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Abstract: The aim of this paper is to promote the use of uncertainty mapping 
when spatial assessments of air quality are made. A large number of air quality 
maps are produced for scientific and policy purposes but rarely are 
corresponding maps of their uncertainty included. The need for such maps and 
the methods to produce them are described. Several uncertainty parameters are 
discussed but it is recommended to use the probability density function as  
the basis of the uncertainty estimates. Several examples are provided discussing 
indicative uncertainty, ensemble methods, comparisons with observations, 
spatial representativeness, uncertainty in exceedances and probability of 
exceedance. 
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1 Introduction and motivation 

Air quality assessment using monitoring or modelling is mandatory in all European 
member states through directives (EC, 1999, 2002). Inherent in every air quality 
assessment is uncertainty. When monitoring data is used, there is uncertainty in the 
instrumentation but most importantly in the spatial representativeness, since monitoring 
is limited to a few points in space, leading to a large uncertainty in the concentrations  
in the areas between the monitoring stations. This is one of the reasons modelling  
is used to assess air quality, as it provides information concerning the spatial distribution 
of the pollutants, as well as the ability to predict air quality when observations are not 
available. Model predictions are also uncertain in both space and time. For this reason,  
it is essential to assess the uncertainty of the models, not only at points in space but also 
spatially, for any air quality assessment. 

Model uncertainty is due to errors in model formulation and input data as well  
as the natural spatial and temporal variability of the concentrations. Due to the finite 
temporal and spatial scales that models work on, these last two sources of uncertainty 
will always exist even with the ‘best’ models. 

Model uncertainty is often described as model error at monitoring sites only, using a 
variety of parameters (e.g., Chang and Hanna, 2004). Uncertainty is rarely displayed as 
maps, however some examples do exist; Van de Kassteele and Velders (2006),  
Horálek et al. (2007) and Lindley and Walsh (2005) show maps of uncertainty (Standard 
Deviation (SD)) based on geo-statistical methods, Fuentes and Raftery (2005) present 
maps of bias (BIAS) and SD using a Bayesian approach and Rodriguez et al. (2007) 
display maps of SD based on Monte Carlo simulations. 

It seems only reasonable that whenever air quality maps are shown that information 
on their uncertainty is also provided and preferably also as maps. The spatial uncertainty 
can give useful information on the quality of the model calculations and on the optimal 
placement of monitoring sites. It can also aid in establishing uncertainties when data 
assimilation methods are applied. When air quality assessment is made for risk 
assessment purposes, such maps provide valuable information for the responsible 
authorities that can aid in the decision-making process. 
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This paper identifies methods for producing uncertainty maps for use in air quality 
assessment. It first discusses available uncertainty parameters that may be used to 
communicate the uncertainty and second the methods for their spatial calculation.  
Because of the variety of methods used for producing spatial assessments, the methods 
used to calculate the uncertainty also differ. For this reason, it is essential to find a 
characteristic parameter so that comparisons of methods and their uncertainties can be 
usefully made. 

2 Uncertainty indicators to be used for mapping 

There are a number of statistical parameters used for the assessment of model uncertainty 
that may also be appropriate for the spatial mapping of uncertainty. These include 
directive-related error indicators (EC, 1999) such as Relative Percentile Error (RPE), but 
also more standard statistical parameters such as SD, Root Mean Square Error (RMSE), 
BIAS and correlation (r2), see Borrego et al. (2007). These metrics have been mainly 
applied and developed for comparison with monitoring data on an individual basis and 
not for use in a spatial concept of uncertainty. 

Approaches using Probability Distribution Functions (PDFs) can be used  
for uncertainty mapping. However, it is difficult to display spatio-temporal PDFs for a 
two-dimensional field, see Pebesma et al. (2007). PDFs can be simplified by using 
analytical functions, such as normal or log-normal distributions, that are described by a 
limited set of parameters. A normally distributed PDF can be defined by the parameters 
of BIAS and SD. If the assumption of normal distributions is not met, then other 
distributions, such as log-normal or more general discretised distributions, can be used. 
The SD uncertainty concept may still be applied for these though the description is more 
complex. An alternative is to define the appropriate minimum and maximum percentile 
bands and use their separation to define the uncertainty. For the case of a normally 
distributed PDF, the separation of the 2.5% and 97.5% percentile band is simply four 
times the SD. 

Figure 1 Left: PDF of daily mean PM10 concentrations calculated by the unified EMEP model 
using observations from Airbase (2003). Note the strong negative bias of the model.  
The continuous grey line is a log-normal fit to the data. Right: PDF of hourly mean  
NO2 concentrations at a local traffic site in Oslo as calculated using the EPISODE 
model. Note the two modes of the model, a result of uncertainty in the wind direction  
as calculated by the model. Only observations with a concentration > 10 µgm–3 are used 
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One method for constructing a PDF, based on observations, is by calculating the ratio 
M/O for corresponding model and observational points. By binning these values in 
discrete steps, the PDF can then be constructed, see Figure 1 for two examples. When 
using this approach, a minimum threshold value should be used for the monitoring data. 

2.1 Relative maximum or percentile error 

The present European legislation defines the Modelling Quality Objectives as an 
acceptability measure to guarantee good model performance and reliable modelling 
results for decision-makers. When model uncertainty is required for directive purposes, 
then the most relevant parameter is RPE, evaluated at monitoring sites (see Air4EU, 
2007; M2). However, as previously described, this may not be a good indicator of spatial 
uncertainty. 

2.2 Standard deviation 

It is recommended to use uncertainty parameters related to the SD. SD is useful because 
it resembles other uncertainty parameters that may be calculated such as RMSE, kriging 
variance, SD resulting from Monte Carlo ensembles, or covariance matrices required for 
data assimilation techniques. The SD of a PDF can also be calculated for any discrete 
distribution. However, SD is only a good uncertainty indicator when the system is 
unbiased. It is thus also useful to indicate uncertainty in maps using BIAS as well. 

2.3 Bias 

BIAS represents the long-term (e.g., annual) mean difference between models and 
observations over a defined spatial region. Usually, BIAS is calculated at observational 
points assuming the observations to be unbiased. When the model is representative of a 
larger area than the observations, then BIAS may be incorrectly attributed to the model 
owing to the spatial variability of the concentrations. BIAS thus has a spatial context, 
being dependent on the scale, and this should be considered when it is assessed. 
However, given a set of representative observations, it is possible to map the BIAS on the 
scale of interest, see Section 3.1, or preferably to remove the spatial component  
of the BIAS by using methods such as regression or kriging techniques. 

3 Methods for calculating the spatial distribution of uncertainty 

3.1 Spatial representation of uncertainty calculated at observational sites 

When model assessment is carried out at spatially distributed monitoring sites, statistical 
parameters of model error can be determined at these points. This error may be 
represented as individual points on the map or alternatively, when there is a sufficient 
density of stations and the pollutant varies on scales larger than the typical distance 
between stations, it may be interpolated to represent the spatial uncertainty of the model.  
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Such parameters may include the SD, RMSE or any other error indicator. This method  
of representing uncertainty is straightforward but the question of its validity when  
interpolated in space arises owing to the question of spatial representativeness.  
Figure 2 provides an example of such an application where RPE is used to assess model 
error for ozone calculations in and around Berlin. It is represented as both points and as 
an interpolated field (Air4EU, 2007; D7.1.14). 

Figure 2 Mapping of Relative Percentile Error (RPE) of an O3 simulation (concerning  
the 26th maximum 8 h running average percentile) with the RGC model over  
Berlin (Air4EU, 2007; D7.1.14). Left: RPE at the 49 individual monitoring  
sites is represented by the size of the circles. Right: RPE is interpolated using kriging  
in the same domain 

 

3.2 Indicative uncertainty as a function of model concentration 

This type of uncertainty map treats the uncertainty, using SD (σ) as the uncertainty 
parameter, as a function of the absolute uncertainty σA, the relative uncertainty σR and the 
model concentration M(x, y) in the following form 

2 2 2( , ) ( , ) .M A Rx y M x yσ σ σ= +  (1) 

This provides a general structure for calculating uncertainty as a function of model 
concentrations, and thus spatially. The estimated values of σR and σA may be calculated 
in various ways, e.g., based on experience with the model, based on the normalised 
RMSE (Figure 3), based on the SD of PDFs or, when a sufficient amount of data is 
available, by fitting equation (1) to the SD of the model error when it is expressed as a 
function of model concentration M(x, y). This last method may be achieved by binning 
the observed concentrations in discrete intervals, e.g., 10 µg.m–3 bins, and calculating the 
SD of the model error for each of these bins. 

There are a number of reasons why this method may be appropriate. First, when there 
are few observational data available, a best estimate of σR and σA can be made; second, 
there are a number of situations where model uncertainty can be directly coupled to 
emission uncertainty and direct scaling using σR is appropriate; third, uncertainties in 
model formulation that apply generally to the modelling domain often affect the 
calculations in either an absolute or a relative fashion. 
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Figure 3 Example of an assessment (left) and uncertainty map (right) of the annual mean  
NO2 concentrations in Prague, 2003 (Air4EU, 2007; D7.1.6). The uncertainty  
map is constructed using σR based on the normalised RMSE of 12 stations where 
σR = 27% and σA = 0 

 

3.3 Maps based on data assimilation, statistical and kriging variance 

When data assimilation or other statistically based methods are used, for example linear 
regression analysis, kriging and residual kriging, variational methods or ensemble 
techniques such as Ensemble Kalman filters, estimates of the variance/covariance are 
required for the assimilation technique and can be used in the uncertainty maps. 

Though these methods produce estimates of SD, it represents different elements  
of the uncertainty. When ensemble methods are used, then the SD conveys  
information about uncertainties related to the perturbed parameters used to create  
the ensemble, not the predictive uncertainty of the model. Geo-statistical methods such as 
kriging represent uncertainties that are directly related to the variance of the observations. 
These are based on a functional relationship between variance and the distance  
from a monitoring station assuming reasonably homogeneous fields relative to the 
distance between the stations. 

3.4 Mapping the uncertainty in exceedances 

For some applications, the Number of Exceedances (NOE) above some threshold  
value for a short averaging period is required, e.g., daily mean PM10 concentrations.  
In principle, the NOE at any point in space can be calculated as the sum of the POEs 
occurring for each averaging period. This can be assessed by integration of the PDF  
at that point in space and for that period. However, this is not suitable for models 
containing representativeness errors and unknown BIAS. POE is more sensitive to 
uncertainty in BIAS than it is to the uncertainty in an unbiased model. Then, to represent 
the uncertainty in the NOE field, a pragmatic approach is recommended. The uncertainty 
in the NOE is calculated by use of the annual mean SD percentile band, i.e., by adding 
and subtracting the annual mean SD from the daily mean value (±σ), which reflects the 
model and representativeness BIAS. The uncertainty in NOE days can be interpreted as 
being the maximum deviation, in number of days, from the ±σ calculations (Air4EU, 
2007; D7.1.13). An example is provided in Figure 4 showing the results of such an 
uncertainty assessment for the NOE days of PM10 in Europe. 
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Figure 4 European map of the assimilated, using residual kriging methods, (left) and uncertainty 
(right) fields for the number of daily mean exceedances of PM10 above a threshold  
of 50 µg.m–3, 2003. Using this methodology uncertainty is lowest, but not zero,  
in the regions with good observational coverage (Air4EU, 2007; D7.1.13) 

 

3.5 Model uncertainty using ensemble simulations 

Another method for estimating uncertainty is to carry out ensemble runs by perturbing 
model parameters and input data (within their uncertainty) to obtain estimates of the 
intrinsic model uncertainty (e.g., Rodriguez et al., 2007). This can be carried out using 
various Monte Carlo methods where the PDFs of the model parameters are used as prior 
distributions for the ensembles. This will give a spread of model results that can be 
mapped. It will not provide information on BIAS unless direct comparisons are made 
with observations. As a special case of the Monte Carlo methods, some uncertainties can 
be analysed in a simpler framework. If input parameters, such as emissions, can be 
simply described by a normal distribution and the model is linear, then the uncertainty 
can be directly calculated by summing the uncertainties from the various emission 
sources. 

Similar to Monte Carlo simulations within a model, simulations using an ensemble  
of models (e.g., van Loon et al., 2007) can provide spatially distributed estimates of 
uncertainty, though this has yet to be carried out in such studies. 

3.6 Probability of exceedance 

Given both concentration and uncertainty fields, as PDFs or in terms of SD, it is possible 
to determine the POE, given some limit value, by integration of the PDF. POE includes 
both calculated concentrations and uncertainty information in the one parameter and may 
be useful in applications for risk assessment. POE is not an uncertainty parameter itself 
and a POE map does not show to what extent the map is determined by the model 
calculations or the model uncertainty. 
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4 Conclusions 

In this preliminary paper, a number of methods for producing uncertainty maps have been 
briefly described and some examples given. It is recommended that SD be the major 
indicative uncertainty parameter in the uncertainty maps and that whatever be the 
assessment method applied, an uncertainty assessment of the derived air quality map 
should always be provided in some form. It is not recommended to spatially interpolate 
model errors when the distance between monitoring stations is larger than their 
representative scale. If BIAS is known, then it should be indicated and if possible 
removed from the assessment maps. 

More work is still required to define methods for the spatial assessment of uncertainty 
and there are a number of challenges that still need to be addressed. Convincing the  
air-quality modelling community and other stakeholders and decision-makers to include, 
or request, uncertainty in their maps is one of these. Cooperation between atmospheric 
modellers and spatial statistical groups is also needed. Finally, and perhaps, most 
challenging of all is the reformulation of directives and other legislation to properly 
include aspects of uncertainty. 
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