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Abstract 
The success of simulation tools in reproducing the mechanical behaviour of materials, 
particularly for metals, depends on the quality of the models and their inherent material 
parameters. However, the commonly used parameter identification strategies are still 
expensive and non-robust. The robustness and efficiency of these strategies are closely 
related with the single-stage optimisation methods adopted. 
The aim of this work is to implement and analyse optimisation strategies such as 
sequential, parallel and hybrid approaches in a parameter identification problem using 
full-field methods, particularly the Virtual Fields Method (VFM) and the Finite Element 
Model Updating (FEMU). The definition of the objective functions of both VFM and 
FEMU methods is also discussed in the framework of optimisation. 
 

1. Introduction 
Nowadays, there are a few solid numerical methodologies for extracting the material 
parameters from full-field strain measurements using digital image correlation (DIC) 
techniques. External methods, such as the FEMU, search for the parameter set that 
minimises the gap between the experimental and numerical observations. In these 
methods, a total separation between the experimental and the numerical data occurs. 
Equilibrium methods, such as the VFM, search for the parameter set that balances the 
internal and external work according to the principle of virtual work, where the internal 
work is calculated using the constitutive model applied to the experimental strain field 
[1-4]. Both methodologies use optimisation techniques to identify the parameters and, 
therefore, can undergo problems of initial solution’s dependence, non-uniqueness of 
solution, local and premature convergence, physical constraints violation, etc. 
In this work, the performance of gradient least-squares (GLS) and metaheuristic (MH) 
optimisation algorithms is compared. GLS algorithms are deterministic and search for 
local optimal solutions guided by the information of the derivatives. However, nonlinear 
optimisation problems may have several solutions that are locally optimal. MH 
algorithms, with their probabilistic nature, have the ability to obtain global optimal 
solutions, avoiding getting trapped in a local optimum. MH can be search-based (such 
as Simulated Annealing or Tabu Search), which focus on modifying and improving a 
single candidate solution, or population-based (such as Genetic Algorithms, Differential 
Evolution, etc.), which focus on improving multiple candidate solutions, often using 
population characteristics to guide the search. 
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Studies combining distinct implemented algorithms and parameter identification 
methods are performed in this work. Three case-studies are tested for checking the 
robustness of the strategies. 
 

2. Problem Formulation 
In this work, for the definition of the FEMU objective function, a combination of force (𝐹) 
and in-plane strain components (𝜀𝑥𝑥

 , 𝜀𝑦𝑦
 , 𝜀𝑥𝑦

 ) is adopted. It can be described as: 
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where 𝐱 is the vector of decision variables (material parameters to be determined), 𝑛s is 
the number of time-steps and 𝑛p the number of in-plane measurement points. 

The VFM objective function to be minimised is given by: 
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where 𝐓 corresponds to the surface forces acting on the boundary 𝜕𝑉 of the specimen, 
𝑉 is the reference volume of the specimen, 𝐔 

∗ is the virtual displacement field, and 
𝐏(𝐱, 𝜺exp) is the first Piola-Kirchhoff stress tensor. 
 

4. Implementation, Results and Discussion 
Results for the case-study represented in Fig. 1 are presented. The material model 
assumes: (i) isotropic elastic behaviour described by the generalised Hooke’s Law; (ii) 
isotropic plastic behaviour described by the von Mises yield criterion and Swift's Law: 

𝜎 = 𝐾(𝜀0 + 𝜀p)
𝑛
  with  𝜀0 = (

𝜎0

𝐾
)

1/𝑛

, (3) 

where 𝜎 is the flow stress and 𝜀p is the equivalent plastic strain. 𝐾, the hardening 

coefficient, 𝑛, the hardening exponent, and 𝜎0, the initial yield stress, form the set 𝐱 of 
material parameters to be identified. The numerical data generated by the finite element 
(FE) model is used as virtual experimental data, thus the reference parameters are 
known a priori (𝐱ref =  [𝜎0 = 160, 𝑛 = 0.26, 𝐾 = 565]). The reference simulation was run 
with automatic increment control using ABAQUS/Standard, which required 30 
increments/time-steps to complete the simulation. The implemented GLS optimisation 
algorithm is the Levenberg-Marquardt (LM) [5] using finite-differences Jacobian, and the 
MH algorithm is the Differential Evolution (DE) [6]. 

          
Figure 1. (a) Specimen geometry and (b) FE model showing the equivalent plastic strain 
distribution after a 3 mm displacement. 
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Tab. 1 lists the results for a 3-stage sequential strategy (GLS1-MH-GLS2) considering 2 
starting sets (grey shading). The optimal solution obtained in each stage is used as the 
initial solution of the following stage. GLS1 switches to MH after converging. MH uses 
the maximum number of evaluations as stopping criteria (4000 for VFM and 1000 for 
FEMU). Fig. 2 presents the evolution of the VFM objective function using the different 
starting sets. The results for the single MH are included for comparison purposes.  
 
Table 1. VFM and FEMU results with the sequential strategy GLS1-MH-GLS2 
considering two initial solutions (inf/sup). The initial and optimal values are provided. 
The optimal parameters’ errors are calculated in relation to the reference set (𝐱ref). 

 GLS1,inf MHbest GLS2 

 𝜎0 𝑛 𝐾 𝑓VFM 𝜎0 𝑛 𝐾 𝑓VFM 𝜎0 𝑛 𝐾 𝑓VFM 

Initial 100.4 0.080 165.0 4.5E+10 160.7 0.265 564.2 2.3E+05 160.1 0.261 560.1 2.1E+05 

Optimal 160.7 0.265 564.2 2.3E+05 160.1 0.261 560.1 2.1E+05 160.7 0.265 564.2 2.3E+05 

Err (%) 0.46 2.08 0.13 - 0.08 0.57 0.87 - 0.46 2.08 0.13 - 

 GLS1,sup MHbest GLS2 

 𝜎0 𝑛 𝐾 𝑓VFM 𝜎0 𝑛 𝐾 𝑓VFM 𝜎0 𝑛 𝐾 𝑓VFM 

Initial 234.7 0.350 965.0 3.2E+10 160.7 0.265 564.2 2.3E+05 160.1 0.261 560.1 2.1E+05 

Optimal 160.7 0.265 564.2 2.3E+05 160.1 0.261 560.1 2.1E+05 160.7 0.265 564.2 2.3E+05 

Err (%) 0.46 2.08 0.13 - 0.08 0.57 0.87 - 0.46 2.08 0.13 - 

 GLS1,inf MHbest GLS2 

 𝜎0 𝑛 𝐾 𝑓FEMU 𝜎0 𝑛 𝐾 𝑓FEMU 𝜎0 𝑛 𝐾 𝑓FEMU 

Initial 100.4 0.080 165.0 2.9E+00 85.6 0.092 169.2 2.3E+00 161.0 0.263 567.8 7.8E-04 

Optimal 85.6 0.092 169.2 2.3E+00 161.0 0.263 567.8 7.8E-04 160.6 0.262 569.4 1.2E-04 

Err (%) 46.50 64.78 70.04 - 0.64 1.02 0.50 - 0.37 0.87 0.78 - 

 GLS1,sup MHbest GLS2 

 𝜎0 𝑛 𝐾 𝑓FEMU 𝜎0 𝑛 𝐾 𝑓FEMU 𝜎0 𝑛 𝐾 𝑓FEMU 

Initial 234.7 0.350 965.0 3.2E-01 186.5 0.446 830.7 1.8E-01 163.0 0.265 577.6 1.2E-03 

Optimal 186.5 0.446 830.7 1.8E-01 163.0 0.265 577.6 1.2E-03 162.2 0.266 578.4 9.0E-04 

Err (%) 16.58 71.42 47.02 - 1.87 1.98 2.24 - 1.38 2.26 2.37 -  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. VFM objective function evolution with a sequential strategy considering two 
starting sets. A zoom-in (MH stage) shows the 6 runs that generated one of the curves. 

1.E+05

1.E+06

1.E+07

1.E+08

1.E+09

1.E+10

1.E+11

1 10 100 1000 10000

L
o

g
a

ri
th

m
ic

 O
b

je
c
ti
v
e

 F
u

n
c
ti
o

n
, 
f V

F
M

Logarithmic Evaluations Number

MHinf avg

MHsup avg

GLSinf-MH-GLS avg

GLSsup-MH-GLS avg

GLS GLS MH 

2.1E+05

2.2E+05

2.3E+05

100 1100 2100 3100

GLSinf-MH-GLS run1
GLSinf-MH-GLS run2
GLSinf-MH-GLS run3
GLSinf-MH-GLS run4
GLSinf-MH-GLS run5
GLSinf-MH-GLS run6
GLSinf-MH-GLS avg



 
With the VFM methodology, the GLS algorithm converges fast for a solution (less than 
100 evaluations) with errors lower than 2%. However, although the MH required many 
evaluations to improve the solution, it found a solution with errors lower than 1% and 
with a large probability of being the global minimum. GLS revealed a non-dependence 
on the initial set since, in both stages, the algorithm converged always to the same 
solution. This observation reveals that the gradient-based evaluation performed by GLS 
differs from the direct evaluation of the objective function performed by MH. However, 
further investigations and an additional tuning of the GLS algorithm are required. 
For the case of the FEMU method, a dependence of the GLS optimisation algorithm on 
the initial set is evident. In the first optimisation stage, GLS1 was not capable of 
reaching admissible errors for the identified parameters. However, in the third stage, 
GLS2 revealed to be capable of refining the search in the region of the global minimum 
previously found by the MH optimisation algorithm. GLS2 provided an optimal solution 
with parameters’ errors lower than 1% in the strategy starting with the inferior set (𝜎0 =
100.4, 𝑛 = 0.08 and 𝐾 = 165) and up to 2% in the strategy starting with the superior set 
(𝜎0 = 234.7, 𝑛 = 0.35 and 𝐾 = 965). As demonstrated in this case-study, since the MH 
algorithms do not depend on the initial solution, they reveal to be useful in providing an 
initial solution to GLS that is in the global optimum region. 
 

5. Conclusions 
When performing parameter identification, the choice of an optimisation algorithm is not 
straightforward. In this work, it is showed that metaheuristic algorithms can find better 
solutions, however with the cost of more evaluations. For a fast solution and errors up to 
2%, the gradient-based least square algorithms are robust enough when using the 
VFM. The FEMU methodology revealed to be initial solution’s dependent and to require 
a MH optimisation algorithm to find the global solution. Nevertheless, an optimisation 
strategy with sequential or parallel algorithms guarantees the global solution. 
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