
Accepted Manuscript

The influence of climate change on the fate and behavior of
different carbon nanotubes materials and implication to estuarine
invertebrates

Lucia De Marchi, Victor Neto, Carlo Pretti, Federica Chiellini,
Andrea Morelli, Amadeu M.V.M. Soares, Etelvina Figueira, Rosa
Freitas

PII: S1532-0456(18)30260-6
DOI: https://doi.org/10.1016/j.cbpc.2019.02.008
Reference: CBC 8505

To appear in: Comparative Biochemistry and Physiology, Part C

Received date: 14 November 2018
Revised date: 14 February 2019
Accepted date: 15 February 2019

Please cite this article as: L. De Marchi, V. Neto, C. Pretti, et al., The influence of climate
change on the fate and behavior of different carbon nanotubes materials and implication to
estuarine invertebrates, Comparative Biochemistry and Physiology, Part C, https://doi.org/
10.1016/j.cbpc.2019.02.008

This is a PDF file of an unedited manuscript that has been accepted for publication. As
a service to our customers we are providing this early version of the manuscript. The
manuscript will undergo copyediting, typesetting, and review of the resulting proof before
it is published in its final form. Please note that during the production process errors may
be discovered which could affect the content, and all legal disclaimers that apply to the
journal pertain.

https://doi.org/10.1016/j.cbpc.2019.02.008
https://doi.org/10.1016/j.cbpc.2019.02.008
https://doi.org/10.1016/j.cbpc.2019.02.008


AC
CEP

TE
D M

AN
USC

RIP
T

1 

 

The influence of Climate Change on the fate and behavior of different carbon 

nanotubes materials and implication to estuarine invertebrates  

Lucia De Marchia,b, Victor Netob, Carlo Prettic, Federica Chiellinid, Andrea Morellid, Amadeu 

M.V.M. Soaresa, Etelvina Figueiraa, Rosa Freitasa * 

 

a
 Department of Biology & Center for Environmental and Marine Studies (CESAM), University of Aveiro 

3810-193, Aveiro, Portugal 

b
 Department of Mechanical Engineering & Center for Mechanical Technology and Automation (TEMA), 

University of Aveiro, 3810-193 Aveiro, Portugal 

c 
Department of Veterinary Sciences, University of Pisa, San Piero a Grado, Pisa 56122, Italy 

d
 Department of Chemistry and Industrial Chemistry, University of Pisa, Udr INSTM Pisa, Pisa 56126, 

Italy 

*
Corresponding Author: Rosa Freitas, Departamento de Biologia & CESAM, Universidade de Aveiro, 

3810-193 Aveiro, Portugal; telef +351 234 370 782 (ext 22739) | mobile: +351 914525095; email: 

rosafreitas@ua.pt 

 

ACCEPTED MANUSCRIPT



AC
CEP

TE
D M

AN
USC

RIP
T

2 

 

Abstarct 

The widespread use of Carbon nanotubes (CNTs) has been increasing exponentially, leading to a 

significant potential release into the environment. Nevertheless, the toxic effects of CNTs in natural 

aquatic systems are related to their ability to interact with abiotic compounds. Considering that salinity 

variations are one of the main challenges in the environment and thus may influence the behavior and 

toxicity of CNTs, a laboratory experiment was performed exposing the tube-building polychaete Diopatra 

neapolitana (Delle Chiaje 1841) for 28 days to pristine multi-walled carbon nanotube MWCNTs and 

carboxylated MWCNTs, maintained at control salinity 28 and low salinity 21. An innovative approach 

based on thermogravimetric analysis was adopted for the first time to assess the presence of MWCNTs 

aggregates in the organisms Both CNTs generated toxic impacts in terms of regenerative capacity, 

energy reserves and metabolic capacity as well as oxidative and neuro status, however greater toxic 

impacts were observed in polychaetes exposed to carboxylated MWCNTs. Moreover, both CNTs 

maintained under control salinity (28) generated higher toxic impacts in the polychaetes compared to 

individuals maintained under low salinity (21), indicating that exposed polychaetes tend to be more 

sensitive to the alteration induced by salinity variations on the chemical behavior of both MWCNTs in 

comparison to salt stress. 

 

Keywords: salinity; multi-walled carbon nanotubes; Diopatra neapolitana polychaetes; regenerative 

capacity, metabolic capacity, oxidative status  
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1. INTRODUCTION 

Carbon nanotubes (CNTs) are artificial carbon-structured substances formed by one to 

more than one hundred graphene layers rolled into cylindrical tubes (Zhao and Liu 2012). The 

current typical industrial CNTs types with one graphene layer are called single-walled carbon 

nanotubes (SWCNTs), while tubes containing more than one layer are multi-walled carbon 

nanotubes (MWCNTs) (Jackson et al. 2013). As a result of their unique chemical, physical and 

electronic properties, CNTs became potentially useful in a wide variety of applications, such as 

water treatment, medical applications, optics, electronic engineering, photovoltaic devices, 

automotive industry, sports equipment and cosmetics (Zhao and Liu 2012; Freixa et al. 2018). In 

the last decade, the widespread use of CNTs increased exponentially leading to a significant 

potential release into the environment (Potočnik 2011; Sanchez et al. 2012). In aquatic 

ecosystems, CNTs can be accumulated in river sediments, or remain suspended in the water 

column and transported to the marine systems (Freixa et al. 2018). The predicted environmental 

concentrations (PECs) of CNTs in aquatic environments have been estimated, by modeling 

studies, to range between 0.001 to 1000 µg/L (Zhang et al. 2017). Nevertheless, the 

environmental behavior and effects of CNTs in natural aquatic systems are related to their 

ability to interact with abiotic and biotic compounds and aggregate, creating clusters that exhibit 

a colloidal behavior (Khosravi-katuli et al. 2017). Generally, CNTs, due to their nearly insoluble 

in any solvent, significantly restrict their application (Mwangi et al. 2012). For this reason, 

scientists have explored different methods to increase the solubility of CNTs such as for both 

practical use and toxicological research. As example, it has been already demonstrated that 

CNTs surface areas containing carboxyl groups are widely used as active sites which improves 

the solubility and biocompatibility of the material in a water media (Scheibe et al. 2010). 

However, an increase in chemical toxicity of CNTs when combined with abiotic factors (for 

example salinity) has been also demonstrated (Peng et al. 2009; Pham et al. 2016). A study 
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conducted by Peng et al. (2009) investigated the precipitation of oxidized CNTs in water by 

salts. The results showed that CNTs concentration decreased slightly with aging time, indicating 

that only 15% oxidized CNTs settled for 30 days while 85% was still suspended in a water 

column. The implication of these findings could be resumed in a high availability of the matirials 

for organisms’ uptake.  

Under a climatic change scenario, the Intergovernmental Panel on Climate Change 

(IPCC) predicted that salinity of surface water can be determined by a combination of factors, 

including river flow, tidal surges, rainfall as well as the influence of sea-level rise and other 

climatic variables (IPCC, 2014). Considering that the salinity gradient is one of the main 

characteristics of estuarine ecosystems acting as both external ecological factor and 

physiological  environmental driver for aquatic organisms (Telesh and Khlebovich 2010; Cloern 

et al. 2017), we investigated the possible influence of salinity changes in biological responses of 

an estuarine model species, the polychaetes Diopatra neapolitana (Delle Chiaje 1841) exposed 

to different CNTs materials, but also the influence of these environmental changes on the 

structure of CNTs and a consequent interaction with this polychaete species. Currently, in the 

literature there is no information regarding CNTs behaviour alteration and toxicity, caused by 

salinity variations and possible related responsiveness of the polychaete D. neapolitana. For 

this, the impacts induced by chronic exposure (28 days) to unfunctionalized MWCNTs (Nf-

MWCNTs) and functionalized MWCNTs (f-MWCNTs) at different salinities were evaluated, by 

measuring alterations induced on polychaetes regenerative capacity as well as metabolic 

capacity, oxidative and neuro status. The presence and accumulation of MWCNTs in D. 

neapolitana was innovatively assessed by thermogravimetric analysis (TGA). TGA represents 

an analytical technique in which the mass of a substance is monitored as a function of 

temperature or time as the sample specimen is subjected to a controlled temperature program 

in a controlled atmosphere. By applying the derivative operation to the thermal curves obtained 
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by TGA, it is possible to detect the degradation temperature of the material subjected to 

analysis. Indeed, TGA may represent a valuable tool for the quantitative determination of the 

composition of composite materials, proving that the degradation temperatures of single 

components are widely separated from each other (Renneckar et al. 2004; Zhang et al. 2015). 

To the best of our knowledge TGA has never been used for the detection of MWCNTs in living 

organisms, but it could potentially emerge as a successful technique for the identification and 

quantification of MWCNTs in biological matrices since their degradation temperatures generally 

lie in-between those of organic and inorganic materials (Zhang et al. 2015; Wang et al. 2008). 
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2. MATERIAL AND METHODS 

2.1 Model species 

The tube-building polychaete Diopatra neapolitana was selected as model organism for 

this study as it plays important ecological roles by acting as a food source for other marine biota 

and increasing the physical complexity and biodiversity of habitats (Arias et al. 2016). Also, it 

has been demonstrated that D. neapolitana is a good sentinel species of metal contamination 

(Freitas et al. 2012) organic matter enrichment (Carregosa et al. 2014), pharmaceutical drugs 

(Freitas et al. 2015), salinity shifts and pH decrease (Pires et al. 2015) and NMs (De Marchi et 

al. 2017c; d). 

 

2.2 Experimental set up 

Polychaete specimens were collected in the Mira channel, the southern shallow arm of 

the Ria de Aveiro lagoon (Portugal). In the laboratory, organisms were pushed out from their 

tubes, and placed in different aquaria (20 l each) for laboratory acclimation period (20 days). 

The aquaria were filled with a mixture of fine and medium sediment from the sampling area (see 

sediment details in De Marchi et al. (2018a)). Artificial seawater with the salinity 28 was used by 

the addition of artificial sea salt (Tropic Marin® Sea Salt) to deionized water, one day prior to 

utilization. Temperature was kept to 18 ± 1 ºC, photoperiod of 12 h light: 12 h dark, pH 8.0 ± 1 

and constant aeration. During this period every two-three days the specimens were fed ad 

libitum with small fragments of frozen cockles or mussels (Pires et al. 2012). To assess the 

impact of different CNTs on the regenerative capacity of D. neapolitana, immediately before the 

exposure assay individuals were removed from their new tubes, anaesthetized with a 4% 

MgCl2.6H2O solution, and amputated at the 60th chaetiger under a stereomicroscope (Pires et al. 

2012).  
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After the acclimation period, organisms were exposed for 28 days to two different 

salinities (21 and 28-control), each one combined with environmental relevant concentrations 

(0.001 and 0.01 mg/L) of two different CNTs (f-MWCNTs and Nf-MWCNTs). Before the 

beginning of the experiment, to reach salinity 21, the salinity was progressively (1-2 units) 

decreased to avoid additional osmotic stress to polychaetes.  

The two salinity levels were chosen considering: i) the seasonal mean value of salinity 

for the sampling area (salinity 28) by considering levels identified in estuarine habitats (Santos 

et al. 2007; Portuguese Institute for Sea and Atmosphere, I. P. (IPMA, IP)); ii) extreme weather 

events such as the increases in fresh water runoff induced by global warming (IPCC, 2014), 

which caused negative salinity anomalies (i.e. a surface salinity that is less than salinity 

measured at depth of a few meters) (Asher et al. 2014) (salinity 21).   

Regarding the CNTs, we selected two types of MWCNTs: one pristine (Nf-MWCNTs) 

and the other one chemically functionalized (f-MWCNTs) by introducing polar groups such as 

carboxyl groups (-COOH), both at the environmental relevant concentrations of 0.001 and 0.01 

mg/L. The selection of these two CNTs was based on their different physical and chemical 

properties and different behaviour on the water media (aggregation/disaggregation, 

adsorption/desorption, sedimentation/resuspension and dissolution) (Arndt et al. 2013). In 

particular the carboxylated CNTs are more stable in salt water media in comparison to pristine 

CNTs as a conseguence of their oxidation process which introduces oxygen-containing groups 

on the CNTs surface. These groups ionize in water charging the oxygen atoms negatively and 

in aqueous phase the electrostatic repulsive forces between negative surface charges of the 

oxygen-containing groups can lead to stability of oxidized CNTs in the water column increasing 

the availability of these materials for the organisms (Peng et al. 2009). The selection of the 

CNTs was also based on their industrial applications. Three main properties of MWCNTs are 

specifically interesting for the industry: the electrical conductivity (as conductive as copper), their 
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mechanical strength (up to 15 to 20 times stronger than steel and 5 times lighter) and their 

thermal conductivity (same as that of diamond and more than five times that of copper). The 

combination of these properties enables a whole new variety of useful applications (Li et al., 

2011). In details, f-MWCNTs are used as additives in polymers, catalysts electron field emitters 

for cathode ray lighting elements, flat panel display, gas-discharge tubes in telecom networks, 

electromagnetic-wave absorption and shielding, energy conversion, lithium-battery anodes, 

nanotube composites, nanoprobes, nanolithography, nanoelectrodes, drug delivery sensors 

reinforcements in composites and supercapacitor (MWCNTs-COOH: TNMC1 series, 

http://www.timesnano.com). The Nf-MWCNTs are used in different markets such as 

transportation (automotive, aeronautic, boats), electronics (electronic packaging, EMI-shielding, 

sensors), energy (Lithium-ion), industrial applications (Oil&Gas, dynamic rubber parts, coatings, 

heating elements) and sport goods (http://www.nanocyl.com/product/nc7000/). Moreover, for the 

choice of these nanoparticles, it was also considered the Organization for Economic Co-

operation and Development (OECD)’s Working Party on Manufactured Nanomaterials (WPMN), 

which launched the Sponsorship Programme for the Testing of Manufactured Nanomaterials 

(OECD, 2010). This programme promotes international co-operation on the human health and 

environmental safety of manufactured nanomaterials, and involves the safety testing and risk 

assessment of engineering nanoparticles. The OECD WPMN has published a list of ENPs 

selected considering their commercial use, production volume of the materials, availability of 

such materials for testing and the existing information that would readily be available on the 

materials and this list comprised the CNTs. 

The exposure concentrations of both MWCNT were selected considering the PECs (0.001-

1000 µg/L) of CNTs in aquatic systems (Zhang et al. 2017) and their toxic effects observed on 

different invertebrate species. For example, Mwangi et al. (2012) noticed a significantly reduced 

of survival and growth in mussels exposed to MWCNTs. Other studies have demonstrated that 
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MWCNTs in bivalves can generated lysosomal damage (Miller et al. 2015), accumulation of 

these materials in intestinal lumen and digestive gland and histopathological changes in the 

epithelium and swelling of the connective tissue (Anisimova et al. 2015); oxidative stress and 

alteration of energy-related responses and metabolism (Andrade et al. 2018; Freitas et al. 2018; 

De Marchi et al., 2017a; b; d) and decreased the cellular integrity (Sekar et al. 2016). Studies 

testing the impacts of CNTs in polychaetes are less, but also confirmed cellular damage and 

alteration in organisms energy reserves and metabolism (De Marchi et al. 2017c; 2018a; 2019).  

For each condition, inside each aquarium, individuals used for the regenerative capacity 

analysis (n=9) were separated from the ones used for the biochemical analysis (n=9) using a 

plastic barrier in each aquarium.  

 

2.3. CNTs in the exposure media and organisms  

2.3.1 Materials description  

Both pristine and carboxylated MWCNTs were produced via the Catalytic Chemical 

Vapor Deposition (CCVD) process and characterized using Scanning Electron Microscopy 

(SEM) and Transmission electromicrographs (TEM). The Nf-MWCNTs were purchased from 

Nanocyl S.A. (MWCNTs: NC7000 series, http://www.nanocyl.com) (Diameter (nm): 9.5; Length 

(µm): 1.5; Carbon Purity (%): 90; Surface Area (m2/g): 250-300) while f-MWCNTs from Times 

Nano: Chengdu Organic Chemicals Co.Ltd., Chinese Academy of Sciences (MWCNTs-COOH: 

TNMC1 series, http://www.timesnano.com) (Diameter (nm): 2-5; Length (um): 10-30; Carbon 

Purity (%): 98; Surface Area (m2/g): 400; Amorphous Carbon (mol%): 8-10; -COOH (wt%): 

3.86).  

Both CNTs were weighed (stock solution of 50 mg/L) and suspended in seawater 

(depending on the test condition, control-28 and low-21). Both materials were sonicated using a 

Hz ultrasound bath (IKA Labortechnik IKASONIC U50): 1 h for Nf-MWCNTs, while the f-
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MWCNTs, due to the presence of carboxyl groups (Shahnawaz et al. 2010), was sonicated for 

few minutes. Both Nf-MWCNT and f-MWCNT concentrations were re-established weekly after 

complete water renewals to ensure the same exposure concentrations during the experiment. 

The added MWCNTs (f and Nf) were maintained homogenously dispersed in the seawater 

using one submersible circulation pump per aquarium, increasing CNTs mass suspended in the 

water column (Vonk et al. 2009).  

 

2.3.2 Characterization analysis in the water media 

The average size distribution measured by dynamic light scattering (DLS) and the 

polydispersity index (PDI) of both MWCNTs suspensions at different salinity levels were 

analyzed. As reported in the literature, DLS measurements represent a well-established method 

for the determination of the average diameter of carbon nanotubes in aqueous dispersions (Liu 

et al. 2011). In the present work, DLS measurements were carried out to obtain data regarding 

the tendency to aggregate and the settling behavior of suspended CNT materials in aqueous 

media. Measurements were performed on 1000 µL of suspension in four samples per condition, 

and five analyses per sample performed by DLS using a DelsaTM NanoC Particle Size Analyzer 

(Beckman Coulter). Each analysis was carried out by performing 120 acquisitions. Due to the 

inherent heterogeneity and colloidal instability of the analyzed samples, DLS analyses were 

repeated several times to ensure reproducible results. Intensity distributions were obtained by 

analyzing the autocorrelation functions through the Contin algorithm which is particularly 

appropriate for polydisperse and multimodal systems (Varenne et al. 2016). The cumulant 

method was used to obtain information on the particle’s average hydrodynamic radii and on the 

PDI (Tardani and Mesa 2015). 
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2.3.3 Characterization and bioaccumulation in the organisms 

Thermogravimetric Analysis (TGA) was performed on different entire tissue samples (10 

mg) by using a TGA Q500 instrument (TA Instruments, Italy) in the temperature range 30 – 900 

ºC, at heating rate of 10ºC/min and under air flow of 60 mL/min. TGA, which records the weight 

loss of the materials as a function of temperature in a chosen atmosphere, was used for the first 

time as innovative methods to detect the presence of MWCNT materials in D. neapolitana 

organisms exposed to aqueous media at different salinity levels containing different 

concentrations of the selected contaminants. A preliminary study was carried out to investigate 

the feasibility of using TGA by analysing the organisms exposed to the maximum and minimum 

values of the concentration range of the MWCNT materials used (0.001 and 0.01 mg/L): 

(NF_S21: organisms exposed to Nf-MWCNTs in an aqueous medium with salinity 21; NF_S28:  

organisms exposed to Nf-MWCNTs in an aqueous medium with salinity 28; F_S21: organisms 

exposed to f-MWCNTs in an aqueous medium with salinity 21; F_S28: organisms exposed to f-

MWCNTs in an aqueous medium with salinity 28) and non-contaminated organisms (CRTL 

S21_1, CRTL S21_2, CRTL S21_3: representing organisms immersed in an aqueous medium 

with salinity 21 and not exposed to carbon nanotubes; CRTL S28_1, CRTL S28_2, CRTL 

S28_3: organisms immersed in an aqueous medium with salinity 28 and not exposed to carbon 

nanotubes). The derivative of the TGA curves (DTG curves) were reported to better highlight the 

temperatures at which thermal degradation of the samples occurred, which could help to detect 

the presence of MWCNTs (f and Nf) by comparison with their DTG profile.  

 

2.4 Physiological parameter: regenerative capacity  

Nine D. neapolitana specimens per condition (3 per aquarium) were analysed every 

week during the experimental period (28 days). During the experiment, organisms for 

regenerative capacity analysis were inspected at day 11th, 18th, and 28th after amputation. The 
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width of the regenerated body part was measured, and the number of new segments counted. 

Percentage of regenerated body width was calculated by comparing the width of the new 

segments with the width of the old segments (Pires et al. 2012). New segments were identified 

by the lighter colour and/or the narrower width compared to the old body segments (Pires et al. 

2012).  

 

2.5 Biochemical parameters: energy reserves and metabolic capacity, 

indicators of oxidative stress and neurotoxicity 

At the end of the experimental period (28 days), the whole body of frozen organisms (3 

per aquarium, 9 per condition) was individually pulverized with liquid nitrogen, divided in 0.2 g 

aliquots, and used for biochemical analyses. Extractions were performed with specific buffers to 

determine: a) energy reserves and metabolic capacity (protein (PROT) content, glycogen (GLY) 

content, electron transport system (ETS) activity); b) indicators of oxidative stress (lipid 

peroxidation (LPO) levels, reduced (GSH) and oxidized (GSSG) glutathione ratio, superoxide 

dismutase (SOD) activity; catalase (CAT) activity, Glutathione S-transferases (GSTs) activity); 

c) and neurotoxicity (Acetylcholinesterase (ATChI-ChE) activity). The methodologies used to 

perform each specific biomarker are described in detail in De Marchi et al. (2018a; b). 

 

2.6 Data analysis  

PERMANOVA+ add-on in PRIMER v6 were used as permutational multivariate 

analysis of variance of the results regarding the percentage (%) of regenerated body width, 

number (#) of regenerated cheatigers, PROT and GLY contents, ETS activity, LPO levels, 

GSH/GSSG, as well as SOD, CAT, GSTs and ATChI-ChE activities. A one-way hierarchical 

design was followed in this analysis. The pseudo-F p-values in the PERMANOVA main tests 

were evaluated in terms of significance. Significant differences were observed using main test 
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and consequently pairwise comparisons were performed. Values lower than 0.05 (p≤0.05) were 

considered as significantly different. The null hypothesis tested was: salinity changes do not 

alter impacts induced by different concentrations of two MWCNTs in D. neapolitana. For this, 

three main questions were identified: i) what are the effects of tested concentrations, for each 

salinity level and MWCNTs type?; ii) are the effects observed dependent on the type of 

MWCNTs (Nf vs f), regardless the salinity and concentration levels?; iii) does salinity shifts alter 

organisms sensitivity to CNTs, regardless the concentration and the type of MWCNTs tested? 

For this we verified if: i) for each biomarker and for each salinity level, no significant differences 

existed between both MWCNT exposure concentrations (0.001 and 0.01 mg/L); ii) for each 

biomarker and for each salinity level and exposure concentration, no significant differences exist 

between MWCNT materials (Nf and f-MWCNTs) and iii) for each biomarker and for each 

MWCNTs material and exposure concentration, no significant differences exist between salinity 

levels (21 and 28).  
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3. RESULTS 

 

3.1 CNTs in the exposure media and organisms  

3.1.1. Characterization analysis in water media 

As reported in the literature DLS measurements represent a well-established method 

for the determination of the average diameter of CNTs in aqueous dispersions (Liuet al. 2011). 

Here DLS analyses were repeated several times to ensure reproducible results due to the 

inherent heterogeneity and colloidal instability of the analyzed samples. Intensity distributions 

were obtained by analyzing the autocorrelation functions through the Contin algorithm which is 

particularly appropriate for polydisperse and multimodal systems (Varenne et al. 2016). The 

cumulant method was used to obtain information on the particle’s average hydrodynamic radii, 

and on the PDI (Tardani and Mesa 2015). The mean size (nm) and PDI of functionalized 

MWCNTs (f) and pristine MWCNTs (Nf) suspended particles measured in artificial seawater at 

different salinity levels (21 and 28) are reported in Table 1. Under salinity 21, the mean size of 

Nf-MWCNTs were largely higher than that of f-MWCNTs. The reliability of the mean diameter 

values recorded at time 28 days was compromised by the presence of microaggregates of 

unknown origin as evidenced by the control. Both Nf and f-MWCNTs suspended at 0.01 mg/L 

were found to agglomerate and remain dispersed in the medium until 28 days. The 

concentration of 0.001 mg/L was found to lie below the limit of instrumental detection in the 

adopted experimental conditions. At salinity 28, the reliability of the mean diameter values 

obtained at time 21 and 28 days was compromised by the presence of microaggregates of 

unknown origin as evidenced by the controls. Up to 14 days Nf and f MWCNTs displayed a 

different behavior: f-MWCNTs were found to agglomerate and remain dispersed in the medium 

while Nf-MWCNTs particles were not detectable by DLS analysis due to settlement and/or 
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uptake by marine organisms. At 0.001 mg/L concentration was found to lie below the limit of 

instrumental detection under the adopted conditions. 

 

3.1.2. Characterization and bioaccumulation in the organisms 

Preliminary experiments employing TGA analysis did not allow to identify the presence 

of MWCNTs (f and Nf) in the exposed organisms due to the overlapping of the degradation 

peaks recorded between 500°C and 700°C in the DTG curves of non-contaminated D. 

neapolitana and CNTs used as reference. The second degradation peak registered in the 

organisms not exposed to the contaminants strongly suggests the need for an optimization of 

the sample preparation for TGA analysis. To this purpose sample pre-treatment aiming to 

remove the material responsible for the degradation peaks overlapping that of MWCNTs in the 

DTG curves could represent an effective approach to raise TGA as useful technique for the 

detection of MWCNTs in marine organisms. 

 

3.2. Physiological parameter: Regenerative capacity  

The mean values for the percentage (%) of regenerated body width and the number (#) 

of new chaetigers in D. neapolitana after 11th, 18 th and 28 th days of amputation are presented in 

Table 2 and illustrated in Figure 2. All the results were discussed considering: i) the effects of 

exposure concentrations of both MWCNT materials maintained under both salinity levels 

(significant differences (p ≤ 0.05) among exposure concentrations were represented with 

different letters: uppercase and regular letters for Nf-MWCNT at salinity 28; lowercase and 

regular letters for Nf-MWCNTs at salinity 21; uppercase and bold letters for f-MWCNT at salinity 

28; lowercase and bold letters for f-MWCNT at salinity 21); ii) the effects of the 

carboxylation/functionalization of the surface of MWCNTs in organisms maintained under both 

salinity levels for each exposure concentration (significant differences (p ≤ 0.05) between f-
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MWCNT and Nf-MWCNTs within each salinity at each exposure concentration were 

represented with bold hashes (#)); iii) the effects of salinity shifts in organisms exposed to both 

MWCNT materials in each exposure concentration (significant differences (p ≤ 0.05) between 

the two salinities for each MWCNTs and exposure concentration were represented with bold 

asterisks (*)). 

 

3.2.1. 11th day  

After amputation all individuals were healing the cut region, however no significant 

differences were observed in terms of % of regenerated body width as well as # of new 

chaetigers between individuals non-exposed (0.00 mg/L) and exposed to both MWCNT 

materials in all tested concentrations (0.001 and 0.01 mg/L) under both salinity levels (control-

28 and low-21). 

 

3.2.2. 18th day  

i) Considering the effects of exposure concentrations (0.001 vs 0.01 mg/L), for the same 

salinity (21 or 28) and MWCNTs (Nf or f) the results of % of regenerated body width and # of 

new chaetigers showed that for f-MWCNT submitted to both salinities no significant differences 

were observed between concentrations, while significantly lower values was detected only in 

individuals exposed to 0.01 mg/L Nf-MWCNTs under salinity 28 in comparison to remaining 

conditions.  

ii) Considering the effects of MWCNTs (Nf vs f), for each concentration (0.001 or 0.01 

mg/L) and each salinity (28 or 21), no significant differences were observed between organisms 

exposed to different MWCNTs in terms of % of regenerated body width, while regarding the # of 

new chaetigers, significant differences between materials were observed only in polychaetes 
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exposed to 0.01 mg/L under salinity 28 showing a lower # of chaetigers for individuals 

contaminated with Nf-MWCNTs. 

iii) Considering the effects of salinity (21 vs 28), for each MWCNTs (Nf or f) at each 

exposure concentration (0.001 or 0.01 mg/L), differences between salinities (28 and 21) were 

only observed at 0.01 mg/L Nf-MWCNTs with lower % of regenerated body width in individuals 

maintained under salinity 28 in comparison to individuals maintained under salinity 21, while no 

significant differences were found in terms of # of new chaetigers for both MWCNT materials (f 

and Nf) and for both salinities. 

 

3.2.3. 28th day  

i) Considering the effects of exposure concentrations, the results of both % of 

regenerated body width and # of new chaetigers showed only significantly lower values between 

individuals exposed to 0.01 mg/L of Nf-MWCNTs under control salinity in comparison to the 

remaining concentrations, while no significant differences were observed in individuals under 

salinity 21 exposed to both CNTs.  

ii) When comparing organisms exposed to the same salinity and exposure 

concentration, the % of regenerated body width as well as the # of new chaetigers did not show 

significant differences between individuals exposed to different MWCNT materials. 

iii) For each MWCNTs (f and Nf) at each exposure concentration, differences between 

salinities (28 and 21) were not observed both for % of regenerated body width and # of new 

chaetigers. 

 

3.3 Biochemical parameters 

As for the physiological parameter, all the results of biochemical parameters were 

discussed considering: i) the effects of exposure concentrations of both MWCNT materials 
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maintained under both salinity levels (significant differences (p ≤ 0.05) among exposure 

concentrations were represented with different letters in the graphics: uppercase and regular 

letters for Nf-MWCNT at salinity 28; lowercase and regular letters for Nf-MWCNTs at salinity 21; 

uppercase and bold letters for f-MWCNT at salinity 28; lowercase and bold letters for f-MWCNT 

at salinity 21) ii) the effects of the carboxylation/functionalization of the surface of MWCNTs in 

organisms maintained under both salinity levels for each exposure concentration (significant 

differences (p ≤ 0.05) between f-MWCNT and Nf-MWCNTs within each salinity at each 

exposure concentration were represented with bold asterisks (*) in the table 3) ; iii) the effects of 

salinity shifts in organisms exposed to both MWCNT materials in each exposure concentration 

(significant differences (p ≤ 0.05) between the two salinities for each MWCNTs and exposure 

concentration were represented with bold asterisks (*) in the graphics). 

 

3.3.1. Energy reserves and metabolic capacity  

Protein (PROT) content  

i) Considering the effects of exposure concentrations, results of PROT content in D. 

neapolitana exposed to 0.01 mg/L of Nf-MWCNT under salinity 28 showed significantly higher 

PROT content in comparison to the remaining concentrations, while in individuals exposed to f-

MWCNTs under both salinities no significant differences were observed among exposure 

concentrations (Figure 3A).  

ii) When comparing D. neapolitana exposed to different MWCNTs at the same salinity 

and exposure concentration, significant differences between materials were observed only in 

polychaetes exposed to 0.01 mg/L under salinity 28 showing an increase of the content for 

individuals contaminated with Nf-MWCNTs (Table 3). 
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iii) Significant differences between salinities (28 and 21) were observed in PROT 

content when organisms were exposed to 0.01 mg/L of Nf-MWCNTs, showing higher content in 

individuals maintained at salinity control in comparison to low salinity (Figure 3A). 

 

Glycogen (GLY) content 

i) Along the increasing Nf-MWCNTs exposure concentrations, all the exposed 

polychaetes maintained at salinity 21 decreased significantly their GLY content in comparison to  

non-exposed ones (Figure 2B), while under salinity 28 no significant differences were observed 

between contaminated and non-contaminated organisms. Opposite results were observed in 

organisms submitted to f-MWCNTs, showing a significantly decrease on the GLY content in 

exposed individuals under salinity 28 in comparison to the control, while no significant 

differences between different concentrations and control were observed when D. neapolitana 

were submitted to low salinity 21 (Figure 3B). 

ii) When comparing D. neapolitana exposed to the same salinity and exposure 

concentration, significant differences between MWCNT materials (f and Nf) were observed in 

organisms exposed to both concentrations at salinity 28, showing decrease of the content in 

individuals contaminated with f-MWCNTs (Table 3). 

 iii) For each of the MWCNT (f and Nf) and exposure concentration, differences between 

salinities (28 and 21) were observed only at lowest exposure concentration (0.001 mg/L) for 

specimens under Nf-MWCNTs, with significantly higher GLY content in organisms maintained to 

salinity 28 in comparison to the specimens under salinity 21 (Figure 3B). 

 

Electron transport system (ETS) activity 

i) At salinity 28 D. neapolitana presented a significant decrease of ETS activity only at 

0.01 mg/L Nf-MWCNTs in comparison to the remaining conditions, while at salinity 21, no 
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significant differences were observed among concentrations. Regarding individuals exposed to 

f-MWCNTs, significantly higher ETS activity was observed in contaminated individuals under 

both salinity levels compared to control (Figure 3C).  

ii) When comparing specimens exposed to different MWCNTs at the same salinity and 

exposure concentration, significant differences between materials were observed only in 

polychaetes exposed to 0.01 mg/L under salinity 28 showing lower activity for individuals 

contaminated with Nf-MWCNTs in comparison to individuals exposed to f-MWCNTs (Table 3). 

iii) For each MWCNT (f and Nf) and exposure concentration, differences between 

salinities (28 and 21) were only observed at 0.01 mg/L Nf-MWCNTs, with lower ETS activity in 

individuals maintained at salinity 28 in comparison to organisms under salinity 21 (Figure 3C). 

 

3.3.2. Indicators of oxidative stress 

Lipid peroxidation (LPO) level 

i) Under salinity 28 the level of LPO in polychaetes exposed to Nf-MWCNTs increased 

at the highest exposure concentration (0.01 mg/L) with significant differences in comparison to 

the other treatments, while in organisms under salinity 21 the LPO at 0.001 and 0.01 mg/L was 

significantly higher than levels observed in non-exposed organisms, and no significant 

differences were observed between individuals exposed to these two concentrations (Figure 

4A). Considering the organisms exposed to f-MWCNTs and maintained at salinity control, the 

level of LPO increased with the increasing of exposure concentrations with significant 

differences among all concentrations, while under low salinity significantly lower LPO level was 

observed in all contaminated D. neapolitana in comparison to control organisms.  

ii) When comparing individuals exposed to different MWCNTs at the same salinity and 

exposure concentration, significant differences between materials were observed only in 

polychaetes exposed to 0.01 mg/L under salinity 28 with higher values in individuals 
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contaminated with Nf-MWCNTs in comparison to organisms contaminated with f-MWCNTs 

(Table 3). 

iii) For each of the MWCNT (f and Nf) and exposure concentration, differences 

between salinities (28 and 21) were observed only at the highest exposure concentration for 

specimens under Nf-MWCNTs, with significantly higher LPO level in organisms maintained to 

control salinity 28 in comparison to polychaetes under salinity 21 (Figure 4A). 

 

Reduced (GSH) and oxidized (GSSG) glutathione ratio 

i) Significantly lower ratio of GSH and GSSG was observed in organisms contaminated 

with 0.01 mg/L Nf-MWCNTs under salinity 28 in comparison to the remaining concentrations, 

while no significant differences were observed in specimens maintained at salinity 21. Under 

salinity 28, GSH/GSSG content in D. neapolitana exposed to f-MWCNTs decreased with the 

increasing of exposure concentrations with significant differences among all treatments. A 

similar trend was also observed for individuals submitted to salinity 21, however no significant 

differences were found between contaminated organisms (Figure 4B). 

ii) When comparing organisms exposed to the same salinity and exposure 

concentration, significant differences between MWCNT materials (f and Nf) were observed only 

in D. neapolitana exposed to 0.01 mg/L at salinity 28, showing the lowest ratio in individuals 

contaminated with Nf-MWCNTs (Table 3). 

iii) For each of the MWCNT (f and Nf) and exposure concentration, differences 

between salinities (28 and 21) were observed in polychaetes exposed to the highest 

concentration of MWCNTs (both f and Nf), with lower ratio in individuals maintained at control 

salinity 28 compared to individuals under salinity 21 (Figure 4B). 

 

Superoxide dismutase (SOD) activity 
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i) Considering the effects of exposure concentrations, results of SOD activity in D. 

neapolitana showed that for Nf-MWCNTs under both salinities (28 and 21), no significant 

differences were observed among all conditions. In polychaetes exposed to f-MWCNTs the 

SOD activity significantly increased with the increasing exposure concentrations under salinity 

28, while under salinity 21 the activity of this enzyme significantly increased at the highest 

exposure concentration (0.01 mg/L) in comparison to the other treatments (Figure 5A). 

ii) Comparing organisms under the same salinity and exposure concentration, 

significantly higher SOD activity at 0.001 mg/L was observed in polychaetes exposed to f-

MWCNTs compared to Nf-MWCNTs under salinity control, while at 0.01 mg/L significant 

differences between materials were found in organisms maintained under both salinities (21 and 

28), showing higher activity in individuals contaminated with f-MWCNTs (Table 3). 

iii) For each of the MWCNT (f and Nf) and exposure concentration, differences 

between salinities (28 and 21) were observed only at the lowest exposure concentration (0.001 

mg/L) for specimens under f-MWCNTs, with significantly higher SOD activity in organisms 

maintained to control salinity 28 in comparison to organisms under salinity 21 (Figure 5A). 

 

Catalase (CAT) activity 

i) Considering the effects of exposure concentrations, the results of CAT activity in 

organisms exposed to both MWCNT materials and under both salinity levels did not evidence 

any significant differences between concentrations (Figure 5B). 

ii) When comparing organisms exposed to the same salinity and exposure 

concentration, significant differences between MWCNT materials (f and Nf) were observed only 

in D. neapolitana exposed to 0.01 mg/L at salinity 28, showing higher activity in individuals 

contaminated with f-MWCNTs (Table 3). 
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iii) For each of the MWCNTs (f and Nf) and exposure concentration, no significant 

differences in terms of CAT activity were observed between salinities (28 and 21) (Figure 5B). 

 

Glutathione S-transferases (GSTs) activity 

i) Polychaetes maintained at salinity 28 decreased significantly the activity of GSTs 

when exposed to 0.001 mg/L Nf-MWCNTs, but at the highest exposure concentration (0.01 

mg/L) the enzyme activity significantly increased to values higher than control levels. Under 

salinity 21 significantly lower GSTs activity was observed in contaminated organisms with 0.001 

mg/L in comparison to control individuals, however at 0.01 mg/L the activity reached again the 

same value of non-contaminated individual without significant differences. When organisms 

were exposed to f-MWCNTs under salinity 28 the activity significantly decreased only at the 

highest exposure concentration (0.01 mg/L) in comparison to the other treatments, while under 

salinity 21 the GSTs activity decreased in all contaminated organisms in comparison to non-

contaminated ones (Figure 5C).  

ii) When comparing organisms exposed to the same salinity and exposure 

concentration, significant differences between polychaetes exposed to different MWCNTs were 

observed at 0.001 mg/L, with lower activity in D. neapolitana exposed to Nf-MWCNTs under 

salinity 28 compared to individuals exposed to f-MWCNTs. Significant differences between 

materials were also observed in individuals exposed to 0.01 mg/L maintained under salinity 28, 

showing an opposite response with higher activity in individuals contaminated with Nf-MWCNTs 

in comparison to f-MWCNTs (Table 3). 

iii) For each of the MWCNTs (f and Nf) and exposure concentration, slight differences 

between salinities (28 and 21) were observed between organisms exposed to 0.001 mg/L f-

MWCNTs, showing higher GSTs activity under salinity 28 compared to individuals under salinity 

21. Significant differences between salinities were also recorded in individuals submitted to 0.01 
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mg/L Nf-MWCNTs, with higher enzyme activity in individuals under salinity 28 in comparison to 

low salinity (Figure 5C).  

 

3.3.3. Neurotoxicity 

Acetylcholinesterase (ATChI-ChE) activity 

i) At salinity 28 D. neapolitana presented a significant increase of ATChI-ChE activity 

only at 0.01 mg/L Nf-MWCNTs, while under salinity 21 no significant differences were observed 

between concentrations. Polychaetes exposed to f-MWCNTs under both salinities showed no 

significant differences in the ATChI-ChE activity between different treatments (Figure 6). 

ii) When comparing organisms exposed to the same salinity and exposure 

concentration but different MWCNTs significantly higher neuro-enzyme activity was only 

recorded in organisms contaminated with 0.01 mg/L Nf-MWCNTs at salinity 28 in comparison to 

f-MWCNTs (Table 3). 

iii) For each of the MWCNTs (f and Nf) and exposure concentration, differences 

between salinities (28 and 21) were observed only between organisms exposed to 0.01 mg/L 

Nf-MWCNTs, showing higher ATChI-ChE activity under salinity 28 compared to individuals 

under salinity 21 (Figure 6).  
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4. DISCUSSION 

The two main questions that have been investigated in the present study were I) toxic 

impacts observed in D. neapolitana can be influenced by concentrations and the surface 

chemistry alteration/functionalization of CNTs; II) the sensitivity of the polychaetes and/or the 

toxicity of the CNTs can be changed by salinity.  

I) In the present study, the toxic impact of surface chemistry functionalization of CNTs 

on this species was observed in terms of physiological responses, energy reserves and 

metabolic capacity as well as in their oxidative and neuro status. In detail, our results 

demonstrated that Nf-MWCNTs under control salinity have a negative effect on the regenerative 

capacity of D. neapolitana at the highest exposure concentration showing lower percentage of 

body width as well as the number of new chaetigers compared to the other conditions after 18th 

and 28th days exposure. Similar responses were also demonstrated by De Marchi et al. (2017d) 

exposing the same species to the same CNTs. Other studies also showed that CNTs can 

induce alterations in physiological functions in different invertebrate species (Moschino et al. 

2014; Mwangi et al. 2012). For example, Moschino et al. (2014) demonstrated sub-lethal effects 

at the digestion level in the polychaete Hediste diversicolor exposed to three single walled 

carbon nanohorns (SWCNHs) and Mwangi et al. (2012) showed that both MWCNTs and 

SWCNTs significantly reduced the survival and growth of an amphipod (Hyalella azteca), a 

midge (Chironomus dilutus), an oligochaete (Lumbriculus variegatus), and a mussel (Villosa 

iris). Generally the toxic effects of different pollutants are usually associated with changes in the 

energy distribution in invertebrates due to increased energy expenses associated with 

detoxification processes (Bednarska et al. 2013). However, in the present study, D. neapolitana 

presented a decrease of electron transport system (ETS) activity and an increase of glycogen 

(GLY) and protein (PROT) contents when exposed to the highest Nf-MWCNTs concentration 

and maintained at control salinity. Different studies already demonstrated that when organisms 
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are submitted to different pollutants, oxidative stress may occur as a consequence of reactive 

oxygen species (ROS) generation, causing lipid peroxidation (LPO) of the mitochondria 

membranes, thus impairing the function of ETS activity (Choi et al. 2001; Bielen et al. 2016). 

This hypothesis could explain partially why in the presence of high contaminant level, the 

organisms showed a decrease of metabolic rate preventing the consumption of energy 

reserves. However, an opposite behavior was observed in individuals exposed to f-MWCNTs 

under control salinity, showing no differences in terms of regenerative capacity but a decrease 

of energy reserves (especially GLY content) with a consequent increase of metabolic capacity 

(ETS activity). It has been already demostarted that behavioral/physiological responses to 

stress may increase energy demand (Sokolova et al. 2012), which could indicate that 

polychaetas under this condition were using their energy reserves to regenerate their body 

fighting against high CNTs concentration. In fact, PROT as well as GLY are used by the 

organisms as main energy reserves (Beninger and Lucas 1984) to preserve cellular damage 

when exposed to pollutants (Klaper et al. 2010). Moreover, the increase of ETS could be due to 

the activation of defense mechanisms, such as the increase on superoxide dismutase (SOD) 

activity, as demonstrated under this exposure condition in contaminated organisms with f-

MWCNTs. Similar results were also obtained by Bertrand et al. (2016) which exposing the 

bivalve Scrobicularia plana to silver (Ag) NMs, observed an increase of ETS activity indicating 

impairment of metabolic activity in clams that suffered from LPO of their cellular membranes 

and activation of antioxidant enzymes. The controversial behavior of energy reserves and 

metabolic activity observed in the present study could be attributed to the surface 

functionalization of the CNTs. While raw CNTs do not readily cross biological barriers due to low 

dispersibility and low resident time in the water column, water dispersible MWCNTs (as for 

COOH-MWCNTs used in the present study), due to the presence of higher amorphous carbon 

fragments in comparison to pristine MWCNTs, induced higher levels of toxicity to biological 
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systems (Arndt et al. 2013) causing higher cellular damage with the activation of antioxidant 

mechanisms (Freixa et al. 2018). This hypothesis was confirmed in the present results due to a 

greater antioxidant enzymes activity such as SOD in organisms exposed to f-MWCNTs 

compared to Nf-MWCNTs. 

Interactions of CNTs with organisms can be external, as attachment of the NMs onto 

the skin or exoskeleton, or internal, via food intake, or both (Mesarič et al. 2015). All of these 

interactions can cause different physiological disturbances, as also demonstrated in the present 

study, and the generation of oxidative stress, which leads to toxicity with direct damage of the 

lipid membranes, due to the high affinity of CNTs for lipid membranes and a consequent 

activation of antioxidant enzymes (Mesarič et al. 2015). These responses were already 

demonstrated when polychaetes were exposed to different carbon NMs (De Marchi et al. 2017c; 

d; Monserrat et al. 2017). However, successful CNTs uptake in the exposed organisms are 

important prerequisites for bioaccumulation in the body and consequent cellular damage which 

are directly related to the characteristics of the CNTs such as heterogeneous purity, length, type 

of functionalization (Costa et al. 2016). Looking to the results of the present study, while in the 

organisms exposed to Nf-MWCNTs under salinity control the LPO increased only at the highest 

exposure concentration, in polychaetes exposed to f-MWCNTs the damage of the lipid 

membranes was also observed at the lowest exposure concentration, assuming that these 

different responses were directly related to the availability of the CNT materials. While Nf-

MWCNTs, due to their poor suspendability as demonstrated by DLS analysis, could be less 

available for the organisms, f-MWCNTs were more dispersible in the water column probably 

increasing their mobility and thus may intensify the risk of exposure and toxicity and possible 

uptake (Jackson et al. 2013). 

The generation of LPO is known to be responsible for the activation/inactivation of the 

antioxidant defense system (Lapresta-Fernández et al. 2012). Reduced glutathione (GSH) / 
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oxidized glutathione (GSSG), considered as a regulatory molecule and sensor of the redox state 

of cells (Mocan et al. 2010), and antioxidant enzymes play an important role in organisms 

defense system against oxidative damage (Ighodaro and Akinloye 2017). In the present study, 

the polychaetes exposed to f-MWCNTs under salinity control showed dose-dependent 

increased of the LPO with a consequence dose-dependent decrease of GSH/GSSG as well as 

increase of SOD activity. This result suggested a compensatory response of cellular defense 

systems against cellular damage, while in organisms exposed to Nf-MWCNTs under control 

salinity, the GSH/GSSG decreased at the highest exposure concentration but the SOD activity 

did not increase under this condition. This behavior may be due to an excessive ROS 

production, especially under the highest exposure concentration, leading to oxidative damage 

and a loss of compensatory mechanisms as a consequence of insufficient antioxidant 

mechanisms (Fukai and Ushio-Fukai 2011; Walters et al. 2016) which may contribute to higher 

LPO levels recorded at this condition.  

As multicomponent enzymes involved in the detoxification of different xenobiotics, 

glutathione S-transferases (GSTs) play important roles in protecting tissues from oxidative 

stress (Fournier et al. 1992) and they have been already used as biomarkers of cellular damage 

as these enzymes exhibit many of the required characteristics, i.e. specific localization, high 

cytosolic concentration and relatively short half-life (Pérez et al. 2004). In previously published 

studies GSTs showed different mechanisms of action when exposed to different NMs, assuming 

that GSTs activity may be either increased or decreased due to production of lipid 

hydroperoxides (Kos et al. 2017) and also the type of NMs (Lehman et al. 2011). For example, 

Canesi et al. (2010) exposing the M. galloprovincialis to different CNMs (nano carbon black-

nNCB, C60 fullerene), reported that all CNMs induced changes in GSTs activities, with 

contrasting trends, depending on NMs type and solubility. The results of the present study are in 

line with such findings, showing a decreased GSTs activities when organisms were exposed to 
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Nf-MWCNTs (insoluble) and increased activities in organisms exposed to f-MWCNTs (soluble), 

both under control salinity.  

Neurotoxicity was also investigated in the present study, evaluating the activity of 

acetylcholinesterase, AChE, which are specific esterases that mainly hydrolyse choline-based 

esters, several of which are used as neurotransmitters (Mennillo et al. 2017; Augustinsson, 

1971). Although in recent years the number of studies that investigated the interactions between 

ChE and NMs have been increasing, generally demonstrating an inhibition of their activity in 

invertebrates as a consequence of CNTs exposure (De Marchi et al. 2017a; b; c; Monserrat et 

al. 2017; De Marchi et al. 2018a; b), opposite results were observed in the present study, 

showing no inhibition of AChE activity in exposed organisms under both materials and both 

salinities. Such result may be related to the fact that organisms try to reduce neurotransmitter 

excess in the synaptic clefts, which was already showed in the bivalve Perna indica exposed to 

arsenic (As) (Rajkumar, 2013).  

II) Alteration induced by salinity shifts modifying the sensitivity of the polychaetes and 

the toxicity of the CNTs was also observed in the present study. It was already demonstrated 

that organisms exposed to salinity stress must increase their energy expenditure to successfully 

acclimate to the stressor and ensure cellular protection (Rivera-ingraham 2017). When 

organisms are exposed to low salinity level initiate a series of mechanisms (energetically costly) 

that allow them to hyper-regulate (i.e. to maintain their extracellular fluids at a higher osmolality 

than that of their surrounding medium) and this osmoregulation is considered to be an 

energetically costly process (Rivera-ingraham 2017). This hypothesis supported our results, 

showing that when the polychaetes were exposed to salinity 21 under both MWCNT materials 

there was an increase of the energy expenditure (showed by decrease of the GLY) and an 

increase of metabolic activity (expressed by an increase of ETS activity) demonstrating that the 

alteration induced by salinity shifts modifying the sensitivity of the polychaetes to the CNTs, but 
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did not modified the toxicity of the NMs, as for both exposure conditions (f and Nf) it was 

possible to observe the same trend in terms of energy reserves consumption and metabolic 

activity in the exposed organisms.  

Mitochondria, as the main energy producers in eukaryotic cells, play a central role in 

acclimation processes. However, they also represent the main source of reactive oxygen and 

nitrogen species (ROS/RNS), although the relationship between mitochondrial respiration and 

ROS/RNS formation is not fully understood. ROS/RNS can potentially lead to the LPO (such as 

those composing cellular membranes), as well as damaging other cellular molecules; ROS/RNS 

potentially have negative consequences for acclimation to hyper- and hypo-osmotic conditions. 

However, the lipid electrophiles resulting from such processes can have, along with ROS/RNS 

themselves, a role in the activation of cellular defences (Rivera-ingraham 2017; Sokolova 2018). 

In the present study, organisms exposed at both f-MWCNTs and Nf-MWCNTs under low salinity 

presented an increase of LPO and activation of antioxidant enzymes in terms of increase of 

SOD activity as well as decrease of GSH/GSSG and decrease of GSTs especially at the highest 

exposure concentration, demonstrating that the alteration induced by salinity shifts on the 

sensitivity of the polychaetes to low salinity caused major toxicity in comparison to the chemical 

behaviour of both MWCNTs under this condition. In fact, despite estuarine invertebrates are 

often exposed to short-term (tidal) and long-term (rain periods) changes in salinity, the 

increased stress may lead to physiological and morphological abnormalities when exposed to 

low salinity (Verdelhos et al. 2015). 

Nevertheless, in general, in the present study, both Nf-MWCNTs and f-MWCNTs under 

salinity 28 generated greater alterations on energy reserves and metabolic activity, oxidative 

stress biomarker responses and antioxidant enzymes activities compared to individuals 

maintained under salinity 21, assuming that exposed polychaetes tend to be more sensitive to 

the alteration induced by salinity variations on the chemical behavior of both MWCNTs in 
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comparison to salt stress. It has been already demonstrated from the literature that higher 

salinity causes the formation of large-size aggregates (Hu et al. 2017) which can alter their 

biological effects by affecting ion release from the surface and their reactive surface area, 

affecting the mode of cellular uptake of NMs together with subsequent biological responses in 

the organisms (Hotze et al. 2010). Ward and Kach (2009) revealed that the larger aggregates 

can considerably increase the uptake of polystyrene NMs by suspension filter-feeding bivalves 

(the mussels M. edulis and oysters Crassostrea virginica), which were either dispersed or 

embedded within aggregates, showing that both these species more efficiently captured and 

ingested NMs that were incorporated into aggregates compared to those freely suspended. 

These findings are in agreement with our results, showing major toxic impacts in organisms 

exposed to higher salinity 28. 

 

5. CONCLUSIONS 

The results of the present study demonstrated clearly that both CNTs generated toxic 

impacts in terms of energy reserves and metabolic capacity as well as oxidative and neuro 

status. However, when comparing f-MWCNTs and Nf-MWCNTs, greater toxic impacts in the 

polychaetes D. neapolitana were observed by functionalized CNTs due to availability of the CNT 

materials. While Nf-MWCNTs, due to their insolubility, may be less available for the organisms, 

f-MWCNTs were more dispersible in the water column probably increasing their mobility and 

thus increasing the risk of exposure, possible uptake and toxicity, leading to a much higher 

cellular damage concluding that nanomaterial toxicity can be attributed to core structure and 

surface functionalization. Moreover, when evaluating if the alteration induced by salinity shifts 

could modify the sensitivity of the polychaetes and/or the toxicity of the CNTs, the present 

findings demonstrated that Nf-MWCNTs and f-MWCNTs under salinity 28 generated greater 

toxic impacts in the polychaetes compared to individuals maintained under salinity 21, assuming 
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that the alteration induced by salinity shifts on the chemical behaviour of both MWCNTs and 

consequent fate in exposed polychaetes caused major toxicity in comparison to the sensitivity of 

the organisms to low salinity. Thus, nanomaterials toxicity was not only attributed to core 

structure and surface functionalization, but also to the physico-chemical parameters of the 

media which alter the behavior of the CNTs and consequently the toxicity in the exposed 

organisms. Considering that CNTs are one of the most promising classes of new materials to 

emerge from nanotechnology to date, the results of these studies provided essential information 

about the behavior of commercially important CNTs in complex physiological environment giving 

a scientifically grounded knowledge base for the risk assessment of these materials. Moreover, 

the complex interactions between climate change and pollutants may be particularly problematic 

for species living at the edge of their physiological tolerance range where acclimation capacity 

may be limited. On this topic, understanding how pollutants behave once reaching the 

environment, and how different climate related factors (e.g salinity shifts) may influence their 

fate, transport and toxicity, will be of major relevance to predict interactions between climate 

change and contaminant exposures. 

Based on the results here presented, data obtained highlight the need to develop 

standard protocols for CNTs toxicological testing to characterize the behaviour and fate of these 

materials in different compartments of the aquatic environment, exposure conditions following 

environmental relevant concentrations and point out the importance to use a broad range of 

biomarkers to evaluate the possible toxic effects of these new emerging pollutants. Moreover, 

this study improved the understanding of biological responses of polychaetes exposed to 

combined CNTs and predicted climate change scenarios.  
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Figure Captions 

Figure 1. A. DTG curves of Diopatra neapolitana organisms exposed to aqueous media at 

salinity 21 either contaminated with multiwalled carbon nanotubes (MWCNTs) dispersed at 

different concentrations or not contaminated. The DTG curve of multiwalled carbon nanotubes 

(sample MWCNTs) was used as reference; B. DTG curves of Diopatra neapolitana organisms 

exposed to aqueous media at salinity 28 either contaminated with multiwalled carbon nanotubes 

(MWCNTs) dispersed at different concentrations. The DTG curve of multiwalled carbon 

nanotubes (sample MWCNTs) was used as reference; C. DTG curves of Diopatra neapolitana 

organisms exposed to aqueous media at salinity 21 either contaminated with COOH-

functionalized multiwalled carbon nanotubes (f-MWCNTs) dispersed at different concentrations 

or not contaminated. The DTG curve of multiwalled carbon nanotubes (sample f-MWCNTs) was 

used as reference; D. DTG curves of Diopatra neapolitana organisms exposed to aqueous 

media at salinity 28 either contaminated with COOH-functionalized multiwalled carbon 

nanotubes (f-MWCNTs) dispersed at different concentrations  or not contaminated. The DTG 

curve of multiwalled carbon nanotubes (sample f-MWCNTs) was used as reference 

Figure 2. Regenerative capacity of Diopatra neapolitana at 11th and 28th days after amputation, 

exposed to different MWCNT materials (f and Nf) and concentrations (0.00; 0.001 and 0.01 

mg/L) under different salinity levels (control-28 and low-21) 

Figure 3. A. Protein (PROT) content; B. Glycogen (GLY) content; C. Electron transport system 

(ETS) activity (mean + standard deviation) in Diopatra neapolitana exposed to different MWCNT 

materials (Nf-MWCNTs and f-MWCNTs) both at different concentrations (0.00; 0.10 and 1.00 

mg/L) under different salinities range (control-28 and low-21).  

Figure 4. A. Lipid peroxidation (LPO) levels; B.  GSH/GSSG (mean + standard deviation) in 

Diopatra neapolitana exposed to different MWCNT materials (Nf-MWCNTs and f-MWCNTs) 
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both at different concentrations (0.00; 0.10 and 1.00 mg/L) under different salinities range 

(control-28 and low-21).  

Figure 5. A. Superoxide dismutase (SOD) activity; B. Catalase (CAT) activity; C. Glutathione S-

transferases (GSTs) activity (mean + standard deviation) in Diopatra neapolitana exposed to 

different MWCNT materials (Nf-MWCNTs and f-MWCNTs) both at different concentrations 

(0.00; 0.10 and 1.00 mg/L) under different salinities range (control-28 and low-21).  

Figure 6. Acetylcholinesterase (ATChI-ChE) activity in Diopatra neapolitana exposed to 

different MWCNT materials (Nf-MWCNTs and f-MWCNTs) both at different concentrations 

(0.00; 0.10 and 1.00 mg/L) under different salinities range (control-28 and low-21). 
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Table 1. Dynamic Light Scattering (DLS) data of Size (nm) and Polydispersity Index (PDI) of both MWCNTs under salinity 21 and 28 (0.001 mg/L 

and 0.01 f-MWCNTs; 0.001 mg/L and 0.01 mg/L Nf-MWCNTs) collected at different exposure periods (T0; T7; T14; t21 and T28). I.d.: “Invalid 

data” (no colloidal material detected into the analyzed sample). I.d.: Invalid data (not detected colloidal material into the analyzed sample at the 

end of 120 acquisitions) 

Samples Size (nm) PDI Size (nm) PDI 

Salinity 21 

 Nf-MWCNTs f-MWCNTs 

 T0 T0 

0.001 mg/L I.d. - I.d. - 

0.01 mg/L 2236.0 1.046 I.d. - 

 T7 T7 

0.001 mg/L 2550.6 1.130 I.d. - 

0.01 mg/L 3431.0 1.500 1963.6 0.840 

 T14 T14 

0.001 mg/L I.d. - I.d. - 

0.01 mg/L 4191.8 1.918 2796.6 1.420 

 T21 T21 

0.001 mg/L 1588.8 0.802 I.d. - 

0.01 mg/L 4548.1 1.875 2912.8 1.874 

 T28 T28 
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0.001 mg/L I.d. - I.d. - 

0.01 mg/L 5588.7 2.123 7013.0 2.875 

 

Salinity 28 

 Nf-MWCNTs f-MWCNTs 

 T0 T0 

0.001 mg/L I.d. - I.d. - 

0.01 mg/L 2596.6 0.988 I.d. - 

 T7 T7 

0.001 mg/L I.d. - 2211.4 1.02 

0.01 mg/L I.d. - 3634.9 1.506 

 T14 T14 

0.001 mg/L I.d. - I.d. - 

0.01 mg/L I.d. - 1771.2 0.804 

 T21 T21 

0.001 mg/L I.d. - I.d. - 

0.01 mg/L 3354.7 1.323 3354.7 1.509 

 T28 T28 

0.001 mg/L I.d. - I.d. - 

0.01 mg/L I.d. - 2121.3 0.902 
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Table 2.  Regeneration data (percentage (%) of body width and the number (#) of new chaetigers) for Diopatra neapolitana, 11, 18 and 28 days 

after amputation. Significant differences (p ≤ 0.05) among exposure concentrations for each MWCNTs (f-MWCNTs and Nf-MWCNTs) and salinity 

(control-salinity 28 and low-salinity 21) were represented with different letters: uppercase and regular letters for Nf-MWCNT at salinity 28; 

lowercase and regular letters for Nf-MWCNTs at salinity 21; uppercase and bold letters for f-MWCNT at salinity 28; lowercase and bold letters for 

f-MWCNT at salinity 21. Significant differences (p ≤ 0.05) between the two salinities for each MWCNTs and exposure concentration were 

represented with bold asterisks (*). Significant differences (p ≤ 0.05) between f-MWCNT and Nf-MWCNTs within each salinity at each exposure 

concentration were represented with bold hashes (#).  

   11 days 18 days 28 days 

   %body 

width 

# chaetigers %body width # chaetigers %body width # chaetigers 

0.00  

Sal. 28 

f-MWCNTs 7.67±2.07
 A

 0.00±0.00
 A

 44.64±10.04
 A

 21.50±6.28
 A

 75.79±3.96
 A

 30.50±1.38
 A

 

Nf-MWCNTs 7.67±2.07
 A

 0.00±0.00
 A

 44.64±10.04
 A

 21.50±6.28
 A

 75.79±3.96
 A

 30.50±1.38
 A

 

Sal.21 

f-MWCNTs 9.83±1.72
 a

 0.00±0.00
 a

 45.34±13.72
 a

 20.00±3.22
 a

 74.40±4.54
 a

 29.83±1.72
 a

 

Nf-MWCNTs 9.83±1.72
 a

 0.00±0.00
 a

 45.34±13.72
 a

 20.00±3.22
 a

 74.40±4.54
 a

 29.83±1.72
 a

 

   11 days 18 days 28 days 

   %body 

width 

# chaetigers %body width # chaetigers %body width # chaetigers 

0.001  Sal. 28 

f-MWCNTs 7.83±4.62
 A

 0.00±0.00
 A

 43.13±6.42
 A

 18.83±1.72
 A

 72.61±7.05
 A

 28.17±2.14
 A

 

Nf-MWCNTs 8.33±2.73
 A

 0.00±0.00
 A

 43.75±11.39
 A

 17.83±3.92
 A

 73.12±7.74
 A

 29.67±1.63
 A
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Sal.21 

f-MWCNTs 8.00±2.37
 a

 0.00±0.00
 a

 42.36±10.60
 a

 18.50±2.07
 a

 72.37±8.28
 a

 29.33±2.07
 a

 

Nf-MWCNTs 8.33±1.63
 a

 0.00±0.00
 a

 40.34±3.45
 a

 18.67±1.03
 a

 73.25±6.94
 a

 28.33±1.97
 a

 

   11 days 18 days 28 days 

   %body 

width 

# chaetigers %body width # chaetigers %body width # chaetigers 

0.01 

Sal. 28 

f-MWCNTs 6.50±3.73
 A

 0.00±0.00
 A

 37.87±7.51
 A

 18.83±2.40
 A #

 70.09±12.21
 A

 28.67±1.51
 A

 

Nf-MWCNTs 8.83±4.53
 A

 0.00±0.00
 A

 19.12±4.83
 B *

 11.17±5.95
 B #

 59.41±19.35
B

 26.67±7.39
 B 

 

Sal.21 

f-MWCNTs 8.00±2.28
 a 

 0.00±0.00
 a

 39.92±6.28
 a

 18.67±2.16
 a

 71.63±9.89
 a

 27.67±1.37
 a

 

Nf-MWCNTs 7.67±3.83
 a

 0.00±0.00
 a

 39.50±5.59
 a *

 17.17±4.26
 a

 70.68±5.60
 a

 28.83±2.14
 a 
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Table 3.  Effect on oxidative stress biomarkers (PROT, GLY, ETS, LPO, GSH/GSSG SOD, CAT, GSTs, ATChI-ChE) in Diopatra neapolitana by  f-

MWCNTs and Nf-MWCNTs at each of the tested concentrations (control-0.00, 0.001, 0.01 mg/L) under control-salinity 28 and low-salinity 21. 

Significant differences (p ≤ 0.05) between f-MWCNT and Nf-MWCNTs within each salinity at each exposure concentration were represented with 

asterisks 

   PROT GLY ETS LPO GSH/GSSG SOD CAT GSTS ATCHI-CHE 

0.00  

Sal.28 
f-MWCNTs 39.45±9.03 1.51±0.21 23.47±2.29 12.83±0.94 6.83±0.45 0.83±0.21 39.68±3.10 0.34±0.04 0.98±0.14 

Nf-MWCNTs 39.45±9.03 1.53±0.19 23.47±2.29 12.83±0.94 6.83±0.45 0.83±0.21 39.68±3.10 0.34±0.04 0.98±0.14 

Sal.21 
f-MWCNTs 37.56±5.30 1.51±0.21 23.63±2.45 13.80±0.76 6.91±0.30 1.02±0.46 39.10±1.38 0.32±0.04 0.97±0.15 

Nf-MWCNTs 37.56±5.30 1.53±0.19 23.63±2.45 13.80±0.76 6.91±0.30 1.02±0.46 39.10±1.38 0.32±0.04 0.97±0.15 

            

0.001  

Sal.28 
f-MWCNTs 36.70±7.00 1.23±0.25* 27.08±4.10 15.23±1.37 6.05±0.41 2.74±1.24* 37.88±4.17 0.32±0.04* 0.88±0.10 

Nf-MWCNTs 36.26±3.88 1.52±0.08 25.52±3.00 13.52±2.14 6.71±0.75 1.05±0.47 38.63±1.57 0.27±0.03 0.91±0.14 

Sal.21 
f-MWCNTs 34.85±3.86 1.40±0.14 26.03±2.53 15.14±1.35 6.01±0.56 0.87±0.41 38.59±0.82 0.24±0.04 0.85±0.12 

Nf-MWCNTs 37.35±5.17 1.21±0.16 25.57±3.83 14.93±2.51 6.45±0.66 1.25±0.64 38.99±1.81 0.26±0.03 0.87±0.16 

            

0.01  

Sal.28 
f-MWCNTs 36.24±8.02* 1.19±0.14* 29.52±2.06* 19.11±2.97* 5.26±0.60* 2.86±0.85* 39.55±3.71* 0.26±0.03* 0.79±0.16* 

Nf-MWCNTs 81.33±10.09 1.45±0.07 20.29±1.83 29.59±2.88 2.16±0.27 1.09±0.11 38.63±5.15 0.86±0.04 1.28±0.71 

Sal.21 
f-MWCNTs 35.91±3.36 1.25±0.22 28.31±3.61 16.81±3.04 6.50±0.60 2.41±0.63* 38.98±1.28 0.27±0.02 0.88±0.14 

Nf-MWCNTs 35.31±6.67 1.26±0.18 25.96±3.83 16.15±2.37 6.88±0.69 1.10±0.51 38.99±1.38 0.30±0.03 0.88±0.13 
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Highlights 

 An innovative approach was adopted for the first time to assess the presence of CNTs aggregates in the organisms 

 Physiological and biochemical alterations induced in Diopatra neapolitana exposed to different CNT materials 

 Major toxicity caused by salinity 28 on the chemical behavior of CNTs and in exposed polychaetes in comparison to salinity 

21 

 Greater toxic impacts induced in exposed organisms by f-MWCNTs compared to Nf-MWCNTs 
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