
Journal Pre-proof

Recovery of immunoglobulin G from rabbit serum using κ-
carrageenan-modified hybrid magnetic nanoparticles

Flávia F. Magalhães, Mafalda R. Almeida, Sofia F. Soares, Tito
Trindade, Mara G. Freire, Ana Luísa Daniel-da-Silva, Ana P.M.
Tavares

PII: S0141-8130(20)30325-1

DOI: https://doi.org/10.1016/j.ijbiomac.2020.02.135

Reference: BIOMAC 14752

To appear in: International Journal of Biological Macromolecules

Received date: 13 January 2020

Revised date: 11 February 2020

Accepted date: 13 February 2020

Please cite this article as: F.F. Magalhães, M.R. Almeida, S.F. Soares, et al., Recovery
of immunoglobulin G from rabbit serum using κ-carrageenan-modified hybrid magnetic
nanoparticles, International Journal of Biological Macromolecules(2018), https://doi.org/
10.1016/j.ijbiomac.2020.02.135

This is a PDF file of an article that has undergone enhancements after acceptance, such
as the addition of a cover page and metadata, and formatting for readability, but it is
not yet the definitive version of record. This version will undergo additional copyediting,
typesetting and review before it is published in its final form, but we are providing this
version to give early visibility of the article. Please note that, during the production
process, errors may be discovered which could affect the content, and all legal disclaimers
that apply to the journal pertain.

© 2018 Published by Elsevier.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Institucional da Universidade de Aveiro

https://core.ac.uk/display/294779862?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1016/j.ijbiomac.2020.02.135
https://doi.org/10.1016/j.ijbiomac.2020.02.135
https://doi.org/10.1016/j.ijbiomac.2020.02.135


Jo
ur

na
l P

re
-p

ro
of

1 

 

Recovery of immunoglobulin G from rabbit 

serum using -carrageenan-modified hybrid 

magnetic nanoparticles 

 

Flávia F. Magalhães
†
, Mafalda R. Almeida

†
, Sofia F. Soares, Tito Trindade, Mara G. 

Freire, Ana Luísa Daniel-da-Silva, Ana P. M. Tavares*
 

 

CICECO – Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-

193 Aveiro, Portugal 

 

 

 

 

 

 

 

 

†
These authors contributed equally to this work. 

*
Corresponding author 

E-mail address: aptavares@ua.pt 

Journal Pre-proof



Jo
ur

na
l P

re
-p

ro
of

2 

 

Abstract 

Immunoglobulin G (IgG) has been used in the treatment of cancer, autoimmune 

diseases and neurological disorders, however, the current technologies to purify and 

recover IgG from biological media are of high-cost and time-consuming, resulting in 

high-cost products. In this sense, the search for cost-effective technologies to obtain 

highly pure and active IgG is highly required. The present work proposes a simple and 

efficient method for the purification and recovery of IgG from rabbit serum using 

magnetic iron oxide nanoparticles (magnetite, Fe3O4) coated with hybrid shells of a 

siliceous material modified with the anionic polysaccharide -carrageenan. 

Experimental parameters such as pH, contact time between the hybrid magnetic 

nanoparticles (HMNPs) and rabbit serum, and total protein concentration or dilution 

factor of serum were evaluated. The best results were achieved at pH 5.0, with a contact 

time of 60 min and using a rabbit serum with a total protein concentration of 4.8 

mg.mL
-1

. Under these conditions, it was obtained an IgG purification factor and 

adsorption yield onto the HMNPs of 3.0 and 90%, respectively. The desorption of IgG 

from the HMNPs was evaluated using two strategies: a KCl aqueous solution and 

buffered aqueous solutions. Comparing to the initial rabbit serum, an IgG purification 

factor of 2.7 with a recovery yield of 74% were obtained using a buffered aqueous 

solution at pH 7.0. After desorption, the secondary structure of IgG and other proteins 

was evaluated by circular dichroism and no changes in the secondary structure were 

observed, meaning that the IgG integrity is kept after the adsorption and desorption 

steps. In summary, the application of HMNPs in the purification of IgG from serum 

samples has a high potential as a new downstream platform. 

Keywords: Immunoglobulin G; Adsorption; -Carrageenan; Magnetic nanoparticles; 

Recovery. 
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1. Introduction 

During the last two decades, the field of new drugs development has moved its focus 

from small-molecule compounds to large-molecule proteins and other 

biopharmaceuticals [1]. Biopharmaceuticals have significantly improved the treatment 

of many diseases and sometimes are the only approved therapies available for a specific 

disease. These biological-based products, which include antibodies, recombinant 

proteins, and nucleic-acid-based products, have applications in several therapeutic areas 

[2]. Particularly, antibodies such as Immunoglobulin G (IgG) have been used in the 

treatment of cancer, as transporters of toxins or radiolabelled isotopes to cancerous 

cells, and in the treatment of autoimmune diseases and neurological disorders [3]. To 

these ends, the production of IgG for therapeutic applications must meet high efficiency 

and safety standards, demanding high quality and high purity IgG [4]. However, the 

currently used downstream technologies (mainly chromatographic techniques - ion 

exchange, gel permeation and affinity chromatography) for the IgG purification are 

highly expensive and require extra steps for the efficient removal of impurities [5]. 

Therefore, there is a high demand for the development of cost-effective techniques to 

obtain highly pure IgG from the original complex matrices without loss of its stability 

and biological activity. In order to suppress these and other shortcomings related to 

traditional methods, the extraction and purification of IgG using novel technologies 

must be investigated. The extraction of IgG has been studied using liquid-liquid 

systems, predominantly aqueous biphasic systems [3–6]. For instance, Mondal et al. [3] 

investigated the purification of rabbit serum IgG using ionic-liquid-based aqueous 

biphasic systems. Besides liquid-liquid systems, solid-liquid systems comprising 

magnetic nanoparticles (MNPs) as novel adsorbents have also been explored [7–12]. 

For example, Bereli et al. [7] conducted a study on the purification of IgG using 
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magnetic nanoparticles based on acrylate functionalized with methyl ester N-

methacryloyl-(L)-histidine. 

The main interest in MNPs is due to their particular properties combining the merits of 

rapid magnetic separation with a high surface area. The small size, typically below 100 

nm, endows MNPs with a high specific surface area that favours the adsorption process. 

Iron oxide nanoparticles [13], such as those of ferrimagnetic magnetite (Fe3O4), feature 

a magnetically separable ability which is highly advantageous for an easy and fast 

magnetic separation of the material from the surrounding medium [13]. MNPs have 

potential in several fields, such as in the food sector [13], transport and drug delivery 

[14], separation and purification of enzymes and proteins [15–17], environmental 

remediation [18] and biomedical and biological applications [19].  

The short separation time, scalability, and easy automation make the MNPs application 

advantageous in separation fields [13]. However, the pH and ionic strength conditions 

which might be required for the stability of the biological molecules can degrade the 

nanoparticles, for example by oxidation processes [20]. To avoid this phenomenon, 

MNPs can be surface modified through chemical functionalization or by encapsulation 

within shells of other materials [15]. The shells encapsulation can be performed in order 

to increase the nanoparticle’s chemical and colloidal stability and ascribes adequate 

surface functionality for the desired effect. Essentially, the encapsulated MNPs should 

display high affinity to the target biomolecules allowing their subsequent separation 

from the complex medium by applying a magnet. Moreover, biopolymers can establish 

interactions with biomolecules via hydrophobic and/or electrostatic interactions [21], 

which could be used to tailor the separation performance. Since many biopolymers are 

polyelectrolytes, it is possible to employ these compounds in the encapsulation of 

magnetic nanoparticles to provide affinity towards target biomolecules such as IgG 
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[22]. In this way, MNPs surface modified with biopolymers are promising for the 

adsorption of biomolecules because they combine the magnetic properties of the core 

with specific chemical functionalities of the biopolymeric outer-shells [23].  

Soares et al. [23] have developed core@shell type magnetic nanoparticles comprising a 

magnetic core encapsulated with a shell of an organic-inorganic hybrid material highly 

enriched in polysaccharides. These hybrid shells exhibit flexibility and reactivity from 

the polymer functional groups and a chemically robust coating due to the inorganic 

component (silica), thus creating improved properties when compared with the 

individual components. The application of these hybrid materials has been of great 

interest due to their biocompatibility properties, low cost and wide availability of 

biopolymers, such as -carrageenan (κ-CRG) [23, 24]. Therefore, HMNPs have high 

potential as new nanosorbents for the purification and recovery of IgG, which is 

described in this work for the first time.  

 

2. Experimental 

2.1. Materials 

Tetraethylorthosilicate (TEOS) [Si(OC2H5)4, > 99.0%], -carrageenan (κ-CRG), 3-

(triethoxysilyl)propyl isocyanate (ICPTES) [(C2H5O)3Si(CH2)3NCO, 95.0%], ferrous 

sulfate heptahydrate (FeSO4.7H2O, > 99.0%), sodium phosphate dibasic heptahydrate 

(Na2HPO4.7H2O, > 98%) and rabbit serum (total protein concentration between 40-70 

mg.mL
-1

) were obtained from Sigma-Aldrich. N-dimethylformamide (DMF) 

[HCON(CH3)2, > 99.0%] and ethanol (CH3CH2OH) were purchased from Carlo Erba. 

Ammonia solution (25% NH3), methanol (CH3OH) and sodium carbonate (Na2CO3, > 

99.9%) were obtained from VWR Chemicals Prolabo. Potassium nitrate (KNO3, > 

97.2% (m/m)), sodium hydrogen carbonate (NaHCO3 > 99%) and potassium hydroxide 
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(KOH) were acquired from Labchem. Potassium chloride (KCl) and citric acid 

(C6H8O7.H2O) were supplied by Chem-Lab and Panreac, respectively. All solutions 

were prepared with Milli-Q water obtained from Synergy equipment from Millipore 

with a 0.22 µm filter.  

 

2.2. Synthesis of hybrid magnetic nanoparticles  

Hybrid magnetic nanoparticles (HMNPs) were synthesized as previously described 

[25]. The magnetite (Fe3O4) core was synthesized by oxidative hydrolysis of 

FeSO4.7H2O under a nitrogen stream, according to the methodology described by 

Oliveira-Silva et al. [26]. The synthesis of the alkoxysilane derivative of -carrageenan 

(SiCRG) was carried out in an inert and dry atmosphere of N2 using an aprotic solvent 

(DMF), allowing the reaction between the biopolymer κ-CRG and the isocyanate 

groups of ICPTES. The encapsulation of the magnetite nanoparticles within shells of a 

hybrid material comprising silica and κ-CRG was possible through the base-catalysed 

hydrolysis and condensation of a mixture of TEOS and Si-CRG performed in the 

presence of the magnetite nanoparticles, as previously described by Soares et al. [18]. 

 

2.3. Hybrid magnetic nanoparticles characterization 

The powder X-ray diffractogram of HMNPs was recorded between 10 and 65 ° (2) in a 

Rigaku Geigerflex Dmax-C diffractometer (Rigaku, Tokyo, Japan) equipped with a 

CuK monochromatic radiation source, with a step size of 0.026º and time per step of 

350 s. The Fourier transform infrared (FTIR) spectra of the materials were acquired in a 

Bruker Optics Tensor 27 spectrometer (Bruker, Billerica, MA, USA) employing a 

horizontal cell of attenuated total reflectance (ATR), with a total of 256 scans in the 

range of 350 to 4000 cm
-1 

with a resolution of 4 cm
-1

. Elemental analysis of carbon, 
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nitrogen, and hydrogen was obtained on the Leco Truspec-Micro CHNS 630-200-200 

equipment (Saint Joseph, MI, USA). The specific surface area and pore volume were 

examined by N2 sorption isotherms using a Gemini V-2380 surface area analyser 

(Micromeritics, Norcross, GA, USA). Prior to the measurements, the samples were 

degassed overnight at 80 ºC. The pore volume (Vp) was determined by BJH (Barrett-

Joyner-Halenda) model and the specific surface area (SBET) was determined by the 

Brunaer–Emmett–Teller (BET) equation with multipoint adsorption isotherms of N2 at -

196 ºC. The surface charge of HMNPs was determined by zeta potential measurements 

through electrophoretic light scattering, performed using a Zetasizer Nano ZS 

instrument equipped with a HeNe laser operating at 633 nm and a scattering detector at 

173º, from Malvern Instruments (Malvern, UK). The samples were pre-diluted in Milli-

Q water, the pH adjusted with NaOH (0.01 M) and HCl (0.01 M) solution to obtain pH 

solutions ranging from 3.5 to 9.5, and three readings were taken for each sample. The 

morphology and size of the HMNPs were assessed by transmission electron microscopy 

(TEM) using the Hitachi H-9000 TEM microscope (Hitachi, Tokyo, Japan), operating at 

300 kV and the high-resolution TEM microscope JEOL 2200FS (Jeol, Tokyo, Japan), 

operating at 200 kV. Samples for analysis were prepared by deposition of HMNP 

suspensions in ethanol on a copper grid coated with an amorphous carbon film. 

Subsequently, the samples were subjected to evaporation of the solvent. The particle 

size was calculated by analyzing TEM images with the software Image J. 

 

2.4. Adsorption and purification of IgG from rabbit serum 

The adsorption and purification of IgG from rabbit serum using HMNPs were 

investigated in a batch system. Several parameters were optimized in order to maximize 

the IgG adsorption in terms of adsorption yield and purity, namely pH, protein 
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concentration or serum dilution and contact time. The HMNPs were washed and then 

2.0 (±0.1) mg were added to an aqueous solution of rabbit serum in an orbital shaking. 

Subsequently, the HMNPs were magnetically separated from the aqueous solution 

(supernatant), as schematized in Fig. S1 in the Supporting Information.  

The pH effect on the IgG adsorption and purification was studied using citrate-

phosphate buffer at pH values of 3.0, 4.0 and 5.0; phosphate buffer at pH values of 6.0, 

7.0 and 8.0; and carbonate buffer at pH 9.0. 100 μL of buffer and 100 μL of water 

diluted rabbit serum with 0.6 mg.mL
-1 

of
 
total protein were added to the HMNPs. This 

mixture was stirred for 60 min in an orbital shaker. A control was prepared using 50 μL 

of diluted rabbit serum (0.6 mg.mL
-1 

of
 
total protein content) and 50 μL of distilled 

water. The influence of the contact time between the rabbit serum and the HMNPs was 

also investigated. The experiments were performed by adding 100 μL of citrate-

phosphate buffer at pH 5.0 and 100 μL of water diluted rabbit serum (0.6 mg.mL
-1 

of
 

total protein content) to the HMNPs. The mixture was stirred during periods between 15 

and 90 min in an orbital shaker. A control was prepared with 50 μL of water diluted 

rabbit serum (0.6 mg.mL
-1 

of
 
total protein) and 50 μL of citrate-phosphate buffer at pH 

5.0. Finally, the effect of serum dilution was also evaluated by adding 100 μL of citrate-

phosphate buffer at pH 5.0 and 100 μL of rabbit serum diluted at different 

concentrations: from 0.3 mg.mL
-1

 to 4.8 mg.mL
-1

. The mixture was stirred for 60 min in 

an orbital shaker. A control was prepared with 50 μL of rabbit serum of each dilution 

and 50 μL of distilled water. At least three individual experiments were carried out for 

each condition, allowing the determination of the average recovery yield and 

purification factor and respective standard deviations. 

The rabbit serum, supernatant proteins, before and after IgG adsorption, were quantified 

by size-exclusion high-performance liquid chromatography (SE-HPLC) (Chromaster, 
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VWR Hitachi) with a Shodex Protein KW-802.5 (8mm x 300mm) column. Before 

injection, the samples were diluted 10 times with the mobile phase (100 mM phosphate 

buffer + NaCl 0.3 M). The mobile phase was run isocratically at 0.5 mL.min
-1

. The 

column oven and autosampler were kept at 40 °C and 10 °C, respectively. The injection 

volume was 25 μL. The wavelength was set at 280 nm using a DAD detector. The 

chromatograms were analyzed using the OriginPro software. The IgG purity factor and 

adsorption yield were determined according to equations 1 and 2. The purification 

factor of IgG (PFIgG) onto the HMNPs (adsorbed IgG) was calculated according to 

Equation 1: 

 

𝑷𝑭𝑰𝒈𝑮 =
%𝑷𝒖𝒓𝒊𝒕𝒚𝑰𝒈𝑮 𝒂𝒅𝒔𝒐𝒓𝒃𝒆𝒅

%𝑷𝒖𝒓𝒊𝒕𝒚𝑰𝒈𝑮 𝒊𝒏𝒊𝒕𝒊𝒂𝒍
                                                                 (1) 

 

where %PurityIgG adsorbed and %PurityIgG initial correspond to the purity level of IgG 

adsorbed onto the HMNPs and the purity level of IgG in the rabbit serum samples, 

respectively.  

The adsorption yield (%YieldIgG) of IgG onto the material was calculated according to 

equation (2): 

 

%𝐘𝐢𝐞𝐥𝐝𝑰𝒈𝑮 =
[𝑰𝒈𝑮]𝒂𝒅𝒔𝒐𝒓𝒃𝒆𝒅

[𝑰𝒈𝑮]𝒊𝒏𝒊𝒕𝒊𝒂𝒍
× 𝟏𝟎𝟎                                                       (2) 

 

where [IgG]adsorbed and [IgG]initial correspond to the IgG concentration onto the 

HMNPs and the initial concentration of IgG in the rabbit serum taking into 

account all dilutions carried out, respectively. 

 

2.5. Desorption of IgG from hybrid magnetic nanoparticles 
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In all experiments, firstly IgG was adsorbed onto 2 mg of HMNPs (IgG@HMNP) at pH 

5.0, 60 min of contact and rabbit serum with a total protein's concentration of 4.8 

mg.mL
-1

. Then, the IgG desorption was performed by applying two distinct methods. In 

the first method, 200 μL of a KCl aqueous solution of variable concentration (0.10 M; 

0.25 M; 0.5 M) was added to IgG@HMNP and stirred for 60 min in an orbital shaker. 

The contact time was also evaluated for 60 and 120 min using 200 μL of KCl 0.5 M. 

Finally, the ratio of IgG@HMNP mass (mg) and KCl solution (μL) 0.5 M of 1:100 and 

1:200 was evaluated for 60 min of contact time. In the second method, the pH effect 

was investigated using buffered aqueous solutions. 400 μL of phosphate buffer 50 mM 

at pH 7.0 or 8.0, or carbonate buffer 50 mM at pH 9.0 or 10.0 were added to 

IgG@HMNP. The mixture was stirred for 60 min using an orbital shaker. At least three 

individual experiments were carried out for each condition, allowing the determination 

of the average recovery yield and purification factor and respective standard deviations. 

The desorbed IgG was quantified by SE-HPLC as described above. 

The purification factor of IgG (DPFIgG) after the desorption from the HMNPs was 

calculated according to Equation 3: 

 

𝑫𝑷𝑭𝑰𝒈𝑮 =
%𝑷𝒖𝒓𝒊𝒕𝒚𝑰𝒈𝑮 𝒅𝒆𝒔𝒐𝒓𝒃𝒆𝒅

%𝑷𝒖𝒓𝒊𝒕𝒚𝑰𝒈𝑮 𝒊𝒏𝒊𝒕𝒊𝒂𝒍
                                                                (3) 

 

where %PurityIgG desorbed and %PurityIgG initial correspond to the purity level of IgG 

desorbed and the purity level of IgG in the rabbit serum sample, respectively.  

The recovery yield (%DYieldIgG) of desorbed IgG from the HMNPs was calculated 

according to equation (4): 

 

%𝑫𝒀𝒊𝒆𝒍𝒅𝑰𝒈𝑮 =
[𝑰𝒈𝑮]𝒅𝒆𝒔𝒐𝒓𝒃𝒆𝒅

[𝑰𝒈𝑮]𝒊𝒏𝒊𝒕𝒊𝒂𝒍
× 𝟏𝟎𝟎                                                     (4) 
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where [IgG]desorbed and [IgG]initial correspond to the desorbed IgG concentration and the 

initial concentration of IgG in the rabbit serum, respectively.  

 

2.7. Evaluation of the IgG secondary structure by circular dichroism 

The IgG secondary structure after the desorption step was evaluated by circular 

dichroism (CD) using a Jasco J-1500 CD spectrometer. CD spectra were recorded from 

200 to 260 nm using quartz circular dichroism cuvettes (0.1 cm) at room temperature 

(ca. 25ºC). Each CD spectrum is the result of four accumulations recorded in 

millidegrees. The following acquisition parameters were used: data pitch, 0.5 nm; 

bandwidth, 1.0 nm; response, 1 s; and scan speed, 50 nm.min
−1

. 

 

3. Results and Discussion 

3.1. Characterization of hybrid magnetic nanoparticles  

The magnetic cores once synthesized have been encapsulated by organic-inorganic 

hybrid shells to produce core/shell particles as illustrated in Fig. 1. The resulting HMNP 

were then characterized through their chemical composition, size, surface area, porosity, 

and surface charge.  

 

 

Fig. 1. Scheme of hybrid magnetic nanoparticles used for the IgG adsorption and 

purification from rabbit serum. 
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Fig. 2 (a) shows the powder X-ray diffractogram of the magnetite powders used as 

cores, along with the labeling of the respective Miller indices. The diffraction peaks at 

18.4
o
 (111), 30.2

o
 (220), 35.5

o
 (311), 43.1

o
 (400), 53.6

o
 (422), 57.1

o
 (511) and 62.7

o
 

(440) are consistent with the presence of magnetite with cubic inverse spinel structure 

(ICDDPDF nº 04-006-6550). Similar XRD patterns were observed for the HMNP (Fig. 

2 (b)), confirming that the cores in the hybrid nanoparticles are magnetite [27, 28]. Fig. 

2 (b) also shows a broad background signal and a diffuse peak at about 21º theta, 

characteristic of short-range order in amorphous silica and supporting the presence of 

the hybrid siliceous shells surrounding the magnetic cores. 

 

 

Fig. 2. Powder X-ray diffractogram patterns of Fe3O4 (a) and HMNP (b) nanoparticles. 

 

The κ-CRG, SiCRG, HMNP and Fe3O4 samples were analyzed by infrared 

spectroscopy, whose results and detailed identification of the diagnosis vibrational 

bands are included in the Fig. S2 (Supporting Information) providing evidence of the 
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organic-inorganic hybrid nature of the HMNPs. Briefly, in the HMNP spectrum (Fig S2 

(c)) the encapsulation of the magnetite core is confirmed by the appearance of new 

vibrational bands characteristic of silica (436 cm
-1

 ascribed to O–Si–O vibration) and of 

the biopolymer -carrageenan (843 cm
-1

 due to C-O-S vibration, 1045 cm
-1

 due to C-O 

and C-OH vibrations, 1220 cm
-1

 owing to S-O asymmetric stretching in the –OSO3
-
 

groups) [18]. These bands confirm the presence of a siliceous material containing -

carrageenan coating the magnetic cores.  

The elemental analysis confirmed the functionalization of the HMNPs through the 

comparison of carbon and sulfur contents in the particles, before and after the 

encapsulation with the hybrid shell. The results indicate that the magnetic core (Fe3O4) 

contains 0.068 (± 0.006) wt% of carbon, 0.162 (± 0.042) wt% of hydrogen, 0.012 (± 

0.004) wt% of nitrogen, and no sulfur content was detected. Since the magnetic core is 

composed of the crystalline phase of Fe3O4, it is expected to have low carbon, nitrogen 

and sulfur contents. The HMNPs contain 23.4 (± 0.3) wt% of carbon, 4.40 (± 0.22) wt% 

of hydrogen, 0.299 (± 0.014) wt% of nitrogen and 5.85 (± 0.29) wt% of sulfur. It is 

worth noting that after encapsulation the contents in carbon, nitrogen, and sulfur 

markedly increased, which is in agreement with the formation of a shell with organic-

inorganic hybrid nature, highly enriched in the biopolymer -carrageenan, around the 

magnetic cores. 

Fig. 3 shows the TEM images of the magnetic core (Fe3O4) (Fig. 3 (a)) and the HMNP 

(Fig. 3 (b)). The HMNPs have a nearly spherical shape, comprising the magnetite core 

(darker zone) coated with the hybrid shells (lighter zone), thus confirming that the 

encapsulation of the MNP was successful. The average size of the magnetic core was 

found to be 48.9 (± 5.9) nm and, after surface modification, the coating thickness was 

20.7 (± 2.3) nm.  
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Fig. 3. TEM images of Fe3O4 (a) and HMNP (b). 

 

The specific surface area (SBET) and pore volume of the synthesized HMNPs were 

obtained by nitrogen-sorption measurements. The MNPs have a SBET of 23.8 m²/g and a 

pore volume of 0.080 cm
3
/g. After encapsulation, HMNPs have a SBET of 6.9 m²/g and a 

pore volume of 0.011 cm
3
/g. These values show a decrease in the specific surface area 

after the encapsulation that can be due to an increase of the diameter of the particles 

after the encapsulation, with HMNPs showing a high SBET. 

Zeta potential measurements allowed to estimate the surface charge and to get 

information about colloidal stability. The zeta potential values were smaller than -25mV 

in the pH range investigated, from pH 3.5 to 8.5 (as shown in Fig. S3 in the Supporting 

Information). The negative surface charge of HMNP is consistent with the presence of 

the anionic sulfonate groups of -carrageenan over the surface of the material and the 

highly negative zeta potential accounts for the colloidal stability due to electrostatic 

repulsion [19]. 

 

3.2 Adsorption and purification of IgG from rabbit serum 
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The synthesized HMNPs were ascertained in what concerns their capacity to adsorb and 

purify IgG from rabbit serum. Several parameters were studied in order to maximize the 

IgG adsorption yield and the purification factor, namely pH, contact time and serum 

dilution or protein content. Firstly, the pH effect in the IgG adsorption onto HMNPs 

was studied at distinct pH values (pH range between 3.0 and 9.0). The rabbit serum with 

a protein concentration of 0.6 mg.mL
-1

 and a contact time of 60 min was maintained 

constant during all these assays. The results of IgG adsorption yield and purification 

factor on the material are depicted in Fig. 4 (A). At pH 3.0 and 4.0, it was not detected 

any peak on the SE-HPLC chromatograms, which is probably due to the total proteins 

denaturation, which is a common feature for proteins at very acidic pH values [29]. 

Comparing the results for higher pH values, it is possible to observe a decrease of the 

IgG purification factor and adsorption yield with the increase of pH. The best results 

were attained at pH 5.0, with an IgG purification factor of 1.3 times and an IgG 

adsorption yield of 93%. At pH 5.0, the IgG has a positive total charge (rabbit IgG pI of 

7.8 [4]), while the albumin (main impurity of rabbit serum) is closer to its pI (albumin 

pI of 5.65 [30]). On the other hand, according to the previous zeta potential analysis, 

HMNPs have a negative surface charge. Thus, the higher IgG purity and yield levels at 

lower pH values can be explained by electrostatic interactions occurring between the 

positively charged IgG and the negative charged sulphate groups from κ-CRG [31, 32]. 

This increase in the purity of IgG in the material means that more impurities (other 

proteins) remain in the supernatant and are not completely adsorbed onto the material. 

On the other hand, the IgG adsorption profile at pH 6.0 and 7.0 show the opposite 

behavior. Although at these pH values the IgG and albumin are positively and 

negatively charged, respectively, the IgG purity and adsorption yield decrease when 

compared to the results obtained at pH 5.0. This fact is due to the proximity to the pI of 
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IgG to these values and still significant content of IgG not totally positively charged. 

Thus, pH 5.0 was selected for the next experiments. 

The effect of the contact time between the rabbit serum and the HMNPs was studied 

using the same proteins concentration in serum (0.6 mg.mL
-1

) of the previous assays. 

Since the main interest is to obtain IgG with high purity level and to develop a process 

of low cost, the contact time is an important parameter to evaluate. Eight contact times, 

between 15 and 90 min, were evaluated. The results presented in Fig. 4 (B) reveal that 

the contact time has a significant effect on the IgG adsorption yield and purification 

factor. After 30 min of contact time, the highest IgG purification factor of 3.7 was 

obtained, but an IgG adsorption yield of 54% is attained. These results reveal that after 

30 min of contact, less albumin is adsorbed onto HMNPs leading to an increase in the 

IgG purity. On the other hand, the IgG adsorption yield reaches the maximum at 60 

min, with a value of 93%, but the purification factor decreases to 1.3 due to an increase 

of adsorbed impurities or other proteins. After longer periods of time (90 min), the IgG 

purity and yield decreased, probably due to their replacement by albumin as the main 

impurity present in serum. 

The rabbit serum dilution was finally investigated at the optimized pH and contact time 

(pH 5.0 and 60 min). These parameters were selected considering the best IgG 

adsorption yield. Seven dilutions were studied with a final total protein concentration 

ranging between 0.3 and 4.8 mg.mL
-1

. The results obtained are presented in Fig. 4 (C). 

Regarding the IgG purity, a concentration of proteins of 4.8 mg.mL
-1

 leads to a 

maximum purification factor of IgG of 3.0. Overall, by increasing the total 

concentration of proteins it is possible to increase the IgG purity adsorbed in the 

material. On the other hand, IgG adsorption yields higher than 90% were observed for 

all concentrations studied, with a value of 100% when serum with protein 
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concentrations of 1.0 and 0.8 mg.mL
-1 

were used. In fact, the contact time between the 

rabbit serum and the HMNP of 60 min ensures high yields, being in agreement with the 

previous results shown in Fig. 4 (B). 

Taking into account the optimized conditions for IgG purity and adsorption yield, 

namely the following conditions: pH 5.0, 60 min of contact and proteins concentration 

in serum of 4.8 mg.mL
-1

, it is possible to obtain IgG with a purification factor of 3.0 

(purity level of 60%) and an adsorption yield of 90%.  

In order to evaluate the presence of adsorbed proteins onto the HMNPs, ATR-FTIR 

analysis of the samples was carried out (Fig. S4 in the Supporting Information). Proteins 

have a secondary structure formed by the interaction of their constituent amino acids. 

These structures are α-helix, β-sheet, β-turn, among others [3]. These structures produce 

a spectrum band between 1600 and 1690 cm
-1

 corresponding to the amide region I [3]. 

Within this range, the band related to β-sheet produces a characteristic band at 1635 cm
-

1
, the α-helix structure at 1660 cm

-1
 and the β-turn at 1645 cm

-1
 [3]. Comparing the two 

spectra given in Fig. S4, Supporting Information, it is clearly noticed the appearance of 

a new band near 1630 cm
-1

 in the HMNPs after the IgG adsorption, although a residual 

contribution of the water deformation vibration band is seen at 1640 cm
-1

 [3], thus 

confirming the presence of proteins in the HMNPs.  

Hou et al. [8] investigated the IgG monoclonal antibody purification using modified 

Fe3O4@SiO2 MNPs with protein A, which was covalently immobilized. These MNPs 

showed a good binding capacity for the chimeric anti-EGFR monoclonal antibody 

providing a purity of about 95% [8]. Salimi et al. [11] also proposed protein A carrying 

magnetic, monodisperse SiO2 microspheres [Mag(SiO2)], as an affinity sorbent for IgG 

purification from rabbit serum. By using protein A attached-Mag(SiO2) microspheres an 

IgG purity higher than 95% was attained. Although the IgG purity described in these 
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reports is higher than in the present work, the use of protein A, one of the most 

expensive ligands used in monoclonal antibody purification, will significantly increase 

the overall processes cost, making them less attractive. In another material´s approach, 

Bereli et al. [7] studied the purification of IgG using methyl N-methacryloyl (L)-

histidine ester functionalized acrylate-based MNPs, obtaining a purity of the eluted IgG 

of 85% with a yield about 78% [7]. However, in the present work, higher IgG 

adsorption yields were attained, higher than 90%, and reaching 100% when serum 

concentrations of 1.0 and 0.8 mg.mL
-1

 were used (Fig. 4). Comparing to our work, 

Bereli et al. [7] reported a material saturation when the protein concentration was higher 

than 1.0 mg/mL
-1

. The opposite capacity of adsorption is obtained in the present work, 

being the best results achieved when higher concentrations of rabbit serum are used, 

namely 4.8 mg.mL
-1

,
 
leading to a maximum purification factor of IgG of 3.0. 
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Fig. 4. Recovery yields (%YieldIgG – ■) and purification factors (PFIgG – ■) of IgG in 

HMNPs. The dashed line corresponds to the initial IgG purity in the rabbit serum 

(PF=1.0). (A) pH effect on the IgG adsorption and purification using 60 min of contact 
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time and a rabbit serum concentration of 0.6 mg.mL
-1

. (B) Influence of the contact time 

between the rabbit serum and the HMNPs on the IgG adsorption and purification using 

citrate-phosphate buffer at pH 5.0 and a rabbit serum concentration of 0.6 mg.mL
-1

. (C) 

Effect of rabbit serum concentration on the IgG adsorption and purification using 

citrate-phosphate buffer at pH 5.0 and 60 min of contact time. 

 

3.3. Desorption of IgG from hybrid magnetic nanoparticles 

This work intends to develop a process to purify IgG. Accordingly, after the selective 

adsorption of IgG, the target antibody needs to be recovered by desorption. In all 

desorption experiments, the IgG was firstly adsorbed at the optimized conditions (pH 

5.0, 60 min of contact and proteins concentration in serum of 4.8 mg.mL
-1

), as described 

above. To evaluate the IgG desorption effectiveness, the IgG recovery yield and 

purification factor were evaluated, before and after the IgG desorption by using two 

approaches: i) use of KCl aqueous solutions and ii) use of buffered solutions at four pH 

values (7.0, 8.0, 9.0 and 10.0). The effect of the KCl aqueous solution was addressed 

since κ-CRG has a high affinity for K
+
 ions [33] and this salt has been already reported 

in other proteins desorption studies [34, 35]. According, it is expected that K
+
 ions 

interact with the sulphate groups of the polysaccharide allowing the release of proteins 

from the material to the supernatant. For this purpose, three different parameters were 

evaluated: concentration of KCl, contact time and ratio of IgG@HMNP:KCl solution. 

Three concentrations of KCl aqueous solutions (0.25, 0.50 and 0.10 M) were 

investigated, maintaining constant the contact time (60 min) and the ratio 

IgG@HMNP:KCl solution (1:100). The results presented in Fig. 5 (A) indicate an 

increase in IgG purity with the increase of the KCl concentration, but still lower than 

the IgG purity in the rabbit serum, and an IgG recovery yield higher than 77%. The 
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contact time between the IgG@HMNP and the KCl solution also was evaluated using a 

0.50 M KCl solution. Two different contact times, 60 and 120 min, with a 1:100 

IgG@HMNP:KCl ratio were used. The results obtained (Fig. 5 (B)) reveal an increase 

in the IgG recovery yield from 78% to 97%. However, the IgG purification factor 

slightly decreased, from 1.4 to 1.2, after 120 min of contact time. Finally, the volume of 

KCl solution used for the IgG desorption was investigated. Two IgG@HMNP:KCl ratio 

were studied, namely 1:100 and 1:200, with a 0.5 M KCl solution and a contact time of 

60 min. The results presented in Fig. 5 (C) indicate an IgG purification factor increase 

from 1.5 to 1.7 when higher volumes of KCl solution are used. Although several 

parameters were investigated to increase the IgG recovery yield and IgG purity, the 

purity values are always lower than those obtained in the previous assays, suggesting 

that K
+
 ions are replacing all proteins without selectivity. 

Journal Pre-proof



Jo
ur

na
l P

re
-p

ro
of

22 

 

 

Fig. 5. Recovery yields (%DYieldIgG – ■) and purification factors (DPFIgG – ■) of IgG 

desorbed from HMNPs using KCl. The dashed line corresponds to the initial IgG purity 

in the rabbit serum (PF = 1.0). (A) Effect of KCl aqueous solution on the IgG 

desorption using 60 min of contact time and 1/100 HMNP/KCl solution ratio. (B) 
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Influence of desorption time on the IgG desorption using 0.5 M KCl aqueous solution 

and 1/100 HMNP/KCl solution ratio. (C) Impact of IgG@HMNP mass (mg) and 0.5 M 

KCl solution (μL) ratio using 60 min of contact time. 

 

Afterwards, the effect of the pH on the IgG desorption was studied at four pH values 

(7.0, 8.0, 9.0 and 10.0). This pH range was selected since the IgG adsorption is favored 

under acidic pH values, expecting that the use of buffered aqueous solutions with higher 

pH values will promote electrostatic repulsion between the HMNPs and IgG. The 

results presented in Fig. 6 show a significant decrease in the IgG recovery yield, from 

74% to 24%, when higher pH values are used. This phenomenon can be related to the 

formation of an insoluble κ-CRG and protein complex when using pH values above to 

the IgG pI [4]. The formation of this complex is clearly visible for pH values of 8.0, 9.0 

and 10.0 (see Fig. S5 in the Supporting information), and as such these pH values 

cannot be used to recover IgG. Concerning the IgG purification factor, the best value of 

2.7 was obtained at pH 7.0, a similar value to the one obtained in the adsorption assays 

(IgG purification factor of 3.0). Overall, at pH 7.0 the best results for the desorption of 

IgG were attained, with an IgG recovery yield of 74% and a purification factor of 2.7.  
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Fig. 6. Recovery yields (%DYieldIgG – ■) and purification factors (DPFIgG – ■) of 

desorbed IgG from HMNP by changing the pH. The dashed line corresponds to the 

initial IgG purity in the rabbit serum (PF = 1.0). The experiments were performed 

during 60 min of contact time using 50 mM phosphate (pH 7.0 and 8.0) or carbonate 

(pH 9.0 and 10.0) buffer. 

 

The evaluation of the IgG and other proteins secondary structure after the 

adsorption/desorption steps was finally carried out by CD. CD is an appropriate 

technique for determining the secondary structure of proteins due to the amides present 

in the polypeptide backbone, that are characteristic of proteins, and which have a 

chromophoric activity that effectively shifts or splits light into multiple transitions [36]. 

Because proteins CD spectra are dependent on their conformation, this technique can be 

used to monitor and evaluate conformational changes due to binding interactions [37]. 

Fig. S6 in the Supporting Information shows the CD results for the IgG and other 

proteins after the desorption step with the buffered aqueous solution at pH 7 or KCl 

solution at 0.5 M. In both spectra it is shown that IgG and other proteins do not present 
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a significant loss of secondary structure, as shown by their spectrum resemblance with 

the rabbit serum, with a negative band appearing at 218 nm characteristic of proteins 

mainly comprising β-sheets [38].  

 

4. Conclusions 

Hybrid magnetic nanoparticles comprising a magnetic core of Fe3O4 encapsulated with 

a siliceous shell enriched in the polysaccharide -carrageenan are promising novel 

materials for the adsorption and further purification of IgG. Under the optimized 

adsorption conditions, IgG with a purification factor three times higher than that in the 

rabbit serum and an adsorption yield of 90% were achieved. Moreover, the desorption 

of IgG from HMNP was evaluated, obtaining an IgG purification factor of 2.7 and a 

recovery yield of 74%. Finally, the maintenance of the secondary structure of IgG after 

the adsorption and desorption steps was evaluated, confirming the success of the 

process developed. Overall, the application of HMNPs in the purification of IgG seems 

to have high potential as a new downstream platform for biologically active 

biomolecules. 
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Highlights: 

 A simple method for the IgG adsorption and purification from rabbit serum was 

developed 

 A high IgG purification factor was achieved with siliceous-polysaccharide 

hybrid magnetic nanoparticles 

 IgG is effectively recovered from the magnetic nanoparticles using buffered 

aqueous solutions 
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