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Antofagasta, Chile.

Abstract

A g-circulant matrix A, is defined as a matrix of order n where the elements
of each row of A are identical to those of the previous row, but are moved
g positions to the right and wrapped around. Using number theory, certain
spectra of g-circulant real matrices are given explicitly. The obtained results
are applied to Nonnegative Inverse Eigenvalue Problem to construct nonneg-
ative, g-circulant matrices with given appropriated spectrum. Additionally,
some g-circulant marices are reconstructed from its main diagonal entries.
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1. Introduction

A permutative matrix is a square matrix where each row is a permutation of
its first row. A circulant matrix is a matrix where each row its a right cyclic
shift in one place of the previous one. A g−circulant matrix is a matrix where
each row its a right cyclic shift in g−places of the previous row. Circulant
matrices and g-circulant matrices are permutative. An n-tuple of complex
numbers,

Σ = (λ1, λ2, . . . , λn) (1)

is said to be realizable if there exists a nonnegative matrix A of order n
such that its components are the eigenvalues of A. The study of circulant
matrices and their use in realizing lists of complex numbers has produced
many results. In this work we propose to carry out similar research for g-
circulant matrices. The Nonnegative Inverse Eigenvalue Problem (NIEP) is
a problem to determine necessary and sufficient conditions for a list of n
complex numbers to be realizable. If the list Σ is realizable by a nonnegative
matrix A, then we say that A realizes Σ or it is a realizing matrix for Σ. Some
results can be seen in [10, 11, 12]. This very difficult problem attracted the
attention of many authors over the last 50 years, and it was firstly considered
by Sulĕımanova in 1949 (see [28]). Some partial results were obtained but it
is still an open problem for n ≥ 5.

In [15] the problem was solved for n = 3 and for matrices with trace zero
of order n = 4 and n = 5, the problem have been solved by [23] and Laffey
and Meehan in [20], respectively.

In its general form it was studied in [3, 7, 8, 13, 14, 15, 24, 25, 27]. When
the nonnegative realizing matrix A is required to be symmetric the problem is
designated Symmetric Nonnegative Inverse Eigenvalue Problem (SNIEP) and
it is also an open problem. It also has been a problem that had called much
attention, see for instance, [5, 8, 16, 27]. Another variant of this problem is
to find lists of n real numbers that can be lists of eigenvalues of nonnegative
matrices of order n and it is called the Real Nonnegative Inverse Eigenvalue
Problem (denoted by RNIEP). Some results can be seen, for instance, in
[8, 15]. Similarly, in the structured NIEP the matrix that realizes the list
is structured. For instance, the matrix can be symmetric, Toeplitz, Hankel,
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circulant, g-circulant, normal, permutative, etc., see [1, 5, 8, 16, 18, 22] and
the references cited therein.
In this paper we deal with structured matrices, in particular, circulant and
g-circulant matrices. The study of a list of complex numbers satisfying suf-
ficient conditions in order that it can be the spectrum of a nonnegative per-
mutative matrix allows us to answer the question if there exist sufficient
conditions so that this the list of complex numbers can be realizable by a
type of permutative matrix and at same time realizable by another type of
permutative matrix. The paper is organized as follows: in Section 2 the
definition of g-circulant matrix is recalled and some of its properties are pre-
sented. In Section 3 it is determined, in an explicit way, the spectrum of
a subclass of real g-circulant matrices, namely circulant matrices of order n
where n is a prime integer such that (n, g) = 1, where throughout the text,
(a, b) denotes the greatest common divisor of integers a and b.

Moreover, sufficient conditions in order that a given list can be taken as
the spectrum of a nonnegative g-circulant matrix are given. Additionally, a
necessary and sufficient condition for certain lists to become realizable by a
g-circulant matrix is presented.

In Section 4 it is shown that for certain positive integers n and g, a g-
circulant matrix of order n is completely determined by its diagonal entries.
The following notation will be used. A square nonnegative matrix A is de-
noted by A ≥ 0. Σ(A) denotes the set of eigenvalues of a square matrix A.
The transpose of A is denoted by AT . The trace of A is tr(A). The set of the
invertible elements in the set of the residue classes congruence (mod n), Zn,
will be denoted by Un.

2. g-circulant matrices and some properties

Circulant matrices are an important class of matrices and have many connec-
tions to physics, probability and statistics, image processing, numerical anal-
ysis, number theory and geometry. Many properties of these matrices can be
found in, for instance, [4, 9]. In terms of notation, these matrices are perfectly
identified by its first row and we just write C = C(c) = circ(c0, . . . , cn−1).

Remark 1. [25] If λ = (λ0, λ1, . . . , λn−1)
T is the vector of eigenvalues of a

real circulant matrix C, then λ0 is a real number and

λn−k = λk, 1 ≤ k ≤ n

2
,
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where n is even. We note that, in this case, λn
2

is a real number.
Analogously if n is odd then,

λn−k = λk, 1 ≤ k ≤ n− 1

2
.

In this section a generalization of circulant matrices is recalled, namely g-
circulant matrices. Some known properties of these interesting matrices are
pointed out.

Definition 2. [4] A g−circulant matrix of order n, or simply g-circulant, is
a matrix in the following form:

A = g − circ (a0, a1, . . . , an−1) (2)

=


a0 a1 a2 · · · an−1
an−g an−g+1 an−g+2 an−g−1
an−2g an−2g+1 an−2g+2 an−2g−1

... · · · . . .
...

ag ag+1 · · · ag−1

 . (3)

Here the subscripts are taken (mod n), as for the circulant matrices.

Remark 3. [4]

• If g = 1 a g-circulant matrix is a circulant matrix.

• If 0 ≤ g ≤ n, each row of A is a right cyclic shift in g-places (or it is
a left cyclic shift in (n− g)-places) to the preceding row.

• If g ≥ n a cyclic shift in g-places is the same cyclic shift in g ( mod n)-
places.

• By convention if g is negative a right cyclic shift in g-places is equivalent
to a left cyclic shift in (−g)-places. In consequence, for any integers g
and g′, if g ≡ g′(mod n) then a g-circulant and a g′-circulant with the
same first row are equal.

• In particular if g = n−1, a (−1)−circulant matrix is obtained, see [4].
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Many examples of g−circulant matrices can be also found in [4].
The entries of a g−circulant matrix can also be specified. Let A =

(aij)1≤i,j≤n, from [4], A is a g−circulant matrix if and only if

aij = ai+1,j+g , 1 ≤ i, j ≤ n,

In an equivalent way, if the matrix A = (aij) is a g− circ (a0, . . . , an−1) then

aij = a(j−1)−(i−1)g, 1 ≤ i, j ≤ n,

In the right hand expression, the subscripts are taken (mod n). Using the
expression above, that is written for a g− circ (a0, . . . , an−1) , A, one can say
that A is symmetric if and only if (j−1)−(i−1)g ≡ (i−1)−(j−1)g (modn)
which is equivalent to (j − i)(g + 1) ≡ 0(mod n). The previous expression is
also equivalent to either (j− i) ≡ 0(mod n)∀i, j or (g+ 1) ≡ 0(mod n), as n is
prime. Thus, g ≡ n− 1(mod n), as g can be chosen 0 ≤ g ≤ n− 1. Therefore
g = n− 1.We conclude that a g-circulant matrix of order n, with n prime is
symmetric if and only if g ≡ n− 1(mod n).
Let g ≥ 0. The g−circulant matrices of order n can be partitioned into two
types, namely either (n, g) = 1 or (n, g) > 1. It is clear that all the rows
of a g−circulant matrix are distinct if and only if (n, g) = 1, see [4] and,
this is the case that we study in this work. In this case, the rows of the
g-circulant matrix can be permuted in such a way to re-obtain a classical
circulant matrix. The same reasoning can be done for columns.
If (n, g) = 1, the unique solution of the equation gx ≡ 1 (mod n) will be
designated as g−1, [6]. Note that, from [4], if A is a non singular g−circulant
matrix then A−1 is a g−1−circulant matrix.
Let Qg = g − circ (1, 0, . . . , 0) . Note that Qg is a permutation matrix if and
only if (n, g) = 1. The next result can be seen in [4].

Proposition 4. [4] The matrix A is g−circulant if and only if A is of the
form

A = QgC (4)

where C is a circulant matrix whose first row coincide with the first row of
A.

The eigenvalues of a g-circulant matrix A are obtained in [26] by using the
equality in (4).
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3. Characterizing the spectra of certain g-circulant matrices

In this section, it is determined in an explicit way, the spectrum of a sub-
class of real g-circulant matrices. We start presenting a result from [26] with
explicit formulas for the eigenvalues of a g-circulant matrix. The authors,
in [26], provided closed form expressions of the eigenvalues of g-circulant
matrices that we can see below. By convenience, only in the following para-
graph the subscripts are written as (mod n) as they were considered in [26].
Therefore, from [26] we have:

• When g = 1 then the g-circulant matrix is a circulant matrix and its
eigenvalues can be seen in [4].

• When g = 0 then all rows of the 0-circulant matrix, are equal and the
matrix has n − 1 zero eigenvalues and one eigenvalue λ =

∑n−1
r=0 ar,

where [a0, a1, . . . , an−1]
T is the first (and the unique) row of the 0-

circulant matrix C.

• When (n, g) = 1 with g /∈ {0, 1}, the modulus of the eigenvalues of the
g-circulant matrix A are given by

|βj(A)| = |

(
s−1∏
k=0

λ(gkj)(mod n)

) 1
s

|, j = 0, . . . , n− 1,

where a positive integer s is such that gs ≡ 1(mod n), and D =
diag(λ0, . . . , λn−1) is the diagonal of the eigenvalues of the circulant
matrix C = Q−1g A.

• When (n, g) 6= 1 and g /∈ {0, 1} then the g-circulant matrix A has
n− ng eigenvalues equal to zero and the remaining ng eigenvalues are
the eigenvalues of a matrix Ag that is a ĝ-circulant matrix of order ng
where ĝ ≡ g(mod n), whose elements are:

(Ag)j,k =

(n,g)−1∑
t=0

a(j+tng−gk)(modn), j, k = 0, . . . , ng − 1.

Next, we obtain the spectrum of a class of g-circulant matrices namely, the
spectrum of circulant matrices of order n where n is a prime integer such
that (n, g) = 1.

The following definition and notation from group theory are recalled (see
[6]).
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Definition 5. [6] Let G and H be a group and subgroup of G, respectively.
The subgroup H is a normal subgroup of G whenever for all g ∈ G, the
condition g−1Hg = H holds. If G is a commutative group all subgroup of G
is normal.

The notation H E G, means that H is a normal subgroup of G. The order,
or cardinality, of a finite group H is written as |H|. Let Zn be the set of
residues classes modulo n and Un be the multiplicative group of its units,
that is, the invertible elements in Zn. Note that, if n is a prime number, then
Zn is a field and therefore, all of its units are the nonzero elements in Zn.
The cyclic multiplicative subgroup {1, g, g2, . . .} in Un is denoted by 〈g〉 .
The following result is well known (see [6]).

Theorem 6. [6] Let n be a prime integer. Let n and g be positive integers
such that (n, g) = 1. Consider the binary relation in Un, ∼, defined by
h1 ∼ h2 if and only if h−11 h2 ∈ 〈g〉. Then ∼ is an equivalence relation, where
the equivalence class of h ∈ Un is given by

h 〈g〉 =
{
h, hg, hg2, . . .

}
.

As all these classes are disjoint, define a partition of Un and have the same
cardinality, then,

Un =
k−1⋃
`=0

h` 〈g〉 , (5)

where, h0 = 1, hj, h` /∈ 〈g〉, for j 6= `, and k is an integer such that

n− 1

k
= |〈g〉| . (6)

In order to search for the additive inverses we need study two cases: 〈g〉 E Un
is even and odd, respectively.

3.1. The order of the subgroup 〈g〉 E Un is even

The following result gives us the additive inverses in 〈g〉 whenever |〈g〉| =
d = 2m. The case g odd will be studied at Subsection 3.2.

Theorem 7. Let n > 2 be a prime integer. Let n and g be positive integers
such that (n, g) = 1, if |〈g〉| = d = 2m, then

gm ≡ −1 (mod n) . (7)
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Proof. Note that, gd = g2m ≡ 1 (mod n) holds. If the condition in (7) does
not hold, by the identity

gm (1 + gm) ≡ (1 + gm) (mod n)

we obtain that
gm ≡ 1 (mod n)

which is a contradiction, as |〈g〉| = 2m.
The following result gives the list of the eigenvalues of a g-circulant matrix

A when the order of the subgroup 〈g〉 is even.

Theorem 8. Let n > 2 be a prime integer. Let n and g be positive integers
such that (n, g) = 1, and |〈g〉| = d = 2m, with d ≥ 2. Moreover, suppose
that the equalities in (5) and in (6) hold and let

ϕ = exp

(
2πi

d

)
, (8)

then the g-circulant matrix A of order n = kd + 1 has as eigenvalues the
elements in following list,

β0 β1 β1ϕ β1ϕ
2 · · · β1ϕ

d−1

β2 β2ϕ β2ϕ
2 · · · β2ϕ

d−1

...
βk βkϕ βkϕ

2 · · · βkϕ
d−1

(9)

with for t = 0, 1, . . . , k − 1,

βt+1 =
(
λhtλhtgλhtg2 · · ·λhtgd−1

) 1
d ∈ R, (10)

are nonnegative real numbers where

λ0, λ1, . . . , λn−1,

are the eigenvalues of the circulant matrix

C = Qg−1A.

Proof. Note that by Theorem 7, −1 ≡ gm (mod n) ∈ 〈g〉, then if gw ∈
〈g〉, for some w, then −gw ≡ g(m+w) (mod n) implying that −gw ∈ 〈g〉.

8



Similarly, if hgw ∈ h 〈g〉 then −hgw ≡ hg(m+w) (mod n) implying that
−hgw ∈ h 〈g〉. We claim that,for t = 0, 1, . . . , k − 1, if λhtgw ∈ It ={
λht , λhtg, λhtg2 , · · · , λhtgd−1

}
then λhtgw = λ−htgw ∈ It since −htgw ∈ ht 〈g〉 ,

as previously seen. Thus, as d is even, from the previous observations, one
can see that the factors in the product under the root of the definition of
βt+1 in (10) have the form |λhtgw |

2 implying that βt+1 ≥ 0. On the other
hand, by the proof in [26, Lemma 4.1] the eigenvalues of A are the d-th roots
of the product λhtλhtgλhtg2 · · ·λhtgd−1 which, for each t = 0, 1, . . . , k − 1 are
given by the list in (9). Thus the statement holds.

Remark 9. Since d is even and (10) holds, the numbers β1, β2, . . . , βk are
nonnegative real numbers. However, the condition 2m = d ≥ 2 implies that
m ≤ d− 1, and therefore, for t = 0, 1, . . . , k − 1, the numbers

−βt+1 = βt+1exp

(
2mπi

2m

)
= βt+1ϕ

m

also belongs to the list in (9).

Using the previous theorem and the list of elements displayed below, jointly
with Remark 9, it is possible to solve the following inverse eigenvalue problem.

Problem 10. Given the real numbers β0, β1, β2, . . . , βk find a real square
matrix A whose spectrum contains the real numbers β0,±β1,±β2, . . . ,±βk.

Let

τ = exp

(
2πi

n

)
. (11)

In fact, in order to solve Problem10 we need to consider the following auxil-
iary list depicted in the table below:

λ0 λ1 λg λg2 · · · λgd−1

λh1 λh1g λ
h1
g2 · · · λ

h1
gd−1

...
λhk−1

λhk−1g λhk−1g2 · · · λhk−1gd−1

:= (12)

β0 β1τ β1τ
g β1τ

g2 · · · β1τ
gd−1

... β2τ
h1 β2τ

h1g β2τ
h1g2 · · · β2τ

h1gd−1

...
...

...
...

...

βkτ
hk−1 βkτ

hk−1g βkτ
hk−1g

2 · · · βkτ
hk−1g

d−1

(13)
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Remark 11. It is well known (see[6]) that the condition |〈g〉| = d implies
that d is the smallest positive integer such that gd ≡ 1 (mod n) and by the
identity (1− g)

(
1 + g + g2 + · · ·+ gd−1

)
≡ (1− gd) (mod n)

we can check that

1 + g + g2 + · · ·+ gd−1 ≡ 0 (mod n) ,

as n is prime.
For the spectrum in (13) one can see that for t = 1, 2, . . . , k − 1

(
λhtλhtgλhtg2 · · ·λhtgd−1

) 1
d =

(
βdt+1τ

ht(1+g+g2+···+gd−1)
) 1
d

= βt+1τ
ht(0) = βt+1.

Moreover, it is clear that

λhtgw = βt+1τhtg
w

= βt+1τ
n−htgw

= βt+1τ
−htgw

= βt+1τ
htgm+w

= λhtgm+w

with

m =
d

2
.

The next example illustrates Theorem 8.

Example 12. Let us suppose that (n, g) = (13, 5), denote ϕ = exp
(
2πi
4

)
= i.

Therefore,

〈g〉 = 〈5〉 = {1, 5, 8, 12}
2 〈g〉 = 2 〈5〉 = {2, 3, 10, 11}
4 〈g〉 = 4 〈5〉 = {4, 7, 6, 9} .

Then, the spectrum of a 5-circulant matrix A = Q5C of order 13 where C is a
circulant matrix with eigenvalues λ0, λ1, λ2, λ3, λ4, λ5, λ6, λ7, λ8, λ9, λ10, λ11, λ12 is

β0 := λ0
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β1 := (λ1λ5λ8λ12)
1
4

β2 := (λ2λ3λ10λ11)
1
4

β3 := (λ4λ7λ6λ9)
1
4

together with the elements displayed in the following table:

β1ϕ β1ϕ
2 β1ϕ

3

β2ϕ β2ϕ
2 β2ϕ

3

β3ϕ β3ϕ
2 β3ϕ

3

=
iβ1 −β1 −iβ1
iβ2 −β2 −iβ2
iβ3 −β3 −iβ3

.

The following result gives a sufficient condition on the elements β0, β1, β2, . . . , βk
∈ R in order to construct a g-circulant nonnegative matrix A with those el-
ements as a sublist of the list of its eigenvalues.

Theorem 13. Let n and g be positive integers with identical conditions as
in the statement of Theorem 8. Consider the list of elements as in (9). Note
that, with the reference (9) ϕ is also given.

Σ = (β0, β1, β1ϕ, . . . β1ϕ
d−1, β2, β2ϕ, . . . β2ϕ

d−1, . . . , βk, βkϕ, . . . βkϕ
d−1),

with β0, β1, β2, . . . , βk, arbitrary nonnegative real numbers. Then a sufficient
condition to find a g-circulant real nonnegative matrix A whose spectrum is
formed by the components Σ is

β0

2
≥ −

β1 m−1∑
`=0

cos
2 (1 − j) g`π

n
+ β2

m−1∑
`=0

cos
2h1 (1 − j) g`π

n
+ · · · + βk

m−1∑
`=0

cos
2hk−1 (1 − j) g`π

n

 . (14)

Proof.
Let us consider the auxiliary list of λ′s defined by (13). Then by Theorem

[9, Theorem 3.1], the first row (c0, c1, . . . , cn−1) of the circulant matrix of order
n whose spectrum is formed by the elements λ′s in the list (13) is identified
as:

cj =
1

n

n−1∑
`=0

λ`τ
−`j, 0 ≤ j ≤ n− 1.

Replacing the λ′s by the given spectrum and following the equalities in
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(13) we have

cj =
1

n
(β0 + β1

d−1∑
`=0

τ g
`

τ−g
`j + β2

d−1∑
`=0

τh1g
`

τ−h1g
`j + · · ·+ βk

d−1∑
`=0

τhk−1g
`

τ−hk−1g
`j)

=
1

n
(β0 + β1

m−1∑
`=0

(τ g
`(1−j) + τ−g

`(1−j)) + β2

m−1∑
`=0

(τh1g
`(1−j) + τ−h1g

`(1−j)) + · · ·

+ βk

m−1∑
`=0

(τhk−1g
`(1−j) + τ−hk−1g

`(1−j)))

=
1

n
(β0 + 2β1

m−1∑
`=0

cos
2 (1− j) g`π

n
+ 2β2

m−1∑
`=0

cos
2h1(1− j)g`π

n
+ · · ·

+ 2βk

m−1∑
`=0

cos
2hk−1(1− j)g`π

n
).

Imposing the nonnegativity of these coefficients, the inequality in (14) is
obtained.

Remark 14. By the proof of Theorem 13, one can conclude that given the
nonnegative list b = (β0, β1, . . . , βk)

T the coefficient vector

c = (c0, c1, . . . , cn−1)
T

of the first row of the g-circulant matrix whose spectrum contains the elements

β0,±β1, . . . ,±βk

are given by
c = 1

n
Nb.

where N = (nuv) is the n× (k + 1) matrix whose entries are defined by

nuv =

{
1 if v = 1 and 1 ≤ u ≤ n

2
∑m−1

`=0 cos
2(u−1)h(v−2)g

`π

n
if 2 ≤ v ≤ k + 1 and 1 ≤ u ≤ n.

Corollary 15. Consider n a prime integer, g = n − 1, and the list b =(
β0, β1, . . . , βn−1

2

)T
. Then, a (n− 1)-circulant matrix A of order n whose

spectrum contains the elements in the following set{
β0,±β1, . . . ,±βn−1

2

}
12



is an (n − 1)-circulant matrix whose first row c = (c0, c1, . . . , cn−1)
T has

coefficients such that

ncj
2
− β0

2
− β1

(
cos

2 (1− j) π
n

+ cos
2 (1− j) (n− 1) π

n

)
= (15)

β2

(
cos

4 (1− j) π
n

cos
4 (1− j) (n− 1) π

n

)
+ · · · +

βn−1
2

(
cos

(n− 1) (1− j) π
n

+ cos
(n− 1)2 (1− j) π

n

)
.

with 0 ≤ j ≤ n.

Proof. Since (n, g) = (n, n− 1) = 1 and 〈g〉 = 〈n− 1〉 = {1, n− 1} E Un,
we have d = 2 and then m = 1. Moreover, there are k = n−1

2
equivalence

classes, of the form h 〈g〉, namely, the classes represented by the components

of the following vector
(
h0, h1, . . . , hn−3

2

)
=
(
1, 2, . . . , n−1

2

)
. Finally, to ob-

tain the coefficients we use the equation obtained in the proof of Theorem
13.

Corollary 16. Consider n a prime integer, g such that 〈g〉 = Un and the list
b = (β0, β1)

T . Then a g-circulant matrix A of order n whose spectrum con-
tains {β0,±β1} is a g-circulant matrix whose first row c = (c0, c1, . . . , cn−1)

T

has coefficients such that

cj =
1

n

β0 + 2β1

n−1
2
−1∑

`=0

cos
2 (1− j) g`π

n

 , (16)

for 0 ≤ j ≤ n− 1.

Proof. Let n be a prime integer and then d = n− 1 = 2m. Thus m = n−1
2

and k = n−1
d

= 1. In consequence, we have only one equivalence class, namely
the class of h0 = 1. Finally, by the proof of Theorem 13 the coefficient to be
considered has the form as in (16).
The following result gives a necessary and sufficient condition for some lists
to become realizable by a g-circulant matrix.
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Theorem 17. Let n be a prime integer and g such that 〈g〉 = Un. Then, the
list

Σ =
(
β0, β1, β1ϕ, . . . , β1ϕ

n−1) (17)

is realizable by a g-circulant matrix A if and only if

β0 ≥ β1 ≥ 0. (18)

Proof. For the necessity recall that if A is nonnegative with the components
of Σ as eigenvalues then β0 is its spectral radius (see [21]) thus, the inequality
in (18) holds. Let m = n−1

2
. According to the proof of Theorem 13 by

using the expressions for the coefficients cj, the entries of the first row of the
circulant matrix C = Q−1g A are

cj =
1

n
(β0 + β1

d−1∑
`=0

τ g
`

τ−g
`j)

=
1

n
(β0 + β1

n−2∑
`=0

(τ 1−j)g
`

)

=
1

n
(β0 + β1

n−1∑
`=1

(τ 1−j)`)

=
1

n
(β0 + β1(−1 +

1− (τ 1−j)n

1− τ 1−j
)

=
1

n
(β0 + β1(−1)), for j 6= 1.

the first part of the result follows. For the second part of the result we need
to observe that

nc1 = β0 + (n− 1)β1.

Therefore, the condition in (18) holds for the matrix C and then A is nonneg-
ative. In consequence, A is a g-circulant nonnegative matrix with spectrum
as in (17).

Remark 18. If β0 = β1 in Theorem 18 the mentioned g-circulant nonnega-
tive matrix A becomes g−circ(0, β0+(n−1)β1

n
, 0, . . . , 0) = g−circ(0, β0, 0, . . . , 0).

In the following numerical examples we use MATLAB in order to check
approximately the orders of the numbers involved in this research because,

14



except for Theorem 17, they are displayed in terms of sums of trigonometric
functions.
The next example illustrates Corollary 17.

Example 19. Consider the list with 7 elements, (6, 5, 5ϕ, 5ϕ2, 5ϕ3, 5ϕ2, 5ϕ) ,
where

ϕ = cos
2π

6
+ i sin

2π

6
= cos

π

3
+ i sin

π

3
.

In this example it is determined a nonnegative 3-circulant matrix A whose
spectrum is the given list. In fact, consider the auxiliary list(

6, 5τ, 5τ 2, 5τ 3, 5τ 3, 5τ 2, 5τ
)

as the list of eigenvalues of a circulant matrix C, with τ = cos 2π
7

+ i sin 2π
7

,
and using MATLAB we have

104C = circ (1429, 51429, 1429, 1429, 1429, 1429, 1429) .

Let 104a = 1429, and 104b = 51429. Again, using MATLAB we obtain the
3-circulant matrix

A =



a b a a a a a
a a a a b a a
b a a a a a a
a a a b a a a
a a a a a a b
a a b a a a a
a a a a a b a


whose eigenvalues are

Σ (A) = {6,±5, 2.5± 4.33i,−2.5± 4.33i} .

Note that, only the greatest eigenvalue does not have modulus 5 and −5 cor-
responds to the element 5ϕ3 of the given list.

The next example illustrates Corollary 15.

Example 20. Let n = 7, g = 6, we want to find a real 6-circulant matrix A
whose spectrum is {10,±4,±5,±3}. In this case d = 2, k = 3. In order to

15



do this the formulae for the coefficients obtained in the proof of the Corollary
15 is used. Thus

cj =
1

7

(
10 + 8

(
cos 2(j−1)π

7
+ cos 12(j−1)π

7

)
+ 10

(
cos 4(j−1)π

7
+ cos 24(j−1)π

7

))
+ 6

(
cos 6(j−1)π

7
+ cos 36(j−1)π

7

)
, 0 ≤ j ≤ 6.

Using MATLAB we obtain

104c = (48571, 10510, 4216, 10989, 10989, 4216, 10510) .

3.2. The order of the subgroup 〈g〉 E Un is odd

Let g ∈ Un be an integer of odd order and G an additive group. For a
subset S of G, let −S be defined as

−S = {−s : s ∈ S} .

The following result shows that −1 /∈ 〈g〉 .

Theorem 21. Let n > 2 be a prime integer. Let g be an integer such that
(n, g) = 1 and suppose that |〈g〉| is odd. Then −1 ∈ h 〈g〉, with h 6≡ 1.

Proof. If −1 ∈ 〈g〉 then the subgroup H = {1,−1} ⊆ 〈g〉. But, by
Lagrange theorem, [6], the order of a subgroup of a finite group divides the
order of the group and, in this case, 2 should divide the order of g which is
a contradiction as 〈g〉 has odd order.
Let n > 2 be a prime integer. Then n − 1 is even, and in consequence, if
g ∈ Un and the subgroup 〈g〉 has odd order d, then the number of equivalence
classes k such that (5) holds must be even. Let us suppose that k = 2m.
The following result shows that there exists a one to one correspondence
among two of the previous equivalence classes.

Theorem 22. Let n > 2 be a prime integer. Let g be an integer such that
(n, g) = 1 and |〈g〉| = d, where d is odd. Then the following holds: −1 ∈ h 〈g〉
if and only if −gj ∈ h 〈g〉 , ∀j which is equivalent to

−〈g〉 = h 〈g〉 if and only if − 1 ∈ h 〈g〉 .

Proof. Suppose that −1 ∈ h 〈g〉 . Then −1 = hgw. Therefore −gj =
(hgw) gj = hgw+j ∈ h 〈g〉. Reciprocally, if −gj = hgw, for some w then
−1 ∼ h implying that −1 ∈ h 〈g〉 .

The next theorem is a consequence of the previous one.
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Theorem 23. Let n > 2 be a prime integer. Let g be an integer such that
(n, g) = 1 and |〈g〉| = d, where d is an odd integer. Let

m =
n− 1

2d
.

Then, for ht, h ∈ Un, −1 ∈ h 〈g〉 if and only if −ht 〈g〉 = hth 〈g〉. Thus, for
h0 = 1,

Un =
m−1⋃
`=0

(h` 〈g〉 ∪ h`h 〈g〉)

=
m−1⋃
`=0

(h` 〈g〉 ∪ (−h`) 〈g〉) (19)

is a partition into equivalence classes of the multiplicative group Un.

Theorem 24. Let C be a circulant matrix with eigenvalues λ0, λ1, . . . , λn−1.
Under the conditions of Theorem 23, the g-circulant matrix A = QgC has
eigenvalues listed below

β0 β1 β1ϕ β1ϕ
2 · · · β1ϕ

d−1

β1 β1ϕ β1ϕ
2 · · · β1ϕ

d−1

...
βm βmϕ βm−1ϕ

2 · · · βmϕ
d−1

βm βmϕ βmϕ
2 · · · βmϕ

d−1,

where
β0 = λ0,

and
βt+1 =

(
λhtλhtgλhtg2 · · ·λhtgd−1

) 1
d ∈ C, t = 0, 1, . . . ,m− 1,

where ϕ is the primary d-th unit root defined in (8),

Now the following inverse eigenvalue problem can be stated.

Problem 25. Given z0 ∈ R and m arbitrary complex numbers z1, . . . , zm
find a real matrix A g-circulant, for some g whose spectrum contains the
complex numbers z0, z1, . . . , zm and their corresponding complex conjugates.
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To solve Problem 25 we need to establish the following auxiliary problem.

Problem 26. Given z0 ∈ R and z1, . . . , zm ∈ C find a prime number n
such that n = 1 + 2md, with d odd. Moreover, a positive integer g satisfying
identical conditions of those in Theorem 23 and, considering the list

z0, z1, z1ϕ, z1ϕ
2, . . . z1ϕ

d−1, z1, z1ϕ, z1ϕ
2, . . . , z1ϕ

d−1, . . . ,

. . . , zm, zmϕ, . . . zmϕ
d−1, zm, zmϕ, , . . . zmϕ

d−1,

find a g-circulant real matrix A whose spectrum is the above list.

As for Problem 10 we need to define an auxiliary list, λ0, λ1, . . . , λn dis-
played in the tables below:

λ0 λ1 λg λg2 · · · λgd−1

λh1 λh1g λh1g2 · · · λh1gd−1

...
...

...
...

λhm−1 λhm−1g λhm−1g2 · · · λhm−1gd−1

λ1 λg λg2 · · · λgd−1

λh1 λh1g λh1g2 · · · λh1gd−1

...
...

...
...

λhm−1 λhm−1g λhm−1g2 · · · λhm−1gd−1

:= (20)

z0 z1τ z1τ
g z1τ

g2 · · · z1τ
gd−1

z2τ
h1 z2τ

h1g z2τ
h1g2 · · · z2τ

h1gd−1

...
...

...
...

...

zmτ
hm−1 zmτ

hm−1g zmτ
hm−1g2 · · · zmτ

hm−1gd−1

z1τ
−1 z1τ

−g z1τ
−g2 · · · z1τ

−gd−1

z2τ
−h1 z2τ

−h1g z2τ
−h1g2 · · · z2τ

−h1gd−1

...
...

...
...

...

zmτ
−hm−1 zmτ

−hm−1g zmτ
−hm−1g2 · · · zmτ

−hm−1gd−1

Theorem 27. Let n and g be positive integers that verify the same condi-
tions as in Theorem 23. Let

z0, z1, z1ϕ, z1ϕ
2, . . . z1ϕ

d−1, z1, z1ϕ, z1ϕ
2, . . . , z1ϕ

d−1, . . . ,

, . . . , zm, zmϕ, . . . zmϕ
d−1, zm, zmϕ, , . . . zmϕ

d−1,
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with z0 ∈ R and z1, . . . , zm ∈ C . Then a sufficient condition to find a g-
circulant real nonnegative matrix A whose spectrum corresponds to the above
list, is

z0
2
≥ −Re

(
z1

d−1∑
`=0

τ g
`(1−j) + z2

d−1∑
`=0

τh1g
`(1−j) + · · ·+ zm

d−1∑
`=0

τhm−1g`(1−j)

)
,

for all 0 ≤ j ≤ n − 1, where m = n−1
2d

and (h1, h2, . . . , hm−1) are defined by
(19).

Proof. Consider the auxiliar list of λ′s defined by (20). Then, by Theorem
[9, Theorem 3.1] the first row (c0, c1, . . . , cn−1)

T of the circulant matrix of
order n whose spectrum is the list in (20) is given by

cj =
1

n

n−1∑
`=0

λ`τ
−`j, 0 ≤ j ≤ n− 1.

Replacing the λ′s by the list of elements in the statement of the theorem and
following the equalities in (20), cj are obtained, for all 0 ≤ j ≤ n− 1.

cj =
1

n
(z0 + z1

d−1∑
`=0

τ g
`

τ−g
`j + z1

d−1∑
`=0

τ−g
`

τ g
`j

+ z2

d−1∑
`=0

τh1g
`

τ−h1g
`j + z2

d−1∑
`=0

τ−g
`

τ g
`j · · ·

+ zm

d−1∑
`=0

τhk−1g
`

τ−hk−1g
`j + zm

d−1∑
`=0

τ−hm−1g`τhm−1g`j)

=
1

n
(z0 + 2Re(z1

d−1∑
`=0

τ g
`

τ−g
`j + z2

d−1∑
`=0

τh1g
`

τ−h1g
`j + · · ·

+ zm

d−1∑
`=0

τhm−1g`τ−hm−1g`j).

Example 28. Let n = 7, g = 2, d = 3, k = 2m = 2, thus m = 1. Moreover,
consider z0 = 10, z1 = 2 − i. The coefficient vector, c, formed by the first
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row of the g-circulant matrix A whose spectrum is the list

z0, z1, z1, z1

(
−1

2
+
i
√

3

2

)
, −z1

(
1

2
+
i
√

3

2

)
, −z1

(
1

2
+
i
√

3

2

)
, z1

(
−1

2
+
i
√

3

2

)
has components given by

cj =
1

7

(
z0 + 2Re

(
z1
(
τ (1−j) + τ 2(1−j) + τ 4(1−j)

)))
,

for all 0 ≤ j ≤ 6. Using MATLAB we obtain that

104c = (31429, 7649, 7649, 15208, 7649, 15208, 15208) .

Example 29. Let n = 7, g = 2, d = 3, k = 2m = 2, thus m = 1. Moreover,
consider z0 = 2, z1 = 2. The coefficient vector, c, formed by the first row of
the g-circulant matrix A whose spectrum is{

2, 2, 2, −1 +
√

3i,−1−
√

3i,−1 +
√

3i,−1−
√

3i
}

has components given by

cj =
1

7

(
2 + 2Re

(
2
(
τ (1−j) + τ 2(1−j) + τ 4(1−j)

)))
,

for all 0 ≤ j ≤ 6. With the help of MATLAB we obtain that

c = (0, 2, 0, 0, 0, 0, 0) .

4. Reconstructing certain g-circulant matrices from its diagonal
entries

In this section we show that for certain positive integers n and g, a g-circulant
matrix is completely determined by its diagonal entries.

Remark 30. The diagonal vector of the entries of the matrix in (2) is

D (A) =
(
a0, an−g+1, an−2g+2, . . . , an−(`−1)g+`−1, . . . , ag−1

)T
. (21)

Again, the subscripts are taken (mod n). Moreover,

a0 = an−0g+0 and ag−1 = an−(n−1)g+n−1.
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Theorem 31. Let n be a prime integer and let 1 < g < n. Consider

r (A) = (a0, a1, . . . , an−1)
T (22)

as the first row vector of a g-circulant matrix A. Then

D (A) = Q(n−g+1)r (A) , (23)

where
Q(n−g+1) = (n− g + 1)− circ(1, 0, . . . , 0).

In consequence,
r (A) = Q(n−g+1)−1D (A) . (24)

Proof. For the subscripts of the diagonal elements of A, we note that

(n− (k − 1) g + k − 1) ≡ (n− (`− 1) g + `− 1) (mod n) , 0 ≤ k < ` ≤ n−1

if and only if

(`− k) ≡ 0 (mod n) or g − 1 ≡ 0 (mod n) .

The former and latter conditions don’t hold because 0 < `− k ≤ n− 1 < n
and g is strictly less than n, respectively.

Therefore, the diagonal entries of the g-circulant matrix A in (2) are a
permutation of the first row of A. Thus, the difference (mod n) between two
consecutive subscripts of the vector in (21) is 1− g, hence (23) and then (24)
hold.

Remark 32. From the previous theorem one can say that for a given n
prime, g ∈ Un and, a vector b = (b0, b1, . . . , bn−1)

T , a g-circulant matrix
A can be constructed in such a way that its diagonal elements are the el-
ements of b. Additionally, if in b, one of the coordinates is unknown but
the greatest eigenvalue of A, say β0, is known then, a g-circulant matrix A
whose diagonal entries are the elements of b and whose greatest eigenvalue
is β0 can also be constructed. This last statement results from the fact that
tr(A) = β0 which allows to obtain the unknown coordinate of b.

Example 33. Consider the matrix A = 3− circ(1, 2, 3, 4, 5, 6, 7), whose di-
agonal is

D (A) := b = (1, 6, 4, 2, 7, 5, 3)T ,
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moreover

Q1+(7−3) = Q5 =



1 0 0 0 0 0 0
0 0 0 0 0 1 0
0 0 0 1 0 0 0
0 1 0 0 0 0 0
0 0 0 0 0 0 1
0 0 0 0 1 0 0
0 0 1 0 0 0 0


.

Then
Q5r (A) = (1, 6, 4, 2, 7, 5, 3)T = D (A) ,

which verifies the equality in (23). We can conclude, in this case, that given
the diagonal elements, the first row of the g-circulant matrix (and in conse-
quence all the remaining entries of the g-circulant matrix) can be obtained
using the relation in (23) as this relation means that

r (A) = (Q5)
−1D (A) .
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