of the stimulating and recording electrodes. A
sharp needle was used to incise the dura to facilitate the
penetration of the electrodes. Two holes were drilled an-
terior to bregma in the frontal bone to attach the ground
and reference electrodes. The stimulation electrodes were
bipolar, concentric, stainless steel, and with a vertical tip
separation of 500 um (SNEX 100; Rhodes Medical Instru-
ments). The recording electrodes were Teflon-coated
seven-strand stainless steel (or tungsten) wires (#7955/
7960, A-M System Inc) of ~8-10 cm in length. The
ground and reference electrodes were Teflon-coated
seven-strand stainless steel wires (#7925/7935, A-M Sys-
tem Inc). Stereotaxic coordinates for the unilateral stimu-
lation of the medial perforant path fibers in the angular
bundle were as follows (in mm, relative to bregma): 7.9
posterior and 4.2 lateral. Stereotaxic coordinates for re-
cording in the hilar region of the DG were as follows (in
mm, relative to bregma): 3.9 posterior and 2.2 lateral.
When positioned on the accurate coordinates, both stim-
ulation and recording electrodes were gradually lowered
down to their final position. The final depth for the stim-
ulation and recording electrodes was 1.8-2.4 and 3.3 mm
below dura, respectively.

In vivo electrophysiology and intrahippocampal
infusion

After the correct positioning of the electrodes, the me-
dial perforant path fibers in the angular bundle were
unilaterally stimulated and the evoked field potentials
(FEPSPs) recorded in the hilar region of the DG. After
stabilization, baseline was recorded for 20 min. Test
pulses were applied at 0.033 Hz throughout the experi-
ment except during the period of HFS. The intensity of the
stimulus for test pulses and for HFS was set to the
intensity that evoked 1/3 of maximum population spike.
The HFS paradigm to induce long-term potentiation (LTP)
consisted of eight pulses of 400 Hz, repeated four times at
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10-s intervals. Three sessions of HFS were given at inter-
vals of five minutes. Intrahippocampal infusions were
made using a stainless steel cannula system (Plastics
One) consisting of an outer guide tube (24 gauge) and an
inner infusion tube (31 gauge). The guide cannula was
beveled sharp at the tip to facilitate brain insertion. The
recording electrode was attached to the guide cannula
and cut so that the distance between the electrode and
the tip of the inner infusion cannula was 0.8-0.9 mm. The
guide cannula—electrode assembly was slowly lowered
until a positive-going field EPSP (fEPSP) of maximum
slope was obtained in the dentate hilus. The infusion
cannula was then inserted so that the tip protruded 300
um below the end of the guide cannula. The infusion site
was located 700 um above the hilar recording site (cor-
responding to deep CA1 stratum lacunosum-moleculare),
and 300-400 um above the medial perforant path-
granule cell synapses. The response was allowed to sta-
bilize for 1 h. After baseline recordings (20 min) the
infusions were performed with a pump that ensures the
gradual infusion of 1 wl TrkB-Fc (100 wg/ul, 688-TK) or
IgG-Fc (100 wg/ul,110-HG; R&D Systems) over a 12.5-
min time period. HFS was performed 18 min after the
infusion.

Dissection and preparation of DG homogenates

At the end of the electrophysiological recording, the
rats were decapitated and the brain rapidly removed and
transferred to a glass plate covered with ice-cold saline-
soaked filter paper. The DG was dissected under ice-cold
conditions. After the hippocampus has been removed and
placed ventral side up, the DG was gently rolled out and
cut along the fissure separating it from CA3. The fimbria
was also cut away and blood vessels removed. The DG
and the hippocampal CA1 and CA3 regions were then
stored in microtubes, and were instantly frozen in a mix-
ture of 96% methanol and dry ice. Samples were kept at
—80°C until further use. The dentate gyri were homoge-
nized in 400 ul ice-cold RIPA buffer (150 mM NaCl, 50 mM
Tris—HCI, pH 7.4, 5 mM EGTA, 1% Triton, 0.5% DOC, and
0.1% SDS at a final pH 7.5) containing 50 mM NaF and
supplemented with with cOmplete, Mini EDTA-free pro-
tease inhibitors cocktail (Roche), and 40 U/ml RiboLock
RNase inhibitor (Thermo Fischer). A fraction of the ho-
mogenate sample was set aside for Western blot analysis
and the remaining homogenate used for the RNA coim-
munoprecipitation experiments.

Field potential analysis

The fEPSP was analyzed using the software Datawave
Experimental Workbench (DataWave Systems). Between
two points on the fEPSP, five points were randomly se-
lected to calculate the steepness of the slope. Data files
were coverted to ASCII format and further analyzed in the
Microsoft Office Excel 2010 (Microsoft Corporation).
fEPSP is presented as percentage change from baseline.

hnRNP K knockdown in neuronal cultures
Constructs

TRIPAU3-E1a-EGFP (pTRIP) lentiviral vectors (Sirven
et al., 2001) were used to deliver double-stranded hairpin
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Table 1. Templates used for nontargeting (control) shRNA and hnRNP K
Target sequence Sense oligo Anti-sense oligo
sh-scramble none GATCCCC AGCTTTTCCAAAAA
GATGAACGCTCTGGATGCG GATGAACGCTCTGGATGCG
TTCAAGAGA TCTCTTGAA
CGCATCCAGAGCGTTCATC CGCATCCAGAGCGTTCATC
TTTTTGGAAA GGG
sh-hnRNP K 1201-1219 GATCCCC AGCTTTTCCAAAAA
GUAACUAUUCCCAAAGAUU GTAACTATTCCCAAAGATT GTAACTATTCCCAAAGATT
TTCAAGAGA TCTCTTGAA
AATCTTTGGGAATAGTTAC AATCTTTGGGAATAGTTAC
TTTTTGGAAA GGG

RNA sequences (shRNA) for hnRNP K knockdown in
neuronal primary cultures. To obtain shRNA templates,
the sense and antisense strands were designed to contain
19-22 nt duplex connected by a short loop-structure (5’-
TTCAAGAGA-3’), and flanked by 5’-Bglll and 3’-Hindlll
restriction site. The templates used were 5’-gatgaac-
gctctggatgcg-3’ for the nontargeting (control) shRNA
template and 5’-gtaactattcccaaagatt-3’° for hnRNP K
(Table 1).

After annealing, oligonucleotides were cloned into the
Bglll and Hindlll digested pSuper (EcoRI) intermediate
vector. Then, a fragment containing the H1 promoter and
hairpin sequences were obtained from EcoRI-digested
pSuper, and subcloned into the EcoRl site of the pTRIP
lentiviral vector.

Lentiviruses construction and transduction of
neuronal cultures

Lentiviruses were generated by triple calcium-phos-
phate transfection of pTRIPshRNA (coding also GFP),
pCMV-AR8.91, and pMD (VSVG; which encode the VSVG
envelope glycoprotein gene and the gag/pol/tat genes,
respectively) into HEK293T cells. HEK293T cells were
grown for 2 d in 10-cm Petri dishes until they reached
~60% confluence. A solution of CaCl, and DNA (Helper
plasmids: 10 ug pCMV-AR8.91, 6 ug pMD.G(VSVG);
plasmid with the specific constructs: 5 ug pTrip -shRNA)
was added drop-wise to a solution of 2 X HEPES-buffered
saline (HBS; 50 mM HEPES, 280 mM NaCl, and 1.5 mM
Na,HPO,, pH 7.0). The solution of calcium-DNA was
dropwise added to 2X HBS and rested for 10 min to form
the precipitates. The precipitates were then distributed
evenly over the HEK293T cultures. The cells were allowed
to incorporate the precipitates for 6 h and were further
incubated for ~60 h to express the plasmid content.
During these periods cells were maintained at 37°C, with
saturating humidity and 5% CO,/95% air. The superna-
tant containing viral particles was then collected and con-
centrated by centrifugation at 60,000 X g for 2 h at 22°C
(Pinto et al., 2016). Viral particles were resuspended in
0.1% BSA in PBS and stored at —80°C. Viral titer was
calculated as previously described (Janas et al., 2006).

Neuronal cultures were transduced at DIV11 with a
multiplicity of infection (MQI) equal to 5, which represents
~80% of neuronal infection. Coverslips with low-density
hippocampal neuronal cultures growing over a layer of
astroglia cells were transferred to sterile 12-multiwell
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plates where the cells were transduced for 6 h in 500 ul of
conditioned media. After that period, the coverslips were
gently washed in sterile PBS and then transferred to the
wells containing the astroglia cell layer. Neurons were
allowed to express the shRNA for 3 d. At 14 DIV, the
neurons were processed for immunocytochemistry. The
shRNA constructs used in Western blotting experiments
were designed to carry a mCherry tag instead of GFP.

Transfection of shRNA constructs

Hippocampal cultures were transfected using the cal-
cium phosphate coprecipitation method with constructs
carrying shRNAs targeting hnRNP K or a scramble se-
quence. Briefly, hippocampal neurons were incubated
with cultured-conditioned medium with 2 mM kynurenic
acid (Sigma) for 15 min. Two ug of plasmid DNA was
diluted in Tris-EDTA (TE), pH 7.3, and mixed with 2.5 M
CaCl,. This DNA/TE/calcium mix was added to 10 mM
HBS solution (270 mM NaCl, 10 mM KCI, 1.4 mM
Na,HPO,, 11 mM dextrose, and 42 mM HEPES, pH 7.2).
The precipitates were added drop-wise to each well and
incubated for 1 h 30 min at 37°C, in a humidified incubator
with 95% air/5% CO,. The cells were then washed with
acidic culture medium containing 2 mM kynurenic acid
and returned to the 95% air/5% CO, incubator for 20 min
at 37°C. Finally, the medium was replaced with the initial
culture-conditioned medium, and the cells were further
incubated in a 95% air/5% CO, incubator for 72 h at 37°C.
Hippocampal neurons transfected with sh-scramble or sh-
hnRNP K were stimulated or not with BDNF (50 ng/ml)
during at least 30 min before recording the NMDAR-
mediated mEPSCs.

Analysis of NMDAR-mediated mEPSCs

Cultured hippocampal neurons (2.71 X 10° cells/well)
with pyramidal morphology (15-17 DIV), were whole-cell
voltage-clamped to —60 mV, at room temperature, in a
MgCl,-free Tyrode’s solution containing: 150 mM NaCl, 4
mM KCI, 10 mM glucose, 10 mM HEPES, and 2 mM
CaCl,, pH 7.35 (310 mOsm). To record and isolate
NMDAR-mediated mEPSCs, 6-cyano-7-nitroquinoxaline-
2,3-dione (CNQX; 10 uM; Tocris; AMPA/kainate receptor
antagonist), bicuculline (10 wM; Tocris; GABA, receptor
antagonist), tetrodotoxin (TTX; 500 nM; Tocris; blocker of
voltage gated Na* channels), and glycine (15 uM; Sigma-
Aldrich; coagonist of NMDARs) were added to the bath
solution (Atasoy et al., 2008). The electrode solution had
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the following composition: 115 mM Cs-MeSO5, 20 mM
CsCl, 2.5 mM MgCl,, 10 mM HEPES, 0.6 mM EGTA, 4
mM Na,-ATP, and 0.4 mM Na-GTP, pH 7.3 (300 mOsm;
Sigma; Kessels et al., 2013). Where indicated, hippocam-
pal neurons were preincubated with cycloheximide (CHX;
50 pg/ml) or with vehicle (DMSO; 1:1000 dilution) for 15
min before recording the NMDAR-mediated mEPSC.
When the effect of BDNF was tested, hippocampal neu-
rons were preincubated with the neurotrophin (50 ng/ml)
for at least 30 min before recording the NMDAR-mediated
mEPSCs. Recording electrodes were made of borosili-
cate glass capillaries and pulled on a horizontal stage
Sutter Instrument P-97 puller (resistances: 3-4 MQ)). Re-
cordings were made without series resistance compen-
sation. Cells were held for a period of 5 min and the
baseline for the analysis of NMDAR-mediated mEPSCs
was manually determined as the average current level of
silent episodes during a recording. Whole-cell recordings
from hippocampal neurons were performed using an
Axon CNS, Multiclamp 700B amplifier, an Axon Digidata
1550 A acquisition board, and pClamp software (version
10.5; Molecular Devices). Signals were filtered at 2.8 Hz,
sampled at 25 kHz and the amplitude of NMDAR-
mediated currents was analyzed offline with pClamp soft-
ware (version 10.5; Molecular Devices).

Statistical analysis

Data are presented as mean = SEM of at least three
different experiments, performed in independent prepara-
tions. Statistical analysis of the results was performed
using one-way ANOVA analysis followed by the Dunnett
or Bonferroni multiple comparison tests, as indicated in
the figure captions. Where indicated, comparison be-
tween two experimental groups was performed using the
Student’s t-test.

Results

Neuronal activity regulates the dendritic expression
of hnRNP K through activation of TrkB receptors
Several transcripts are transported to dendrites on neu-
ronal activation, including the mRNAs encoding for Arc
(Link et al., 1995; Lyford et al., 1995; Steward et al., 1998;
Steward and Worley, 2001), B-actin (Tiruchinapalli et al.,
2003), CaMKlla (Thomas et al., 1994; Rook et al., 2000;
Havik et al., 2003), TrkB, and BDNF (Tongiorgi et al.,
1997). To understand whether neuronal activity regulates
hnRNP K protein levels in dendrites, we stimulated cul-
tured hippocampal neurons (14-15 DIV) with a cocktail
solution containing bicuculline to increase the excitatory
activity of the neuronal network (Hardingham et al., 2002).
The dendritic distribution of hnRNP K was evaluated by
immunocytochemistry, through colocalization with the
dendritic marker MAP2. hnRNP K exhibited a punctate
distribution along dendrites, as expected for a component
of neuronal mRNP involved in dendritic mRNA transport.
Bicuculline treatment significantly increased the inte-
grated intensity, as well as the area of hnRNP K puncta in
dendrites (Fig. 1A,B). However, no alteration was ob-
served in the total number of hnRNP K puncta (Fig. 1A,B).
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Since BDNF is released in an activity-dependent man-
ner (Edelmann et al., 2014), we hypothesized that the
neurotrophin could play a role in bicuculline-induced
dendritic accumulation of hnRNP K. To address this hy-
pothesis, hippocampal neurons were stimulated with bi-
cuculline in the presence of an extracellular scavenger of
TrkB ligands, TrkB-Fc. Buffering of extracellular BDNF
with TrkB-Fc abrogated the effect of neuronal activity on
the dendritic distribution of hnRNP K without affecting the
basal levels of the protein in the same compartment,
suggesting an important role for BDNF in the activity-
induced accumulation of hnRNP K in dendrites. Accord-
ingly, stimulation of hippocampal neurons with BDNF also
upregulated the intensity and area of dendritic hnRNP K
puncta, and this effect was abrogated by the Trk receptor
inhibitor SHN722 (Martin et al., 2011; Fig. 1C,D). Further-
more, no effect of BDNF was observed in the number of
hnRNP K puncta (Fig. 1C,D), in accordance with the
results obtained on bicuculline treatment. Together, these
results show that BDNF plays an important role in the
activity-dependent expression pattern of dendritic hnRNP
K protein. Since bicuculline stimulation was without effect
on total hnRNP K protein levels, as determined by Western
blotting (Extended Data Fig. 1-1), the activity-dependent alter-
ation in the localization of the RNA-binding protein in hip-
pocampal neurons is likely to result from its redistribution.

Characterization of the hnRNP K-binding transcripts

The presence of hnRNP K in dendrites suggests that
this RNP plays a role in the delivery of transcripts away
from the soma. Therefore, we characterized the tran-
scripts that (directly or indirectly) interact with hnRNP K
using a RNP immunoprecipitation (RIP) assay. hnRNP K
was immunoprecipitated from cultured hippocampal neu-
rons (DIV15) under control conditions, and the coimmu-
noprecipitated RNA fractions were subjected to whole-rat
genome Agilent microarray analysis. Control experiments
using a mouse IgG antibody showed no hnRNP K immu-
noprecipitation confirming the specificity of the method
(not shown). The RNA transcripts that specifically coim-
munoprecipitated with hnRNP K were identified by setting
a cutoff value of 5 in the fold change of transcript copre-
cipitation when comparing hnRNP K and IgG samples.
Thus, only transcripts showing at least 5-fold variation,
when their abundance in the hnRNP K immunoprecipi-
tates was compared with the IgG controls, were consid-
ered specifically associated with the RNP.

The RNAs that coimmunoprecipitated with hnRNP K, a
total of 16,015 transcripts (Extended Data Table 1-1),
were analyzed using the PANTHER classification system
that uses the GO algorithm (Mi et al., 2013a). Classifica-
tion of these transcripts based on their role in biological
processes showed that the most enriched categories
were related with excitatory synapse plasticity (Table 2;
Fig. 2A). The mRNAs coimmunoprecipitated with hnRNP
K are involved in diverse processes such as glutamate
receptor signaling, regulation of synapse structure and
function, regulation of dendrite development, synapse
assembly, postsynaptic signaling, and learning (Fig. 2A;
Table 2; Extended Data Table 1-2). Accordingly, when the
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Figure 1. Activity-induced BDNF-dependent dendritic accumulation of hnRNP K in hippocampal neurons. A, B, Synaptic activity
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continued

induces the accumulation of hnRNP K in dendrites of hippocampal neurons. Cultured hippocampal neurons (14-15 DIV) were
stimulated or not with bicuculline (50 uM), 4-AP (2.5 mM), and glycine (10 wM), for 30 min. Where indicated, neurons were treated with
the extracellular scavenger of TrkB ligands TrkB-Fc (1 wg/ml) for 30 min and were then stimulated or not with bicuculline in the
presence of the scavenger. Cells were then fixed and immunostained for hnRNP K (red) and MAP2 (blue) (A). The integrated
fluorescence intensity, area, and number of hnRNP K puncta in dendrites was analyzed using ImagedJ software and represented per
dendritic area (B). Results are normalized to control and are the mean = SEM of 4-10 different experiments performed in independent
preparations. Ctr, n = 108 cells; Bic, n = 97 cells; TrkB-Fc, n = 49 cells; Bic + TrkB-Fc, n = 52 cells. C, D, BDNF increases hnRNP
K levels in neuronal dendrites. Cultured hippocampal neurons (14-15 DIV) were stimulated or not with BDNF (100 ng/ml) for 30 min.
Where indicated, neurons were preincubated with the Trk receptor inhibitor SHN722 for 30 min, and the inhibitor was also present
during the period of incubation with the neurotrophin. Cells were then fixed and immunostained for hnRNP K (red) and MAP 2 (blue)
(C). The integrated fluorescence intensity, area, and number of hnRNP K puncta in dendrites was analyzed using Imaged software and
represented per dendritic area (D). Results are normalized to control and are the mean = SEM of 4-10 different experiments
performed in independent preparations. Ctr, n = 108 cells; BDNF, n = 53 cells; SHN722, n = 41 cells; BDNF + SHN722, n = 51 cells.
Statistical analysis was performed by one-way ANOVA, followed by the Bonferroni’s multiple comparison test. #xp < 0.01; #xxp <
0.001. Scale bars: 5 um. Extended Data Figure 1-1 shows that neuronal activity does not change total hnRNP K protein levels in
cultured hippocampal neurons.

coimmunoprecipitated transcripts were analyzed based that hnRNP K plays an important regulatory role at the
on the cellular component, the identified mMRNAs were  postsynaptic level (Extended Data Table 1-3). Interest-
found to be associated with postsynaptic membrane/  ingly, a significant fraction of the transcripts identified
postsynaptic density/dendritic spines, further suggesting code for proteins of the presynaptic active zone and

Table 2. List of the most enriched biological processes associated with hnRNP K target mRNAs

Rattus novergicus  Uploaded fold
GO biological process (reference list) list (Expected)  (Over/under)  enrichment  (p value)
Glutamate receptor signaling pathway 44 39 17.26 + 2.26 3.81E-02
Amino acid transport 90 76 35.31 + 2.15 1.46E-05
Synapse assembly 51 43 20.01 + 2.15 4.35E-02
Dendrite morphogenesis 57 48 22.36 + 2.15 1.34E-02
Dendrite development 106 89 41.58 + 2.14 8.56E-07
Regulation of neuronal 71 59 27.85 + 2.12 1.46E-03
synaptic plasticity
Regulation of synaptic 181 148 71.00 + 2.08 6.28E-12
plasticity
Forebrain cell migration 70 57 27.46 + 2.08 4.35E-03
Regulation of dendrite 94 76 36.88 + 2.06 8.66E-05
morphogenesis
Telencephalon cell 67 54 26.28 + 2.05 1.14E-02
migration
Positive regulation of 91 73 35.70 + 2.04 2.24E-04
dendrite development
Negative regulation of 64 51 25.11 + 2.03 2.96E-02
synaptic transmission
Learning 159 126 62.37 + 2.02 6.53E-09
Regulation of synapse 280 221 109.84 + 2.01 3.29E-17
structure or activity
Positive regulation of 66 52 25.89 + 2.01 3.27E-02
synapse assembly
Synaptic vesicle cycle 94 74 36.88 + 2.01 3.75E-04
Regulation of postsynaptic 65 51 25.50 + 2.00 4.48E-02
membrane potential
Neurotransmitter secretion 102 80 40.01 + 2.00 1.29E-04
Signal release from synapse 102 80 40.01 + 2.00 1.29E-04
Regulation of synapse assembly 83 65 32.56 + 2.00 2.79E-03
Presynaptic process involved in 106 83 41.58 + 2.00 7.57E-05

chemical synaptic transmission

More detailed information is provided in Extended Data Tables 1-1-1-8: Table 1-1, hnRNP K coimmunoprecipitated transcripts; Table 1-2, biological pro-
cesses associated with mRNAs coimmunoprecipitated with hnRNP K as assessed by GO; Table 1-3, cellular components associated with mRNAs coimmu-
noprecipitated with hnRNP K as assessed by GO; Table 1-4, molecular functions associated with mRNAs coimmunoprecipitated with hnRNP K as assessed
by GO; Table 1-5, hnRNP K coimmunoprecipitated transcripts regulated by BDNF; Table 1-6, biological processes associated with mRNAs coimmunoprecipi-
tated with hnRNP K and regulated by BDNF as assessed by GO; 1-7, cellular components associated with mRNAs coimmunoprecipitated with hnRNP K and
regulated by BDNF as assessed by GO; 1-8, molecular functions associated with mRNAs coimmunoprecipitated with hnRNP K and regulated by BDNF as
assessed by GO.
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Figure 2. Stimulation of hippocampal neurons with BDNF decreases the interaction of hnRNP K with a large number of transcripts.
A, B, List of the 10 most significantly enriched biological processes associated with mMRNAs bound to hnRNP K (A) and those that

November/December 2017, 4(6) e0268-17.2017 eNeuro.org



New Research 12 of 23

eMeuro

continued

were regulated by BDNF (50 ng/ml for 10 min) (B), identified with the PANTHER classification system. Only categories showing at least
a 2-fold enrichment (considering the size of our lists) were analyzed and the 10 categories displaying the highest -log,, (o value) are
shown. The number of transcripts belonging to each category and the fold change (designated in parenthesis) are indicated within
graph bars. reg., regulation; pres., presynaptic; chem, chemical; syn., synaptic; pos., positive; proj., projection; diff., differentiation;
neg., negative; sys., system; devel., development. C, Cultured hippocampal neurons were stimulated or not with BDNF (50 ng/ml) for
10 min before preparation of cellular extracts. hnRNP K was immunoprecipitated from control and BDNF-treated hippocampal neuron
homogenates, and the associated transcripts were identified by microarray analysis. The specificity of transcripts associated with
hnRNP K was assessed by subtracting the levels of correspondent mRNAs pulled down together with mouse IgG antibodies. hnRNP
K-associated mRNAs were then compared between control and BDNF treated neurons. The results were obtained from the
quantification of four different experiments performed in independent preparations, and are expressed as -log (o value) and log fold
change (BDNF vs control). A total of 9509 transcripts showed a decrease in the interaction with hnRNP K in cells stimulated with
BDNF; p < 0.05 (gray dots) as determined by the paired Student’s t-test. D, Stimulation of cultured hippocampal neurons with BDNF
does not affect total hnRNP K protein levels. Hippocampal neurons were stimulated with BDNF for 10, 20, and 30 min, and the cellular
extracts were analyzed by Western blotting. B-Actin was used as loading control. The results represent quantification of three
independent experiments, and are expressed as percentage (mean = SEM) of control. ns, nonsignificant as determined by ANOVA

followed by Dunnett’s multiple comparison test.

synaptic vesicles (Extended Data Table 1-3). Together,
these data suggest that hnRNP K may act as a modulator
of mRNA metabolism, to regulate plastic changes at ex-
citatory synapses. It is also important to highlight the fact
that among the identified mRNAs there are transcripts
related with a wide variety of functions, processes and
compartments (e.g., related with cytoskeleton, Golgi ap-
paratus, nucleus, cell development and migration, protein
ubiquitination; Extended Data Tables 1-2-4), confirming
the key role of hnRNP K in the functional regulation of
cells.

Effect of BDNF stimulation on the interaction of
hnRNP K with mRNAs

In a gel-based proteome profiling of the effects of BDNF
in cultured hippocampal neurons we observed a neuro-
trophin-induced upregulation of several protein spots
identified as hnRNP K (Manadas et al., 2009), suggesting
that this RNA-binding protein undergoes posttranslational
modifications in neurons exposed to the neurotrophin. In
particular, one of the up-regulated spots had a more
acidic isoelectric point (pl) suggesting that hnRNP K may
be phosphorylated on stimulation with BDNF.

Given the evidence pointing to posttranslational modi-
fications in hnRNP K following stimulation of hippocampal
neurons with BDNF, we investigated whether the neuro-
trophin-induced signaling regulates the interaction of the
RNP with mRNAs using the RIP assay, as described
above. Cultured hippocampal neurons were stimulated or
not with BDNF (50 ng/ml; 10 min), and the transcripts that
were regulated by the neurotrophin were identified by
comparing microarray data from hnRNP K immunopre-
cipitates obtained from BDNF-treated and nonstimulated
hippocampal neurons. This comparison was performed
after subtraction of microarray data corresponding to the
unspecific binding obtained from the immunoprecipitates
with mouse IgG antibodies. Calculation of the fold varia-
tion in RNA-hnRNP K interaction induced by BDNF
showed significant changes (p < 0.05) for 9509 tran-
scripts. Remarkably, 9508 (99.9%) transcripts were neg-
atively regulated by BDNF and only 1 (0.01%) of the
mRNAs showed an increase in binding (Fig. 2C; Extended
Data Table 1-5). This clearly shows a massive effect of

November/December 2017, 4(6) e0268-17.2017

BDNF on the dissociation of mRNAs from hnRNP K
and/or hnRNP K-associated proteins. Control experi-
ments showed no changes in total hnRNP K protein levels
in hippocampal neurons stimulated with BDNF for 10-30
min, indicating that the effects of the neurotrophin on the
interaction of RNP with the transcripts cannot be attrib-
uted to alterations in the total abundance of the protein
(Fig. 2D).

The 9509 transcripts that were found to coimmunopre-
cipitate with hnRNP K by a mechanism sensitive to BDNF-
stimulation were also analyzed and distributed in three
categories using the PANTHER classification system: bi-
ological processes, cellular component and molecular
function (Tables 1-6-8). We also compared the most en-
riched biological process categories to which mRNAs
associated with hnRNP K (control), and those that were
regulated by BDNF (BDNF), belong (Fig. 2A,B). In this
analysis we found that BDNF regulates preferentially hn-
RNP K-bound mRNAs that are involved in neuronal de-
velopment, morphogenesis and differentiation (Fig. 2B).
These findings are in agreement with the prominent role of
hnRNP K in the posttranscriptional regulation of mRNAs
crucial for axon outgrowth and development in Xenopus
(Hutchins and Szaro, 2013). The stringent criteria used in
this analysis (see methods section) excludes other func-
tional and relevant enriched categories regulated by
BDNF [e.g., regulation of synapse structure or activity
(GO:0050803); 148 transcripts; 2.05-fold increase; -logqq
(p value) = 10.67572].

BDNF modulates hnRNP K interaction with
transcripts at the synapse

Since hnRNP K may be localized at synaptic sites under
resting conditions (Folci et al., 2014), we next validated
the results obtained in the microarray studies regarding
the effects of BDNF on the interaction of the RNA-binding
protein with transcripts coding for proteins that are rele-
vant in synaptic plasticity. These studies were performed
in cultured hippocampal neurons (Fig. 3A,B) and in rat
brain synaptoneurosomes, a subcellular fraction contain-
ing resealed presynaptic structures with attached sealed
postsynaptic entities (Troca-Marin et al., 2010; Fig. 3C).
The results were first validated for eight genes by qPCR,
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Figure 3. BDNF induces the dissociation of mMRNA from hnRNP K at the synapse. A, B, Effect of BDNF stimulation (50 ng/ml;
10 min) on transcript coimmunoprecipitation with hnRNP K in cultured hippocampal neurons as assessed by microarray and
gPCR. The specificity of transcripts associated with hnRNP K was assessed by subtracting the levels of correspondent mRNAs
pulled down together with mouse IgG antibodies. hnRNP K-associated mRNAs were then compared between control and BDNF
treated neurons. A, Genes coding for synaptic proteins: GluA1, AMPA receptor subunit 1; GluA2, AMPA receptor subunit 2;
GluN1, NMDAR subunit 1. B, Other genes: TrkB, tropomyosin-related kinase B receptor; NPAS4, neuronal PAS domain protein
4. The results represent quantitation of four different experiments performed in independent preparations, and are expressed as
percentage [mean = SEM (gPCR) or SD (microarray)] of control; p < 0.05, *#p < 0.01, ***p < 0.001 as determined by ANOVA
followed by Dunnett’s multiple comparison test (QPCR) or using the paired Student’s t test (microarray). C, BDNF decreases the
interaction of hnRNP K with mRNAs coding for synaptic proteins in hippocampal synaptoneurosomes. Synaptoneurosomes
were stimulated or not with BDNF (50 ng/ml) for 10 min and the mRNA levels coimmunoprecipitated with hnRNP K (control and
BDNF-treated synaptoneurosomes) were normalized to the correspondent IgG-pulled down mRNA to exclude any unspecific
binding. Transcripts that were specifically associated with hnRNP K were then compared between control and BDNF-stimulated
synaptoneurosomes. The relative abundance of each transcript was evaluated by qPCR. Results were normalized for mRNA
expression under control conditions and are the average of at least four independent experiments. Statistical analysis was
performed by one-way ANOVA followed by the Bonferroni’s multiple comparison test; *p < 0.05; *xp < 0.01;*#xp < 0.001.
Extended data Figure 3-1 shows the characterization of the synaptosomal preparation, using specific protein markers.
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using cultured hippocampal neurons: (1) four genes cod-
ing for proteins with synaptic functions [GIuA1 and GIuA2
(AMPA receptor subunits), GIluN1 (NMDAR subunit), and
CaMKIIB; Fig. 3A); (2) two genes involved in BDNF signal-
ing (BDNF and TrkB; Fig. 3B); (3) hnRNP K; and (4) a
mRNA that showed a very robust increase in the inter-
action of hnRNP K following stimulation of hippocampal
neurons with BDNF (NPAS4; Fig. 3B). The results ob-
tained in the qPCR experiments confirmed a BDNF-
induced decrease in the interaction of hnRNP K with the
transcripts for GluA1, GluA2, GluN1, BDNF, TrkB, hn-
RNP K, and CaMKIIB. The only result obtained in the
microarray experiments that was not validated by gPCR
was the increase in the NPAS4 transcripts coimmuno-
precipitated with hnRNP K in cells stimulated with
BDNF.

To investigate whether BDNF induces the dissociation
of transcripts from hnRNP K at the synapse, the interac-
tion of the RNP with specific transcripts was investigated
in hippocampal synaptoneurosomes, which are subcellu-
lar neuronal membrane fractions containing sealed pre-
synaptic nerve endings attached to their corresponding
postsynaptic counterparts (Extended Data Fig. 3-1). Stim-
ulation of hippocampal synaptoneurosomes with BDNF
(50 ng/ml; 10 min) significantly decreased the interaction
of the RNP with transcripts coding for GluA1, GluN1,
CaMKIlIB, hnRNP K, and BDNF (Fig. 3C). Since synap-
toneurosomes are a closed system, one may conclude
that these effects are due to a local effect of BDNF rather
than a global effect of the neurotrophin on gene expres-
sion.

To determine whether the effects of BDNF on the
interaction of hnRNP K with the transcripts at the syn-
apse is shared by other ligands that activate receptor
tyrosine kinases, we compared the effect of the neu-
rotrophin and the response to PDGF. In these experi-
ments the mRNAs pulled-down with hnRNP K were
normalized to the levels of mMRNA pulled-down with IgG
under the same conditions to exclude any unspecific
binding. The levels of hnRNP K-bound transcripts ob-
tained from PDGF- and BDNF-treated synaptoneuro-
somes were then compared to the control. Controls
were obtained by incubating synaptoneurosomes for 10
min in the same buffer but without BDNF or PDGF. The
PDGF receptors (PDGFR-B) and TrkB receptors acti-
vate similar signaling mechanisms, and PDGFR-f re-
ceptors were shown to localize in pre- and postsynaptic
sites in the hippocampus where they mediate LTP
(Shioda et al., 2012). In contrast with the effect of BDNF
(50 ng/ml; 10 min), which decreases the coimmunopre-
cipitation of hnRNP K with mRNA for GluA1, GIuN1, and
BDNF, stimulation of hippocampal synaptoneurosomes
with PDGF did not change the interaction of the RNP
with GluA1 and BDNF transcripts, and enhanced the
amount of GIuN1 transcripts pulled down together with
hnRNP K (Fig. 4A). Control experiments showed that
BDNF and PDGF activate the ERK and Akt signaling
pathways under the experimental conditions used, as
determined by Western blotting with antibodies against
pAkt and pERK1/2 (Fig. 4B,C). Together, these results
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indicate that BDNF-induced signaling is specifically
coupled to the regulation of hnRNP K interaction with
transcripts coding for GluA1, GluN1, and BDNF.

HFS-induced LTP in the DG differentially modulates
the interaction of hnRNP K with the transcripts

To investigate whether hnRNP K-associated mRNAs are
regulated by synaptic activity in vivo, we use a model of
HFS-induced LTP in the DG of live anesthetized rats (Fig.
5A). The LTP at medial perforant path-granule cell synapses
induced by HFS prompts the transport of different mRNAs
into dendrites (Steward et al., 1998; Messaoudi et al., 2007;
Panja et al., 2009; Dziembowska et al., 2012), and the main-
tenance of this form of LTP is sensitive to the BDNF scav-
enger TrkB-Fc (Fig. 6A; Panja et al.,, 2014). The medial
perforant path fibers in the angular bundle were unilaterally
stimulated and the evoked fEPSPs were recorded in the hilar
region of the DG (Fig. 5A). LTP was induced by spaced
stimulation consisting of three sessions of HFS (400 Hz,
eight pulses) with 5 min between sessions. This paradigm
induces a robust and sustained increase in the fEPSP (Fig.
5A). The DG was dissected immediately after the experi-
ments (at ¢ = 30 min after HFS) and the tissue was pro-
cessed to analyze the changes in total abundance of
transcripts coding for hnRNP K, GluA1, GIluN1, and BDNF,
as well as for their coimmunoprecipitation with hnRNP K.
gPCR experiments showed that HFS induces a massive
increase in the total abundance of BDNF mRNA, and signif-
icantly increased total GIuN1 mRNA levels. No significant
effect was observed for total GIluA1 and hnRNP K total
mRNA under the same conditions (Fig. 5B). HFS resulted in
a decrease in hnRNP K and GluN1 mRNA levels associated
with hnRNP K protein (Fig. 5C), indicating that synaptic
activity induces the dissociation of hnRNPK-bound mRNAs
in vivo. In contrast, BDNF mRNA levels were increased in the
coimmunoprecipitates at 30-min post-HFS (Fig. 5C), possi-
bly due to the massive increase in the total abundance of
these transcripts induced by HFS. No differences in hnRNP
K total protein levels were observed 30-min post-HFS (Fig.
5D) as determined by Western blotting, demonstrating that
the observed alterations in the amount of mMRNAs associ-
ated with the hnRNP K cannot be attributed to differences in
the abundance of the RNP.

The HFS-induced LTP in the DG in vivo is partly medi-
ated by TrkB signaling, as observed in experiments using
TrkB-Fc, an effective extracellular scavenger of TrkB li-
gands. Intrahippocampal infusion of TrkB-Fc (1 wl, 100
ng, 12.5 min) before HFS abrogated the increase in the
magnitude of the fEPSP slope when compared to IgG-Fc
infused control and the noninfused control (Fig. 6A). In
control experiments using IgG-Fc, HFS reduced the
amount of hnRNP K, GIuN1, and GluA1 transcripts coim-
munoprecipiated with hnRNP K (Fig. 6B), in accordance
to the results of Figure 5A. Importantly, on TrkB-Fc infu-
sion, HFS did not affect the interaction of hnRNP K with
the GIluN1, GluA1, and hnRNP K mRNAs (Fig. 6C), show-
ing a key role for TrkB signaling in the regulation of the
RNP interaction with the transcripts after induction of
LTP. The total levels of hnRNP K, GluA1, and GIluN1
mRNA did not change in the DG on HFS in the presence
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Figure 4. BDNF signaling specifically induces the release of mRNAs from hnRNP K-containing complexes at synaptic sites. A, Effect
of BDNF and PDGF on the interaction of GluA1, GluN1, and BDNF mRNAs with hnRNP K in synaptoneurosomes. The relative
abundance of each mRNA coimmunoprecipitated with hnRNP K was evaluated by gPCR. Results are the mean = SEM of four
different experiments performed in independent preparations, and are expressed as fold change to control; *p < 0.05, *xp < 0.01,
as determined by one-way ANOVA followed by the Dunnett’s multiple comparison test. Activation of Akt and ERK1/2 by BDNF (B)
and PDGF (C) in hippocampal synaptoneurosomes. Graphs represent the fold change in the levels of pAkt, pERK1, or pERK2 in
hippocampal synaptoneurosomes stimulated with BDNF (50 ng/ml) or PDGF (20 ng/ml) for 10 min. Representative Western blotting
images showing the results obtained for the phosphorylated proteins and tubulin under control conditions and following stimulation
with BDNF or PDGF, as indicated. The results represent the quantification of six to nine experiments performed in independent
preparations, and are expressed as fold change (mean = SEM) to control; #p < 0.05, *xp < 0.01, *#*%p < 0.001 as determined by
the Student’s t test.
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Figure 5. LTP-induced regulation of hnRNP K-associated mRNAs in vivo. Experiments were performed in live anesthetized rats.
Electrodes were positioned for selective unilateral stimulation of the medial perforant path fibers in the angular bundle and recording
of the evoked field potentials in the hilar region of the DG. A, Time course plots showing changes in the medial perforant path-evoked
fEPSP slope expressed as percentage of baseline. Values are means = SEM. Test pulses were applied at 0.033 Hz. The HFS
paradigm (indicated by arrows) consisted of eight pulses of 400 Hz, repeated four times at 10-s intervals. Three sessions of HFS were
given at intervals of five min. n = 6 for each time point. B, The variation of hnRNP K, GluN1, GluA1, and BDNF mRNA levels was
assayed by gPCR using total RNA samples obtained from DG homogenates collected 30-min post-HFS and the nonstimulated
contralateral control tissue. The results are presented as mean = SEM normalized to the contralateral nonstimulated DG, and Hprt1
(hypoxanthine guanine phosphoribosyl transferase 1) was used as internal control gene. Results are the average = SEM of six
experiments (n = 6 DG) analyzed in three independent preparations; #p < 0.05 as determined by Student’s t test. C, The levels of
hnRNP K, GluN1, GluA1, and BDNF transcripts coimmunoprecitated with hnRNP K were assayed by gPCR. hnRNP K protein was
immunoprecipitated from equal amounts (500 wng) of total extracts from homogenized DG collected 30-min post-HFS and the
contralateral tissue. Results are presented as mean = SEM normalized to the contralateral DG and are the average = SEM of six
experiments (n = 6 DG) analyzed in three independent preparations; *xp < 0.01; *p < 0.05 as determined by the Student’s t test.
D, hnRNP K protein levels were measured by Western blotting using DG homogenate samples collected 30-min post-HFS and the
contralateral nonstimulated tissue. The results are the average = SEM of six experiments (n = 6 DG) analyzed in three independent
preparations and are presented as the percentage change in hnRNP K protein levels in the treated DG relative to the nonstimulated
contralateral tissue. GAPDH was used as loading control.

of IgG-Fc, while an increase in BDNF transcripts was
observed (Fig. 6D). Similar results were obtained after
injection of TrkB-Fc, with the exception of a downregula-
tion of GluA1 mRNA (Fig. 6E). Altogether these results
indicate that the activity-induced regulation of hnRNP
K-associated mRNAs requires TrkB signaling in vivo.

Downregulation of hnRNP K decreases the
amplitude of NMDAR-mediated mEPSC

BDNF is known to enhance the activity of postsynaptic
NMDAR in cortical and hippocampal pyramidal neurons

November/December 2017, 4(6) e0268-17.2017

(Kolb et al., 2005; Madara and Levine, 2008). Given the
results showing the dissociation of transcripts bound to
hnRNP K on stimulation of synaptoneurosomes with
BDNF (e.g., GIluN1; see Figure 3C), we hypothesized that
the RNP may play a role in the modulation of postsyn-
aptic NMDAR by the neurotrophin. To address this
hypothesis, we tested the effect of BDNF on the ampli-
tude of NMDAR-mediated mEPSCs, and hnBRNP K was
downregulated using a specific shRNA (sh-hnRNP K).
Figure 7A,B show that sh-hnRNP K expression for 3 d
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Figure 6. BDNF signaling is required for LTP maintenance and LTP-induced alterations in mRNA interaction with hnRNP K. A,
Time-course plots showing changes in the medial perforant path-evoked fEPSP in rats receiving TrkB-Fc (1 ul, 100 ng) or IgG-Fc (1
ul, 100 ng) infusion before HFS (arrows). Values are means = SEM and are expressed in percentage of the baseline. Test pulses were
applied at 0.033 Hz. HFS was applied in three series of 400-Hz bursts separated by 5 min. TrkB-Fc (1 ul, 100 ng; n = 6) or IgG-Fc
(1 ml, 100 ng; n = 6) were infused in the dorsal DG at 0.08 wl/min during the period indicated by the black bar. Test pulses were not
given during the HFS period. B, C, The levels of hnRNP K, GluN1, GluA1, and BDNF mRNAs coimmunoprecipitated with hnRNP K
were assayed by gPCR in DG homogenates obtained from (B) IgG-Fc (n = 6) and (C) TrkB-Fc (n = 6) infused rats at 30-min post-HFS.
Results are presented as mean = SEM normalized to the correspondent contralateral DG. D, E, The variation of total hnRNP K, GluN1,
GluA1, and BDNF mRNA levels in (D) IgG-Fc (n = 6) and (E) TrkB-Fc (n = 6) infused rats was assayed by gPCR in DG homogenates
obtained at 30-min post-HFS. Results are presented as mean = SEM normalized to the correspondent contralateral nonstimulated
DG, and Hprt1 was used as internal control gene; *p < 0.05; **p < 0.01, as determined by the paired Student’s t test.

decreases hnRNP K in the dendritic compartment by  hnRNP K protein levels but does not affect the expres-
33.3%, while a scramble shRNA which does not target  sion of another member of the hnRNP family of pro-
a specific sequence (sh-scramble) was without effect.  teins, hnRNP A2/B1 (Fig. 7C), proving the specificity of
Importantly, the shRNA targeting hnRNP K decreases the knockdown.
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Figure 7. BDNF upregulates NMDAR-mediated mEPSC by a mechanism dependent on hnRNP K. A, Low-density cultured
hippocampal neurons were transduced with shRNA (sh-hnRNP K; sh-scramble, which does not target a specific sequence)
constructs at DIV11. The cells were fixed at DIV14 and then immunostained for hnRNP K (gray), GFP (green), and MAP2 (not shown
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in the figure). The hnRNP K immunoreactivity was measured in dendrites (A, B), using the Imaged software. Results are normalized
to control and are the average of three to four different experiments performed in independent preparations (19-34 cells analyzed in
neurons expressing the shRNAs for 3 d). C, Western blot analysis of hnRNP K, hnRNP A2/B1, B-tubulin (loading control), and mCherry
(infection control), in cultured hippocampal neurons transduced or not with sh-hnRNP K and sh-scramble constructs. D, E,
NMDAR-mediated mEPSC were recorded under control conditions (n = 13) and after 30 min of stimulation with BDNF (50 ng/ml;
n = 14). Where indicated, the cells were transfected with sh-scramble (n = 6) or sh-hnRNP K (n = 6), or incubated with cycloheximide
(50 wg/ml). The cells were preincubated with the translation inhibitor for 15 min before stimulation with BDNF. Cells transfected with
sh-hnRNP K or incubated with cycloheximide showed no significant increase in the amplitude of NMDAR-mediated mEPSC on BDNF
treatment, while the scramble shRNA was without effect (F). Analysis of NMDAR-mediated mEPSC frequency in nontransfected cells
(n = 12) and cells transfected with sh-sramble (n = 8) or sh-hnRNP K (n = 6), under control conditions and following BDNF stimulation
(G). The average mEPSC traces recorded are shown in D and representative traces are shown in E. Results are presented as
mean *= SEM for the indicated number of experiments. Statistical analysis was performed by one-way ANOVA, followed by

Bonferroni’s multiple comparison test. n.s., not significant; #p < 0.05; *#p < 0.01. Scale bar: 5 um.

NMDAR-mediated mEPSC were recorded in the ab-
sence of presynaptic stimulation and in the presence of
TTX, resulting from the spontaneous release of glutamate
from nerve terminals. Furthermore, NMDAR-dependent
synaptic responses were pharmacologically isolated by
blocking AMPA and GABA receptors, and by supplement-
ing the salt solution with the NMDAR coagonist glycine.
The postsynaptic NMDAR-mediated component was ex-
pressed by using a salt solution lacking Mg?*, which
allowed recording the mEPSC activity at a physiological
holding potential of —60 mV. Alterations in the number of
NMDAR at the synapse are expected to correlate with
changes in the amplitude of MEPSC. Incubation of cul-
tured hippocampal neurons with BDNF (50 ng/ml; t > 30
min) increased the amplitude of mEPSC, and this effect
was abrogated by transfection with sh-hnRNP K (Fig.
7D—-F). In contrast, an increase in the mEPSC amplitude
was observed in cells transfected with the control shRNA
(sh-scramble) when stimulated with BDNF (Fig. 7D-F).
Interestingly, downregulation of hnRNP K was without
effect on the NMDAR-mediated mEPSC measured in the
absence of BDNF (Fig. 7D-F).

The results showing a role for hnRNP K in the regulation
of NMDAR-mediated mEPSC by BDNF may be due to the
release of transcripts which will become available for
translation. This hypothesis was tested by evaluating the
effect of cycloheximide, an inhibitor of protein synthesis,
on the NMDAR-mediated mEPSC, under control and in
hippocampal neurons stimulated with BDNF. Inhibition of
protein synthesis abrogated the BDNF-induced increase
in the amplitude of MEPSC mediated by NMDAR. How-
ever, it was without effect when the NMDAR currents were
measured under resting conditions (Fig. 7D-F).

Several lines of evidence now demonstrate that BDNF
may increase mESPCs frequency via presynaptic mech-
anisms (Carvalho et al., 2008). In agreement with these
findings, we also observed a significant increase on
NMDAR-mediated mESPSCs frequency following BDNF
treatment (Fig. 7G) which was not observed after hnRNP
K downregulation (Fig. 7G). Neurons transfected with a
scramble construct showed a modest increase in
NMDAR-mediated mESPC frequency on exogenous ap-
plication of BDNF (Fig. 7G).
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Discussion

In this work, we identified a large number of mRNAs,
belonging to different categories, including transcripts
coding for synaptic proteins, in hnRNP K immunoprecipi-
tates from cultured hippocampal neurons. Stimulation
with BDNF induced a massive dissociation of a subpop-
ulation of transcripts that coimmunoprecipitate with hn-
RNP K, suggesting that this RNP is a major mediator of
the effects of BDNF on translation activity in hippocampal
neurons. This hypothesis is also supported by the results
showing a BDNF-dependent dissociation of several tran-
scripts from hnRNP K following HFS of the DG synapses.
Some of the regulated transcripts code for proteins rele-
vant for the plasticity of glutamatergic synapses (GIuN1,
GluA1, BDNF, and CamKIIg; Santos et al., 2010; Huganir
and Nicoll, 2013; Fan et al., 2014; Leal et al., 2014a; Kim
et al., 2016), and BDNF had a similar effect in hippocam-
pal synaptoneurosomes, suggesting a role for these reg-
ulatory mechanisms in the modulation of local protein
synthesis required for LTP maintenance. Accordingly,
downregulation of hnRNP K impaired the effects of BDNF
in enhancing NMDAR-mediated mEPSC, and similar ef-
fects were obtained on inhibition of translation activity.

Under resting conditions, we identified 16,015 tran-
scripts present in the hnRNP K immunoprecipitates, cod-
ing for proteins involved in different biological processes,
and with distinct molecular functions and cellular localiza-
tion, as described with GO. It is remarkable that genes
related with excitatory synaptic plasticity are highly rep-
resented in the group of transcripts coimmunoprecipi-
tated with hnRNP K in extracts prepared from cultured
hippocampal neurons. From the list of mMRNAs that were
specifically pulled-down together with hnRNP K in ex-
tracts prepared from hippocampal neurons under resting
conditions, only 59.4% showed a significant change in the
interaction with the RNP following stimulation with BDNF.
This shows that the signaling mechanisms activated by
the neurotrophin target a specific subpopulation of tran-
scripts, rather than having a global effect. Furthermore,
with the stringent analysis here performed, we found that
mRNAs regulated by BDNF belong preferentially to GO
categories related with neuronal development and mor-
phogenesis, although other functional relevant categories
are enriched to a similar extent. Importantly, all transcripts
showing a change in interaction with hnRNP K following
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stimulation with BDNF were dissociated from the RNP,
and no mRNA showed an increased binding in hippocam-
pal neurons stimulated with the neurotrophin. hnRNP K
has numerous putative phosphorylation sites, some of
them located in the KH domains responsible for RNA and
DNA binding (Bomsztyk et al., 2004). Since previous stud-
ies have shown that the interaction of hnRNP K with
mRNAs is regulated by the phosphorylation state of the
protein (Ostareck-Lederer et al., 2002; lwasaki et al.,
2008; Laursen et al., 2011; Tahir et al., 2014), it may be
hypothesized that the phosphorylation of specific amino
acid residues accounts for the observed BDNF-evoked
dissociation of transcripts from the RNP. Phosphorylation
of hnRNP K at an ERK phosphorylation site located within
the KI domain was shown to promote the translation of
mRNA of axonal cytoskeleton proteins that interact with
the RNP (Hutchins et al., 2015). The transcripts that re-
main associated with hnRNP K following stimulation of
hippocampal neurons with BDNF may interact with a
different region of the RNA-binding protein, which may
account for a differential regulation.

The group of transcripts dissociated from hnRNP K
following stimulation of hippocampal synaptoneurosomes
with BDNF included mRNAs coding for AMPA (GluA1) and
NMDA (GluN1) receptor subunits, in addition to CaMKIIB
and BDNF, which play important roles in LTP of glutama-
tergic synapses. Furthermore, HFS-induced LTP in the
DG was also accompanied by a dissociation of the GIuA1
and GIuN1 mRNA from hnRNP K through a BDNF-
dependent mechanism, providing evidence for a similar
role of BDNF in vivo. It may be hypothesized that after
being released from hnRNP K, the transcripts will become
available for local translation at the synapse thereby con-
tributing to synaptic potentiation. Accordingly, stimulation
with BDNF was shown to up-regulate GluA1 (Schratt
et al., 2004), CaMKIl B (Liao et al., 2007), and Homer2
(Schratt et al., 2004) protein levels in synaptoneurosomes.
GluN1 mRNA is also among the RNAs that are present in
both soma and dendrites (Benson, 1997; Gazzaley et al.,
1997; Pal et al., 2003), and is associated with RNA gran-
ules (Krichevsky and Kosik, 2001), but the effects of BDNF
on the expression levels of this receptor subunit at the
synapse has not been yet reported. A similar role for
hnRNP K in the release of transcripts used for local trans-
lation may be hypothesized in the BDNF-induced den-
dritic synthesis of BDNF and TrkB receptors (Shiina et al.,
2005; Baj et al., 2016), and in the translation of the hnRNP
K mRNAs at the synapse (Liao et al., 2007). The local
synthesis of RNA-binding proteins at the synapse, includ-
ing hnRNP K, following stimulation with BDNF is an in-
triguing observation, but it may contribute to increasing
the local buffering capacity of the transcripts released
after the disassembly of the RNA granules, thereby con-
tributing to the stabilization of the mRNAs. The newly
synthesized protein may also play a role in cytoskeleton
regulation (Yoo et al., 2006).

In contrast with the results obtained in cultured neurons
and in hippocampal synaptoneurosomes, in vivo HFS of
medial perforant path fibers enhanced the interaction of
BDNF mRNA with the RNA-binding protein. This may be
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attributed to the massive increase in the total amount of
transcripts for BDNF, as observed in the gPCR experi-
ments from total DG extracts, due to the activity-
dependent upregulation of the BDNF gene (Patterson
et al., 1992; Bramham et al., 1996). Our findings in syn-
aptoneurosomes indicate that BDNF triggers the release
of BDNF mRNA from the hnRNP K complex, making the
BDNF mRNA available for local translation (Vanevski and
Xu, 2015; Baj et al., 2016). During DG LTP, sustained
translation of BDNF mRNA is observed in the synaptoneu-
rosome fraction (Panja et al., 2014). This release of BDNF
mRNA from hnRNP K may provide a continuous supply of
BDNF transcripts, and a consequent sustained (hours)
activation of the BDNF-TrkB signaling, which is required
for the consolidation of LTP in the DG of live rodents
(Panja et al., 2014) as well as in CA1 synapses (Kang et al.,
1997).

The mRNA for the NMDAR subunit GIuN1 was among
the transcripts that showed a decrease in coimmunopre-
cipitation with hnRNP K following stimulation of hip-
pocampal neurons or synaptoneurosomes with BDNF,
and similar results were obtained in the DG after HFS of
medial perforant path fibers. Since the mRNAs coding for
other subunits of NMDAR were also dissociated from the
hnRNP K following stimulation with BDNF, this may con-
tribute to the local synthesis of receptors. According to
this hypothesis, stimulation of cultured hippocampal neu-
rons with BDNF upregulated the NMDAR-mediated mEP-
SCs by a hnRNP K-dependent mechanism, which was
also sensitive to the protein synthesis inhibitor cyclohex-
imide. This effect is likely to result from an upregulation in
the synaptic expression of NMDAR, and may account for
synaptic facilitation on incubation of hippocampal neu-
rons with BDNF (Kang and Schuman, 1996; Santos et al.,
2015) as well as for LTP following HFS (Korte et al., 1995;
Korte et al., 1996; Kang et al., 1997; Minichiello et al.,
1999; Panja et al., 2014). Together, our data points to a
key role of hnRNP K in BDNF-induced synaptic plasticity
events which is likely related with effects of the neurotro-
phin on hnRNP K-associated mRNAs, although we can-
not not exclude any other putative functions of hnRNP K
(e.g., nuclear effects). Interestingly, downregulation of hn-
RNP K selectively impaired the BDNF-induced enhance-
ment of the NMDAR-mediated mEPSC, as it was without
effect on the currents measured under resting conditions.
These results suggest that BDNF recruits a distinct pool of
receptors, which are synthesized de novo as indicated by
the results obtained in the presence of cycloheximide. A
similar mechanism may be involved in the delivery of
GluA1-containing AMPA receptors to the membrane on
stimulation with BDNF, since (1) it is a newly synthesized
pool of receptors that is readily incorporated on the
plasma membrane (Fortin et al., 2012) and (2) our results
showed a dissociation of GIluAT mRNA from hnRNP K in
synaptoneurosomes incubated with the neurotrophin.
Similarly, protein synthesis may also be involved in the
increase in GluA1 surface expression under conditions
that induce chemical LTP (Folci et al., 2014).

BDNF was also observed to enhance the frequency of
mEPSC in accordance with previous reports (Carvalho
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et al., 2008), and this effect was abrogated on knockdown
of hnRNP K. Although this RNA-binding protein is present
and plays a role at presynaptic sites (Liu and Szaro, 2011;
Hutchins et al., 2015), the effect of hnRNP K knockdown
on the frequency of NMDAR-mediated mRPSC is likely to
involve a postsynaptic mechanism as transfected neurons
receive inputs from untransfected cells.

In contrast with the effect of BDNF, activation of the
receptors for PDGF (PDGFR-p), which also belong to the
receptor tyrosine kinase family, did not decrease the in-
teraction of hnRNP K with GluA1, GIuN1, and BDNF
mRNAs. This shows the specificity of the effects triggered
by BDNF, and may result from a differential distribution of
the receptors for the two ligands in distinct synapses. In
addition to the KH domains responsible for binding
mRNAs, hnRNP K also possesses a Kl region that is
responsible for the interaction with other proteins (Bom-
sztyk et al., 2004; Leal G., Duarte C.B. and Li K.W. un-
published observations). Since some of these binding
partners may also interact with specific mRNAs (Mikula
et al., 2006), it is not possible to determine whether each
of the mRNAs that coimmunoprecipitate with hnRNP K
bind directly or indirectly to the RNP.

BDNF was found to have a dual role in the regulation of
hnRNP K in hippocampal neurons: it regulates the inter-
action of the protein with a large number of transcripts as
discussed above and induces an accumulation of the
RNP in dendrites following an increase in neuronal activ-
ity. The activity-dependent accumulation of hnRNP K in
dendrites is expected to enhance the role of this RNP
in synaptic regulation by BDNF, as the protein clustered in
granules travel near active synapses. The effect of BDNF-
TrkB signaling on the distribution of hnRNP K may be
partly mediated by activation of the Ras/ERK signaling
pathway, since phosphorylation of the protein by ERK1/2
enhances its nuclear export (Habelhah et al., 2001; Mikula
et al., 2006). Similarly to the effects on the dendritic
distribution of hnRNP K, BDNF was shown to induce the
synaptic delivery of hnRNP A2/B1, a protein belonging to
the same family of RNA-binding proteins (Leal et al.,
2014b). hnRNP A/B (also known as CBF-A) was also
shown to transport the Arc, CaMKlla, and the BDNF
mRNAs along dendrites, and this transport in enhanced
by neuronal activity (Raju et al., 2011). Activation of NMDA
and AMPA receptors was found to enhance the binding of
hnRNP A/B with the Arc, CaMKlla, and the BDNF mRBNAs
(Raju et al., 2011), suggesting a role for the protein in the
long range transport of the transcripts from the soma to
the distal region of the dendrites.

In conclusion, in this work, we show that synaptic ac-
tivity and BDNF regulate hnRNP K and hnRNP K-bound
mRNAs in vitro and in vivo. The large number of tran-
scripts showing a decreased coimmunoprecipitation with
hnRNP K on stimulation with BDNF suggests a role for
this RNP in the regulation of neuronal function in general
and, in particular, in the BDNF-mediated plasticity events.
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