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Introduction

Meta-analysis, which is a statistical technique for combining the findings from 
independent studies, can be used in many fields of research, having high importance in clinical 
and epidemiological contexts [1]. The meta-analysis for one effect size provides a precise 
estimate effect and increase statistical power by combining results of independent studies. In 
the meta-analysis, the pooled effect size measure ( ˆ)θ  could be seen as a linear combination of 

several effect sizes ( )ˆ , 1...i kiθ =  of 2k ≥  studies
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where iw
 is the weight of the effect size of study i. There are two well-known models of 

performing meta-analysis that we will consider in this study: fixed-effect and random-effects 
models. The model of fixed effect is adequate when homogeneity in effect sizes exists between 

studies. According to the inverse variance (IV) method, 21 /
i i

w σ=  where 2

i
σ is the sampling 

error variance associated to the ith study. In the presence of heterogeneity between studies, 
it was usually used the random-effects model, which incorporates the within-study variance 

2( )
i

σ  and the between-studies variance 2( )τ . Under random-effects model context, there are 
closed form and iterative methods to estimate the between-study variance, in [1] can be 
found 16 distinct methods. However, the most popular procedure to estimate the between-
study variance is the Der Simonian and Laird (DL) method [2], and it is the default option in 
several meta-analysis software’s. Here, we focus in the most popular meta-analysis methods, 
resuming the methods by some differentiator features (Table 1). For the random-effects 
models the methods described in Table 1 use the estimator τˆ2 of between-study variance/
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Abstract

In this paper we will discuss the meta-analysis of one low proportion. It is well known, that there are 
several methods to perform the meta-analysis of one proportion, based on a linear combination of 
proportions or transformed proportions. However, in the context of a linear combination of binomial 
proportions has been proposed some approximate estimators with some improvements on low 
proportion estimation. In this paper we will show, with a simple adaptation, the possible contribution 
of several approximate adjusted Wald confidence intervals (CIs) for the meta-analysis of proportions. In 
the context of low proportions, a simulation study scenario is carried out to compare these CIs amongst 
themselves and with other available methods with respect to bias and coverage probabilities, using the 
fixed effect or the random-effects model. Pointing our interest in rare events (analogous for the abundant 
events) and taking into account the prevalence estimation of the Methicillin-resistant Staphylococcus 
aureus with mecc gene, we discuss the choice of the meta-analysis methods on this low proportion. The 
default meta-analysis methods of meta-analysis software programs are not always the best choice, in 
particular to the meta-analysis of one low proportion, where the methods including the adjusted Wald 
can outperform.
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heterogeneity which can assume distinct options. The DL estimator 
of τ is given by and Q the Cochran’s Q-statistic Paule.
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and Mandel (PM) method [3] is similar to DL method with 
other τ̂ . The PM approach provide an iterative process to compute 
τ̂ , a disadvantage of this iterative estimator is that they depend 
on the choice of maximization method and the convergence could 
fail. There are other similar alternative methods (with the above 
mentioned), for example, the method proposed by Sidik & Jonkman 
SJ [4] is similar to Hartung and Knapp (HK) method with other τ 

estimator proposal. The DL estimator of between-study variance 
appears to perform adequately. However, several simulation studies 
have been proposed to compare distinct meta-analysis procedure 
and there are several specific conclusions. According [5], the most 
recent review, PM method appears to have a more favorable profile 
among other estimators of between-study variance. The traditional 
meta-analysis assumes the approximate normal within-study 
model, which may not a good option in the context of rare events. 
The rare events topic is widely discussed in the literature. Several 
approaches have been proposed for the meta-analysis of two 
treatment groups with rare events (see, for example, the Pepto’s 
method [6]; approaches based on Poisson random-effects model 
[6]; approaches based on generalized linear mixed model [7]; 
unweighted methods [8]; and a review of methods for the meta-
analysis of incidence of rare events [9]). And Sweeting et al. [10]. 
show that the continuity correction is not an adequate option in 
meta-analysis of rare events.

Table 1: Several meta-analysis methods and principal features. iσ
∧
one within-study variance estimator.

Model Method Weight Variance of Pooled Effect

Fixed effect Inverse Variance (IV) 2
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Random effects Generalized Linear Mixed Model (GLMM) 
[11,21]  - - 

Here, we focus on the meta-analysis of one proportion. The 
meta-analysis of proportions is usually carried out via three well 
known methods: the classic Wald method (Wald-0) [11], the logit 
transform, and the Freeman-Tukey double arcsine transform 
methods [3]. The inverse of the Freeman-Tukey double arcsine 
transformation method is preferred over the logit and classic 
Wald methods [3], in particular for large or small proportions. The 
binomial-normal model was proposed in the context of exact within 
study likelihood models and was suggested for the meta-analysis 
of one proportion with rare events [11,12] (method described in 
Table 1 as GLMM method). In the meta-analysis of one proportion p, 
the Wald method can be seen as a linear combination of k estimated 

proportions ,  1
i

p i k= … . We think, there is room for improvement in 
the case of the estimation of the pooled proportion for a single 
treatment group in a rare events context. In this paper, we discuss 
an adapted application of the adjusted Wald method for a linear 

combination of proportion in the meta-analysis of quasi extreme 
proportion p≤0.05.

Adjusted wald estimate

Consider k independent binomial studies, 1
...

k
X X

k, and denote 
by pi the proportion of success (the effect size under study) and 
by ni the size of the ith study. In each study, an adjusted estimate 

of the effect size ,  1, ...,
i

p i k= , denoted by ip , is calculated using the 
parametric family of shrinkage estimators [4,10]
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   .                                         (2)
Depending on the particular hi parameter chosen, several 

different estimators can be considered (Table 2). When, for 
example, hi = 0, we have the maximum likelihood estimator (MLE) 
of pi. A linear combination of binomial proportions is defined as , 
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asymptotically in distribution to a normal distribution,
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with ( )v L  the variance of the L  estimator. There are several 
variants of the Wald method to estimate the linear combinations of 
binomial proportions [1,2,10], where the approximate confidence 
interval CI for L could be, in general, given by q
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Table 2: Table 2. Parameters hi for the classic and adjusted Wald CI methods in the estimation of pi based on the 

parametric family ~
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Table 2 shows five variants of the Wald method, identified by 
Wald-i, i∈ {0,1,2,3,4}. In Wald-3 and -4 variants in the hi expression 

1 1Ai Ai+ −+
 assumes different values depending on the CI limits: for 

the lower bound 1Ai+ = 0 and for the upper bound 1Ai− = 0 (Table 
2). On the one hand, the parameter hi depends on βi in the Wald-4 
variant (Table 2), i.e. hi depends on wi, it is necessary to adapt this 
adjusted Wald procedure to perform meta-analysis. On the other 
hand, 1Ai++1Ai− could take different values depending on the CI 
limits, we use Bi = {xi:xi = ni∨xi = 0} in the estimation of the weight 
wi. So, for meta-analysis Wald-4 variant, the parameter hi is chosen

 to be 
2

2 1(1 )
2i Bi

Z
h

k
α

= +  in the estimation of the weight wi. There are 
several approximate adjusted Wald confidence intervals (CIs) for 
the meta-analysis of one proportion. The approach developed here 
uses a parametric family of shrinkage estimators for estimating the 
proportions. Two popular statistical models, the fixed-effect model 
and the random-effects model, are used and discussed in this paper. 
Under the fixed-effect model, we assume that all studies in the 
analysis share the same true effect size p, that is, p1 = ··· = pk = p, and 
the adjusted pooled prevalence is given by
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      ,        (5)
where wi is the adjusted weight assigned to each study, where wi 

is the adjusted weight assigned to each study (as previously defined, 
is unknown). Taking into account the inverse variance method, the 
weight could be estimated by

2
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 is a within-study adjusted variance 
estimate. Note that the weights and the estimated weights are 
interchangeably denoted by wi in this paper. Under the random-
effects model, we assume that the true effect size could vary 
from study to study, in addition to the sample error (σi

2) there is 

variability between studies (τ2). The pooled prevalence is also given 
by equation 5, the weight assigned to each study could assume 
several estimates (Table 1).

Transformation methods

The meta-analysis can also be performed by using a linear 
combination of transformed proportions, where several meta-
analysis methods were applied to the transformed sampling 
proportion. The approach based on the transformation of one 
proportion was typically applied to overcome two well-known 
constraints: the support range between 0 and 1 and a non-
homogeneous variance. The most common transformations of one 
proportion are the logit and Prematurely double arcsine

 transformations,
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1 /
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respectively, which are the ones we will consider in this paper 
when performing the comparison between the meta-analyses 
of one proportion. The meta-analysis will be applied under the 
transformed effect size (proportion) and the back transformations 
will be applied to obtain the result to estimate the overall 
proportion. In the meta-analysis of proportion, the Freeman-Tukey 
double arcsine approach it was taken as default and was point as 
the preferred transformation [13]. The main working example 
of this work is the prevalence meta-analysis of a multiresistant 
Staphylococcus aureus bacteria, carrying the new mecC gene [8]. 
This metanalysis included 25 studies and the sample sizes ni range 
between 6 and 56382, there are six studies with no occurrences 
of mecC gene in Staphylococcus aureus. And there are strong and 
significant heterogeneity between studies included in this meta-
analysis.

Monte carlo simulations

To perform the simulation studies, we closely follow the order 
of magnitude of the prevalence for the mecC gene in Staphylococcus 
aureus [8]. The overall estimated prevalence of the mecC gene was 
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obtained through the Freeman-Tukey double arcsine transformation 
method and the random-effects model. The pooled prevalence 
obtained through this method was 0.009 (95% CI = 0.005-0.013). A 
simulation study was carried out to compare the adjusted Wald CIs 
amongst themselves and with those obtained by the best-known 
transformations: logit and Freeman-Tukey double arcsine. We 
used a Monte Carlo simulation to compare the performance of the 
different CIs. The performance of each CI was analysed under the 
random-effects and fixed-effect models [14], although we are mainly 
interested in discussing the results arising from the random-effects 
model. We discuss the meta-analysis methods for the proportion 
effect size (e.g. prevalence, incidence), pointing our interest in rare 
events that take into account the practical problem of estimating 
one low or very low prevalence/incidence. Motivated by the small 
prevalence values and the simulation scenario proposed in [15], we 
assume three distinct small proportions, 0.05,0.01 and 0.001 when 
using the fixed-effect model, and three normal distributions with 
mean and deviation (0.05, 0.005), (0.01, 0.001) and (0.001, 0.0001), 
respectively, when using the random-effects model under the 
heterogeneity hypothesis. The simulation was designed to produce 
200000 pooled proportions for each scenario. The proposed 
comparison is based on four measures computed for each scenario: 
mean; bias=mean-p; mean square error (MSE)=variance+ bias2 and 
coverage probability (CP) = (number of CIs containing p)/200000. 
The used significance level (nominal value) is α=0.05.

Results

We assessed the performance of each CI using the fixed-effect 

and random-effects models. We studied the performance of the 
methods considering 25 studies for small proportions. Since in 
the main working example, the meta-analysis of the prevalence 
of the mecC Methicillin-resistant Staphylococcus aureus (MRSA), 
there was a total of 25 studies with rare events. Table 3-5 show 
the performance of the seven estimation methods under analysis 
for the fixed-effect and random-effects models, in the context of 
small proportions (0.05,0.01 and 0.001) for k = 25 using ˆτ as DL 
or PM estimator, respectively. DL estimator has chosen to analyze 
the performance in meta-analysis of this small proportion due its 
popularity and PM estimator was chosen since it was indicated 
as having overall good performance [16]. Taking into account 
the proportions under study and the most used methods (IV and 
DL method with Wald-0, Logit or double arcsine approach) to 
perform the overall interval estimation, the variant-3 or variant-4 
of the adjusted Wald method is a credible competitor to traditional 
methods, in some cases with the best coverage probability (Tables 
3 & 4). By using PM estimator, the results provided by the methods 
Wald-3 and Wald-4 exhibited comparatively with the other 
methods, better results, yet no pattern was identified between 
the different results (Table 5). We also applied our simulation 
procedure to other methods proposed in the cited literature (Table 
1). For the scenario under study, p∈ {0.05,0.01,0.001}, we obtain 
other methods with good accuracy (Table 6). We sort the results 
by the coverage probability - CP (Table 6 or complete tables in 
the supplementary material) and we observe unweighted/double 
arcsine as the best coverage probability method for p=0.05 and 
p=0.01 and DL/Wald-3 method for p=0.001 [17-19].

Table 3: Results of the evaluation measures for the CIs obtained through the different approaches with IV method, for 
k=25, small prevalence with the fixed-effect model. MSE-mean squared error; CP-coverage probability. Good CP results 
are pointed out in bold.

P=0.05

 Wald-0 Wald-1 Wald-2 Wald-3 Wald-4 Logit Double arcsine

Mean 0.04753 0.0495 0.04948 0.04985 0.04986 0.05013 0.05005

Bias -0.00247 -0.0005 -0.00052 -0.00015 -0.00014 0.00013 0.00005

MSE 0.00001 0 0 0 0 0 0

CP 0.258 0.856 0.85 0.943 0.943 0.946 0.949

P=0.01 

 Wald-0 Wald-1 Wald-2 Wald-3 Wald-4 Logit Double Arcsine

Mean 0.0093 0.00945 0.00943 0.00988 0.00988 0.01012 0.01005

Bias -0.0007 -0.00055 -0.00057 -0.00012 -0.000116 0.000116 0.00005

MSE 0 0 0 0 0 0 0

CP 0.457 0.657 0.65 0.925 0.928 0.936 0.948

P=0.001

 Wald-0 Wald-1 Wald-2 Wald-3 Wald-4 Logit Double Arcsine

Mean 0.00092 0.0008 0.00079 0.00099 0.00101 0.00108 0.00104

Bias -0.00008 -0.0002 -0.00021 -0.00002 0.00001 0.00008 0.00004

MSE 0 0 0 0 0 0 0

CP 0.848 0.559 0.544 0.923 0.95 0.886 0.938
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Table 4: Results of the evaluation measures for the CIs obtained through the different approaches with DL method, for 
k=25, small prevalence with the random-effects model. MSE-mean squared error; CP - coverage probability. Good CP 
results are pointed out in bold.

P=0.05

 Wald-0 Wald-1 Wald-2 Wald-3 Wald-4 Logit Double arcsine

Mean 0.04085 0.04725 0.04718 0.04934 0.04935 0.05053 0.05016

Bias -0.00915 -0.00275 -0.00282 -0.00066 -0.00065 0.00053 0.00016

MSE 0.00009 0.00002 0.00002 0.00001 0.00001 0.00001 0

CP 0.208 0.74 0.736 0.878 0.892 0.839 0.868

P=0.01

 Wald-0 Wald-1 Wald-2 Wald-3 Wald-4 Logit Double arcsine

Mean 0.00771 0.00897 0.00895 0.00971 0.00975 0.01029 0.0101

Bias -0.0023 -0.00103 -0.00105 -0.00029 -0.00025 0.00029 0.0001

MSE 0.00001 0 0 0 0 0 0

CP 0.202 0.682 0.678 0.905 0.905 0.761 0.8

P=0.001

 Wald-0 Wald-1 Wald-2 Wald-3 Wald-4 Logit Double arcsine

Mean 0.00092 0.00081 0.0008 0.00116 0.00119 0.00111 0.00105

Bias -0.00008 -0.00019 -0.0002 0.00016 0.00019 0.00011 0.00005

MSE 0 0 0 0 0 0 0

CP 0.804 0.587 0.57 0.936 0.738 0.834 0.898

Table 5: Results of the evaluation measures for the CIs obtained through the different approaches with PM method, for 
k=25, small prevalence with the random-effects model. MSE - mean squared error; CP - coverage probability. Good CP 
results are pointed out in bold.

P=0.05 

 Wald-0 Wald-1 Wald-2 Wald-3 Wald-4 Logit Double Arcsine

Mean 0.041233 0.04699 0.04691 0.051657 0.052143 0.050561 0.050166

Bias -0.00877 -0.00301 -0.00309 0.001657 0.002143 0.000561 0.000166

MSE 0.00009 0.00002 0.00002 0.00001 0.00001 0.00001 0.00001

CP 0.472 0.82 0.818 0.966 0.967 0.81 0.856

P=0.01

 Wald-0 Wald-1 Wald-2 Wald-3 Wald-4 Logit Double Arcsine

Mean 0.007552 0.008755 0.008729 0.012279 0.012623 0.010304 0.0101

Bias -0.00245 -0.00125 -0.001271 0.002279 0.002623 0.000304 0.0001

MSE 0.00001 0 0 0.00001 0.00001 0 0

CP 0.21 0.384 0.379 0.991 0.975 0.75 0.8

P=0.001

 Wald-0 Wald-1 Wald-2 Wald-3 Wald-4 Logit Double Arcsine

Mean 0.000943 0.001005 0.000996 0.00591 0.006059 0.001102 0.001057

Bias -5.7E-05 0.000005 -0.000004 0.00491 0.005059 0.000102 0.000057

MSE 0 0 0 0.00003 0.00003 0 0

CP 0.76 0.638 0.633 0.851 0.645 0.835 0.893
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Table 6: Methods with the first five best coverage probabilities for the CIs, considering for k=25 and three small 
prevalence’s in the random-effects model context.

P=0.05

Method Mean Bias MSE CP

Unweighted/Double Arcsine 0.05314 0.00314 0.00005 0.95635

Unweighted/Wald-1 0.05186 0.00186 0.00005 0.94091

Unweighted/Wald-2 0.05179 0.00179 0.00005 0.939

Unweighted/Wald-4 0.07199 0.02199 0.0005 0.96454

PM/Wald-3 0.05165 0.00165 0.00001 0.96565

P=0.01

Unweighted/Double Arcsine 0.01376 -0.03624 0.00132 0.93879

PM/Wald-4 0.01262 0.00262 0.00001 0.97554

Unweighted/Wald-4 0.04332 0.03332 0.00111 0.98568

PM/Wald-3 0.01228 0.00228 0.00001 0.99077

DL/Wald-4 0.00975 -0.00025 0 0.90538

P=0.001

Method Mean Bias MSE CP

DL/Wald-3 0.00116 0.00016 0 0.9362

GLMM 0.001 0 0 0.92383

HC/Wald-4 0.001 0 0 0.90906

HC/Double Arcsine 0.00104 0.04896 0.0024 0.90066

Unweighted/Wald-4 0.04007 0.03907 0.00153 0.99946

Table 7: Results by method for the mecC MRSA example [8], in the context of random-effects model. The used method 
vs the alternatives with best coverage probability.

  Confidence Interval

 p˜ Lower Bound Upper Bound

DL/Double arcsine, used in [8] 0.009 0.0054 0.0135

DL/Wald-3 0.0039 0.0018 0.0057

Unweighted/Double arcsine 0.0037 0 0.0114

Discussion and Conclusion

The meta-analysis for the mecC MRSA example was performed 
with the random effects model due the presence of significant 
heterogeneity. Motivated by our simulation study, we re-estimated 
the pooled prevalence using the alternatives with best coverage 
probability [20,21]. The estimated prevalence’s, obtained by the 
methods with better performance in probability of coverage, are 
lower than that presented by [8], (approximately 0.004 vs 0.009, 
Table 7). Although the estimated prevalence has halved, the 
updated results did not show significant differences, since the 95% 
CI overlaps the previous one. We agree that the most used methods 
in prevalence meta-analysis, such as Simonian & Laird [8] method 
with Freeman-Tukey double arcsine transformation, are in general 
good methods for the meta-analysis of one proportion. However, in 
the case of estimating small proportions with the random-effects 
model for a large number of studies, other alternative methods 
can produce better results, in particular procedures incorporating 
variant-3 and variant-4 of the Wald method could provide better 

results than the methods based on the Freeman-Tukey double 
arcsine transformation. In the context of the random-effects 
model, there is still room for improvement, as the non-coverage 
probability, in some scenarios, is still far from the nominal value 
(5%) [22-24]. Given the computational power increase and the 
existence of several alternative methods of meta-analysis where 
the performance depends of the effect size magnitude, we advise in 
each case, to carry out a simulation study to evaluate the accuracy 
of the method in each particular proportion magnitude.

References
1. Andres AM, Hernandez MA, Tejedor IH (2011) Inferences about a linear 

combination of proportions. Stat Methods Med Res 20(4): 369-387.

2. Andres AM, Hernandez MA, Tejedor IH (2011) The optimal method to 
make inferences about a linear combination of proportions. Journal of 
Statistical Computation and Simulation 82(1): 123-135.

3. Barendregt JJ, Doi SA, Lee YY, Norman RE, Vos T (2013) Meta-analysis of 
prevalence. J Epidemiol Community Health 67(11): 974-978.

https://www.ncbi.nlm.nih.gov/pubmed/20223780
https://www.ncbi.nlm.nih.gov/pubmed/20223780
https://www.tandfonline.com/doi/abs/10.1080/00949655.2010.530601
https://www.tandfonline.com/doi/abs/10.1080/00949655.2010.530601
https://www.tandfonline.com/doi/abs/10.1080/00949655.2010.530601
https://www.ncbi.nlm.nih.gov/pubmed/23963506
https://www.ncbi.nlm.nih.gov/pubmed/23963506


7

Open Acc Biostat Bioinform       Copyright © Afreixo V

OABB.MS.ID.000545. 2(4).2019

4. Sidik K, Jonkman JN (2002) A simple confidence interval for meta-
analysis. Stat Med 21(21): 3153-3159.

5. Bohning D, Viwatwongkasem C (2005) Revisiting proportion estimators. 
Stat Methods Med Res 14(2): 147-169.

6. Borenstein M, Hedges LV, Higgins J, Rothstein HR (2009) Introduction to 
meta-analysis. John Wiley & Sons Ltd, USA.

7. Cai T, Parast L, Ryan L (2010) Meta-analysis for rare events. Stat Med 
29(20): 2078-2089.

8. Der Simonian R, Laird N (1986) Meta-analysis in clinical trials. Control 
Clin Trials 7(3): 177-188.

9. Diaz R, Ramalheira E, Afreixo V, Gago B (2016) Methicillin-resistant 
staphylococcus aureus carrying the new mecc genea meta-analysis. 
Diagnostic microbiology and infectious disease 84(2): 135-140.

10. Sweeting MJ, Sutton AJ, Lambert PC (2004) What to add to nothing? Use 
and avoidance of continuity corrections in meta-analysis of sparse data. 
Statistics in medicine 23(9): 1351-1375.

11. Doi SA, Barendregt JJ, Khan S, Thalib L, Williams GM (2015) Advances in 
the meta-analysis of heterogeneous clinical trials I: the inverse variance 
heterogeneity model. Contemporary Clinical Trials 45: 130-138.

12. Escudeiro S, Freitas A, Afreixo V (2017) Approximate confidence 
intervals for a linear combination of binomial proportions: A new 
variant. Communications in Statistics Simulation and Computation 
46(9): 7501-7524.

13. Hamza TH, Van Houwelingen HC, Stijnen T (2008) The binomial 
distribution of meta-analysis was preferred to model within-study 
variability. J Clin Epidemiol 61(1): 41-51.

14. Hartung J (1999) An alternative method for meta-analysis. Biometrical 
Journal 41(8): 901-916.

15. Hartung J, Knapp G (2001) On tests of the overall treatment effect in 
meta-analysis with normally distributed responses. Stat Med 20(12): 
1771-1782.

16. Henmi M, Copas JB (2010) Confidence intervals for random effects meta-
analysis and robustness to publication bias. Stat Med 29(29): 2969-
2983.

17. Lane PW (2013) Meta-analysis of incidence of rare events. Stat Methods 
Med Res 22(2): 117-132.

18. Paule RC, Mandel J (1982) Consensus values, regressions and weighting 
factors. J Res Natl Inst Stand Technol 94(3):197-203.

19. Shuster JJ (2010) Empirical vs natural weighting in random effects meta-
analysis. Stat Med 29(12): 1259-1265.

20. Shuster JJ, Guo JD, Skyler JS (2012) Meta-analysis of safety for low event-
rate binomial trials. Res Synth Methods 3(1): 30-50.

21. Stijnen T, Hamza TH, Ozdemir P (2010) Random effects meta-analysis of 
event outcome in the framework of the generalized linear mixed model 
with applications in sparse data. Statistics in medicine 29(29): 3046-
3067.

22. Veroniki AA, Jackson D, Viechtbauer W, Bender R, Bowden J, et al. (2015) 
Methods to estimate the between-study variance and its uncertainty in 
meta-analysis. Research synthesis methods 7(1): 55-79.

23. Wald A (1943) Tests of statistical hypotheses concerning several 
parameters when the number of observations is large. Transactions of 
the American Mathematical society 54(3): 426- 482.

24. Yusuf S, Peto R, Lewis J, Collins R, Sleight P (1985) Beta blockade during 
and after myocardial infarction: an overview of the randomized trials. 
Prog Cardiovasc Dis 27(5): 335-371.

For possible submissions Click below: 

Submit Article

https://www.ncbi.nlm.nih.gov/pubmed/12375296
https://www.ncbi.nlm.nih.gov/pubmed/12375296
https://www.ncbi.nlm.nih.gov/pubmed/15807149
https://www.ncbi.nlm.nih.gov/pubmed/15807149
https://onlinelibrary.wiley.com/doi/book/10.1002/9780470743386
https://onlinelibrary.wiley.com/doi/book/10.1002/9780470743386
https://www.ncbi.nlm.nih.gov/pubmed/20623822
https://www.ncbi.nlm.nih.gov/pubmed/20623822
https://www.ncbi.nlm.nih.gov/pubmed/3802833
https://www.ncbi.nlm.nih.gov/pubmed/3802833
https://www.ncbi.nlm.nih.gov/pubmed/26652130
https://www.ncbi.nlm.nih.gov/pubmed/26652130
https://www.ncbi.nlm.nih.gov/pubmed/26652130
https://onlinelibrary.wiley.com/doi/10.1002/sim.1761
https://onlinelibrary.wiley.com/doi/10.1002/sim.1761
https://onlinelibrary.wiley.com/doi/10.1002/sim.1761
https://www.ncbi.nlm.nih.gov/pubmed/26003435
https://www.ncbi.nlm.nih.gov/pubmed/26003435
https://www.ncbi.nlm.nih.gov/pubmed/26003435
https://www.tandfonline.com/doi/abs/10.1080/03610918.2016.1241408
https://www.tandfonline.com/doi/abs/10.1080/03610918.2016.1241408
https://www.tandfonline.com/doi/abs/10.1080/03610918.2016.1241408
https://www.tandfonline.com/doi/abs/10.1080/03610918.2016.1241408
https://www.ncbi.nlm.nih.gov/pubmed/18083461
https://www.ncbi.nlm.nih.gov/pubmed/18083461
https://www.ncbi.nlm.nih.gov/pubmed/18083461
https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291521-4036%28199912%2941%3A8%3C901%3A%3AAID-BIMJ901%3E3.0.CO%3B2-W
https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291521-4036%28199912%2941%3A8%3C901%3A%3AAID-BIMJ901%3E3.0.CO%3B2-W
https://onlinelibrary.wiley.com/doi/abs/10.1002/sim.791
https://onlinelibrary.wiley.com/doi/abs/10.1002/sim.791
https://onlinelibrary.wiley.com/doi/abs/10.1002/sim.791
https://www.ncbi.nlm.nih.gov/pubmed/20963748
https://www.ncbi.nlm.nih.gov/pubmed/20963748
https://www.ncbi.nlm.nih.gov/pubmed/20963748
https://www.ncbi.nlm.nih.gov/pubmed/22218366
https://www.ncbi.nlm.nih.gov/pubmed/22218366
https://www.ncbi.nlm.nih.gov/pubmed/28053410
https://www.ncbi.nlm.nih.gov/pubmed/28053410
https://www.ncbi.nlm.nih.gov/pubmed/19475538
https://www.ncbi.nlm.nih.gov/pubmed/19475538
https://www.ncbi.nlm.nih.gov/pubmed/24339834
https://www.ncbi.nlm.nih.gov/pubmed/24339834
https://onlinelibrary.wiley.com/doi/abs/10.1002/sim.4040
https://onlinelibrary.wiley.com/doi/abs/10.1002/sim.4040
https://onlinelibrary.wiley.com/doi/abs/10.1002/sim.4040
https://onlinelibrary.wiley.com/doi/abs/10.1002/sim.4040
https://www.ncbi.nlm.nih.gov/pubmed/26332144
https://www.ncbi.nlm.nih.gov/pubmed/26332144
https://www.ncbi.nlm.nih.gov/pubmed/26332144
https://www.ncbi.nlm.nih.gov/pubmed/2858114
https://www.ncbi.nlm.nih.gov/pubmed/2858114
https://www.ncbi.nlm.nih.gov/pubmed/2858114
https://crimsonpublishers.com/online-submission.php
https://crimsonpublishers.com/online-submission.php
https://crimsonpublishers.com/online-submission.php

	Abstract
	References
	_GoBack
	_Hlk13043485
	_GoBack

