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Abstract

Uncertainty is inherent in many planning situations. One example is in maritime trans-

portation, where weather conditions and port occupancy are typically characterized by

high levels of uncertainty. This paper considers a maritime inventory routing problem

where travel times are uncertain. Taking into account possible delays in the travel times

is of main importance to avoid inventory surplus or shortages at the storages located at

ports.

Several techniques to deal with uncertainty, namely deterministic models with in-

ventory bu�ers; robust optimization; stochastic programming and models incorporating

conditional value-at-risk measures, are considered. The di�erent techniques are tested

for their ability to deal with uncertain travel times for a single product maritime in-

ventory routing problem with constant production and consumption rates, a �eet of

heterogeneous vessels and multiple ports. At the ports, the product is either produced

or consumed and stored in storages with limited capacity. We assume two-stages of de-

cisions, where the routing, the visit order of the ports and the quantities to load/unload

are �rst-stage decisions (�xed before the uncertainty is revealed), while the visit time

and the inventory levels at ports are second-stage decisions (adjusted to the observed
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travel times).

Several solution approaches resulting from the proposed techniques are considered. A

computational comparison of the resulting solution approaches is performed to compare

the routing costs, the amount of inventory bounds deviation, the total quantities loaded

and unloaded, and the running times. This computational experiment is reported for a

set of maritime instances having up to six ports and �ve ships.

Keywords: transportation, maritime inventory routing, travel times uncertainty,

stochastic programming

1. Introduction

Maritime transportation is conditioned by unpredictable events such as bad weather

conditions and queues forming in ports. Such events lead to high levels of uncertainty

for the travel times of vessels when transporting goods between ports. Decision makers

should take into account such uncertainty when designing the distribution plans to pre-

vent inventory disruptions when delays occur. This paper considers a maritime inventory

routing problem (MIRP) where a single product is produced in a set of producer ports

and transported by a �eet of heterogeneous vessels to the consumption ports. Both the

production and consumption rates are constant over the planning horizon at each port.

Lower and upper limits on the storage capacity at each port are considered. The

MIRP consists of designing routes and schedules for a �eet of ships and to determine the

quantities to load and unload at each port to maintain the inventory levels between the

given limits, while minimizing the transportation and port costs. The travel times in-

clude both the sailing times and the berth times of the ships at the destination ports and

are considered uncertain. Consequently, assuming deterministic values such as average

times for the travel times, may result in frequent inventory disruptions since the sched-

ules do not take into account possible delays. Conversely, designing conservative plans

that consider worst case scenarios for the travel times may prevent inventory disruptions

(shortages at consumption ports and surplus at production ports) but usually give solu-

tions with high transportation costs. Hence, it is desirable to �nd optimization methods

that are able to generate solutions providing a good tradeo� between the routing costs

and inventory disruptions.

The scienti�c literature on MIRPs is extensive, with surveys provided by Papageor-

giou et al. [16], Christiansen et al. [10], and Christiansen and Fagerholt [9, 8]. Surveys

on both land and maritime transportation were produced by Coelho et al. [12] and
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Andersson et al. [5]. However, relatively few contributions exist for MIRPs under uncer-

tainty, so most of the MIRP models described in the literatur are deterministic. In real

life, these models are often resolved when updated information about the values of the

parameters appear. For road-based inventory routing problems considering uncertainty,

there exists a solid amount of research. A survey on the inventory routing problems with

stochastic lead times and demands can be found in [20]. We limit our further literature

review to MIRPs under uncertainty.

Di�erent sources of uncertainty have been considered in the MIRP literature, such as

uncertainty in sailing time, port time, production rates, and demand. Halvorsen-Weare

et al. [14] studied a lique�ed natural gas MIRP and developed heuristic strategies for

obtaining robust solutions considering uncertain sailing times and production rates. For a

crude oil transportation and inventory problem, Cheng and Duran [7] described a decision

support system that takes into account uncertainty in sailing times and demands. The

problem is formulated as a discrete time Markov decision process and solved by using

discrete event simulation and optimal control theory. Recently, Dong et al. [13] propose a

rolling-horizon reoptimization framework and policy analysis for a MIRP. They consider

di�erent sources of uncertainty such as time charter vessel availability, trip delays, pick-

up window information and consumption/production rates. The framework included a

MIP model, stochastic simulations to account for uncertainty sources, and an algorithm

integrating reoptimization and stochastic simulation results.

Christiansen and Nygreen [11] used soft inventory levels to handle uncertainties in

sailing and port time, and these levels were transformed into soft time windows in a single

product deterministic MIRP model. Furthermore, Rakke et al. [17] and Sherali and Al-

Yakoob [21, 22] introduced penalty functions for deviating from the customer contracts

and the storage limits in their deterministic MIRP models, respectively. The problem

considered in Rakke et al. [17] is an annual delivery plan problem involving a single

producer and multiple customers in the lique�ed natural gas business. This problem is

also studied by Zhang et al. [24], but with time windows for deliveries and uncertain

travel disruptions. They propose a Lagrangian heuristic scheme where soft constraints

are used to derive �exible solutions to MIRPs. In Zhang et al. [23], the length and

placement of the time windows are decision variables. The problem is formulated as a

two-stage stochastic mixed-integer program (MIP), and the authors propose a two-phase

solution approach that considers a sample set of disruptions as well as their recovery

solutions. However, Agra et al. [2] were the �rst to use stochastic programming to
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model uncertain sailing and port times for a MIRP with several products and inventory

management at the consumption ports only. A two-stage stochastic programming model

with recourse was developed. A similar problem to that considered here was studied by

Agra et al. [3, 4]. In [3] the travel times are considered stochastic, and the stochastic

program is solved using a matheuristic. Agra et al. [4] investigated the use of adaptable

robust optimization where the sailing times are considered unknown and belong to an

uncertainty set. A min-max exact approach is proposed to solve the resulting robust

optimization problem.

Some attempts have been made in previous literature to compare di�erent techniques

to deal with uncertainty, for related problems. Maggioni et al. [15] compare stochastic

programming with robust optimization for a real transportation problem where demand

and costs are uncertain. Ribas et al. [18] compare a two-stage stochastic model with a

robust min-max regret model and a robust max-min model for an integrated oil supply

chain problem. Adida and Perakis [1] provide a computational study to compare robust

and stochastic models for a dynamic pricing and inventory control problem. These

studies do not provide common conclusions regarding the best strategy. However, two

observations were made: the computational complexity of robust optimization is lower

than for stochastic programming with recourse, and stochastic programming models are

good as long as the distributional assumptions are correct, but not necessarily otherwise.

The main goal of this paper is to compare di�erent techniques to handle uncertainty

in the MIRP. We consider a deterministic model with inventory bu�ers, which in the case

of consumption ports corresponds to safety stocks, the stochastic programming method

proposed in [3], the robust optimization method proposed in [4], and introduce two new

models based on the conditional value-at-risk (CVaR) measure. As in [3, 4], we assume

two-stage models where the vessel routes and the quantities to load and unload are �xed

before the travelling times are known, while the arrival times to ports and the inventory

levels are adjusted to the travelling times. One CVaR model can be regarded as an

intermediate strategy that combines the neutral position regarding the risk of inventory

disruption resulting from the stochastic programming model with the most conservative

model resulting from the robust optimization. In this model the CVaR is used on top of

the stochastic model in order to amplify the penalty assigned to the inventory disruptions

when the penalty given in the stochastic program attains a given threshold value (given

by the Value-at-Risk measure). The other model uses the value-at-risk to de�ne soft

inventory bounds that establish the inventory bu�ers for each load/unload operation,
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and the CVaR measure is used to penalize solutions that violate the given soft inventory

bounds.

These models are also compared with the deterministic model where the mean values

are assumed for the uncertain parameters (travel times). Based on the proposed models,

thirteen solution approaches are derived by specifying di�erent values for parameters, as

well as combining the models. The computational comparison aims to provide insight

into the quality of the solutions resulting from each solution approach. This quality is

measured in terms of the routing costs and inventory disruptions. Moreover, the models

are also compared regarding the execution running times.

The paper has two main contributions. One is the introduction of new models to the

MIRP with uncertain travel times based on the CVaR measure. The other contribution

is related to the main motivation for this research, namely to compare the most common

models to handle uncertainty in travel times for the MIRP, and to evaluate the gains of

using these models compared to solving the deterministic problem. Our computational

tests show that e�cient solutions can be obtained by utilizing information obtained when

solving stochastic programming models, either in the classical form or by incorporating

CVaR.

The paper is organized as follows. The deterministic model is given in Section 2.

General models to deal with uncertainty and the corresponding mathematical formula-

tions are discussed in Section 3. In Section 4 we describe the experimental setup and the

solution approaches resulting from the general models using suitable parameter values.

In Section 5 we report the computational results, and in Section 6 we draw the main

conclusions.

2. Deterministic Model for the MIRP

Here we present the deterministic mathematical model of the MIRP, where the travel

times are not subject to uncertainty. This model was introduced in [3]. We consider

a set N of ports that can be either consumption or production ports, and a set V of

heterogeneous vessels. Since each port can be visited several times, ship paths are de�ned

on a network with nodes (i,m), representing the mth visit to port i, and arcs (i,m, j, n),

denoting the ship movements from node (i,m) to node (j, n). The set of possible nodes

is denoted by SA. Each vessel v may visit a speci�c set of nodes denoted by SAv and the

set of its feasible movements is denoted by SXv .

Since both consumption and production ports are considered, a parameter Ji is used
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to identify the port nature. That parameter takes value 1 if port i is a production port

and -1 otherwise. At each port, the quantity to load/unload is limited by a minimum and

a maximum value, Q
i
and Qi, respectively. The time required to load/unload one unit

of product at port i is denoted by TQi . The time for a vessel start the loading/unloading

operation at each port visit must be within a given time window [Aim, Bim], and a

minimum time TBi between two consecutive visits to port i must be respected. Each

port i has an initial stock level, S0
i , and a constant production/consumption rate, Ri.

During the planing horizon, T , the inventory levels at each port must be kept between

the lower and the upper stock limits, denoted by Si and Si, respectively. Each vessel v

has a �xed capacity, Cv, and the travel time required to travel from port i to port j is

Tijv.

To formulate the problem, we consider the following routing variables: ximjnv is

1 if ship v travels directly from node (i,m) to node (j, n) and 0 otherwise; wimv is

1 if ship v visits node (i,m) and 0 otherwise; zimv is 1 if ship v ends its route at

node (i,m) and 0 otherwise; yim is 1 if a ship is making the mth visit to port i and

0 otherwise. We also consider the following continuous variables: qimv indicating the

quantity loaded/unloaded from ship v at node (i,m); fimjnv representing the quantity

that ship v transports from node (i,m) to node (j, n); sim representing the stock level

at the start of the mth visit at port i, and the time variables tim de�ning the start time

of the mth visit to port i.

The objective is to minimize the total routing costs. The travel cost of ship v from

port i to port j is denoted by CTijv. The deterministic problem can now be formulated

as follows:

min C(X) =
∑
v∈V

∑
(i,m,j,n)∈SX

v

CTijvximjnv (1)

s.t. wimv −
∑

(j,n)∈SA
v

xjnimv = 0, v ∈ V, (i,m) ∈ SAv , (2)

wimv −
∑

(j,n)∈SA
v

ximjnv − zimv = 0, v ∈ V, (i,m) ∈ SAv , (3)

∑
v∈V

wimv = yim, (i,m) ∈ SA, (4)

yi(m−1) − yim ≥ 0, (i,m) ∈ SA, (5)
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∑
(j,n)∈SA

v

fjnimv + Jiqimv =
∑

(j,n)∈SA
v

fimjnv, v ∈ V, (i,m) ∈ SAv , (6)

fimjnv ≤ Cvximjnv, v ∈ V, (i,m, j, n) ∈ SXv , (7)

Q
i
wimv ≤ qimv ≤ min{Cv, Qi}wimv, v ∈ V, (i,m) ∈ SAv , (8)

tim +
∑
v∈V

TQi qimv − tjn +
∑
v∈V

max{T ′im + Tijv −Ajn, 0}ximjnv ≤ T ′im −Ajn

(i,m), (j, n) ∈ SA, (9)

tim − ti,m−1 −
∑
v∈V

TQi qi,m−1,v − TBi yim ≥ 0, (i,m) ∈ SA : m > 1, (10)

Aim ≤ tim ≤ Bim, (i,m) ∈ SA, (11)

si1 = S0
i + JiRiti1, i ∈ N, (12)

sim = si,m−1 − Ji
∑
v∈V

qi,m−1,v + JiRi(tim − ti,m−1), (i,m) ∈ SA : m > 1, (13)

sim +
∑
v∈V

qimv −Ri
∑
v∈V

TQi qimv ≤ Si, (i,m) ∈ SA|Ji = −1, (14)

sim −
∑
v∈V

qimv +Ri
∑
v∈V

TQi qimv ≥ Si, (i,m) ∈ SA|Ji = 1, (15)

siµi +
∑
v∈V

qi,µi,v −Ri(T − tiµi) ≥ Si, i ∈ N |Ji = −1, (16)

siµi −
∑
v∈V

qi,µi,v +Ri(T − tiµi) ≤ Si, i ∈ N |Ji = 1, (17)

sim ≥ Si, (i,m) ∈ SA|Ji = −1, (18)

sim ≤ Si, (i,m) ∈ SA|Ji = 1, (19)

ximjnv ∈ {0, 1}, v ∈ V, (i,m, j, n) ∈ SXv , (20)

wimv, zimv ∈ {0, 1}, v ∈ V, (i,m) ∈ SAv , (21)

yim ∈ {0, 1}, (i,m) ∈ SA, (22)

fimjnv ≥ 0, v ∈ V, (i,m, j, n) ∈ SXv , (23)

qimv ≥ 0, v ∈ V, (i,m) ∈ SAv . (24)

For brevity, we omit the explanation of each constraint, as their description can be found
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Table 1: Display of �rst and second-stage decisions for each approach.

Approach First-stage decisions Second-stage decisions

Inventory Routing, visit order, �ow, (un)load
bu�ers time, inventory

Stochastic
CVaR Routing, visit order, �ow, (un)load Time, inventory
Robust

in [4]. The value T ′im = min{T,Bim + TQi Qi} is an upper bound for the end time of the

port visit (i,m).

3. Models to deal with uncertainty

Here we describe four models to deal with uncertainty: the creation of inventory

bu�ers by including soft inventory bounds in the deterministic problem, the use of

stochastic programming, the use of a risk measure (CVaR) to control the violation of

the inventory limits and the use of robust optimization. When the inventory bu�ers are

considered the resulting model is deterministic. For the remaining three models the un-

certainty of the travel times is made explicit. In the CVaR and stochastic programming

models, the travel times are assumed to follow a given probability distribution, while

in the robust model travel times are assumed to belong to an uncertainty set. The last

three types of models are recourse models where some variables (the routing, the visit

order, the �ow and the quantities to load/unload) represent �rst-stage decisions while

other variables (the time and inventory) represent second-stage decisions. In Table 1 we

summarize these decisions.

3.1. Inventory bu�ers

A practical approach to deal with uncertainty is to create inventory bu�ers. These

bu�ers are imposed by adding soft inventory bounds to the deterministic problem and

to penalize solutions violating these bounds. For the consumption ports, the inventory

bu�ers are just the well-known safety stocks used to prevent inventory shortages when

delays occur. For of production ports, the inventory bu�ers are imposed to prevent the

inventory from exceeding the storage capacity.

For each port visit (i,m) ∈ SA a lower bound SSim (safety stock) on the inventory

level is considered if port i is a consumption port, and an upper bound SSim is considered
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if port i is a production port. These inventory bounds can be violated and, in that case,

a per unit penalty cost CSSi is incurred.

For the mth visit to port i, we de�ne the continuous variables d+
im and d−im that

measure the amount of stock above the upper bound in the production ports and below

the lower safety stock in the consumption ports, respectively, see Figure 1.
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Figure 1: Soft inventory bounds and inventory bu�ers for the production and consumption ports, re-
spectively.

The mathematical model for the problem with inventory bu�ers is similar to the

model in Section 2 and can be written as follows:

min C(X) +
∑

(i,m)∈SA|Ji=1

CSSi d+
im +

∑
(i,m)∈SA|Ji=−1

CSSi d−im (25)

s.t. (2)− (24)

d+
im ≥ sim − SSim, (i,m) ∈ SA|Ji = 1, (26)

d−im ≥ SSim − sim, (i,m) ∈ SA|Ji = −1, (27)

d+
im ≥ 0, (i,m) ∈ SA|Ji = 1, (28)

d−im ≥ 0, (i,m) ∈ SA|Ji = −1. (29)

The objective function (25) minimizes the total routing cost plus the penalty cost

of the stock level deviations from the inventory bounds. Constraints (26) and (27)

force variables d+
im and d−im to be greater or equal to the deviation of the stock level

from the soft inventory bounds for the production and consumption ports, respectively.

Constraints (28) and (29) are the nonnegative constraints.
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3.2. Stochastic programming

Stochastic programming models for MIRPs were discussed in [2, 3]. Here we follow

the approach introduced in [3], where the travel times between ports are assumed to

be independent and random, following a known probability distribution. The model

is a recourse model with two levels of decisions. The �rst-stage decisions, those taken

before the travel times are known, are the routing decisions, the port visits sequence,

the �ow and the load/unload quantities. The corresponding �rst-stage variables are

ximjnv, zimv, wimv, yim, fimjnv and qimv. Afterwards, the time of the visits and the in-

ventory level decisions are adjustable to the scenario, that is, are determined after the

travel times are known. To ensure feasibility of the second stage problem given a feasible

�rst-stage solution (relatively complete recourse) we assume that the inventory limits

can be violated by including a penalty cost Pi for each unit of violation of the inventory

limits at each port i, i ∈ N .

To derive the stochastic model, following the sample average approximation method,

the true probability distribution for travel times is replaced by a set Ω of discrete sce-

narios. We denote a scenario by ξ ∈ Ω, and the variables and parameters that depend

on the realization of the uncertainty become functions of ξ. Variables tim(ξ) and sim(ξ)

indicate the time and the stock level at node (i,m), when scenario ξ is revealed, and new

variables rim(ξ) are introduced to denote the inventory limit violation at node (i,m).

When i is a consumption port, rim(ξ) denotes the backlogged consumption, that is the

amount of demand satis�ed with delay. When i is a production port, rim(ξ) denotes

the inventory in excess to the storage capacity. We assume the quantity in excess is

not lost but a penalty is incurred, see Figure 2. To facilitate the writing, we name the

value of variables rim(ξ) as the backlog at port visit (i,m) independently from i being a

consumption or a production port.

The set of time constraints as well as the set of inventory constraints are as follows:

Time constraints

tim(ξ) +
∑
v∈V

TQi qimv − tjn(ξ) +
∑
v∈V

max{T ′im + Tijv(ξ)−Ajn, 0}ximjnv ≤ T ′im −Ajn

(i,m), (j, n) ∈ SA, (30)

tim(ξ)− ti,m−1(ξ)−
∑
v∈V

TQi qi,m−1,v − TBi yim ≥ 0, (i,m) ∈ SA : m > 1, ξ ∈ Ω, (31)

Aim ≤ tim(ξ) ≤ Bim, (i,m) ∈ SA, ξ ∈ Ω. (32)
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Figure 2: Backlog representation for the production and the consumption ports, respectively.

Inventory constraints

si1(ξ) = S0
i + JiRiti1(ξ)− Jiri1(ξ), i ∈ N, ξ ∈ Ω, (33)

sim(ξ)− Jiri,m−1(ξ) = si,m−1(ξ)− Jirim(ξ)− Ji
∑
v∈V

qi,m−1,v + JiRi(tim(ξ)− ti,m−1(ξ)),

(i,m) ∈ SA : m > 1, ξ ∈ Ω, (34)

sim(ξ) +
∑
v∈V

qimv −Ri
∑
v∈V

TQi qimv ≤ Si, (i,m) ∈ SA|Ji = −1, ξ ∈ Ω, (35)

sim(ξ)−
∑
v∈V

qimv +Ri
∑
v∈V

TQi qimv ≥ Si, (i,m) ∈ SA|Ji = 1, ξ ∈ Ω, (36)

siµi(ξ) +
∑
v∈V

qi,µi,v −Ri(T − tiµi(ξ)) + riµi(ξ) ≥ Si, i ∈ N |Ji = −1, ξ ∈ Ω, (37)

siµi(ξ)−
∑
v∈V

qi,µi,v +Ri(T − tiµi(ξ))− riµi(ξ) ≤ Si, i ∈ N |Ji = 1, ξ ∈ Ω, (38)

sim(ξ), rim(ξ) ≥ 0, (i,m) ∈ SA, ξ ∈ Ω. (39)

The objective function that includes the expected value of the penalty cost for the

inventory bounds violation is

min C(X) +
∑
ξ∈Ω

∑
(i,m)∈SA

pξPirim(ξ) (40)

where Pi is a penalty for each unit of violation of the inventory limits at port i and

pξ represents the probability that scenario ξ occurs . The stochastic model is given by
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constraints (2)�(8), (20)�(24), (30)�(39), and objective function (40).

3.3. Conditional Value-at-Risk

The stochastic programming model assumes that the decision maker is neutral regard-

ing the risk of violating inventory limits at the various ports. Moreover, the probability

that a given �rst-stage solution violates the inventory bounds is unknown and can only

be indirectly controlled through the variation of the penalty values. The use of risk mea-

sures within optimization problems is a recent approach to handle uncertainty. It allow

us to generate solutions while keeping control on undesirable events such as inventory

limit violations. One of the most common risk measures is the conditional value-at-risk

(CVaR).

First, we review CVaR which uses the Value-at-Risk (VaR) concept. Let f(y, d) be a

random variable depending on a decision vector y ∈ Rn and depending on the realization

of a random event d. Let β be a given probability. The V aRβ[f(y, d)] is the lowest value

of the random variable f(y, d) such that the probability of having a realization lower

than this lowest value is higher than the probability 1− β, i.e.,

V aRβ[f(y, d)] = min
γ
{γ : P [f(y, d) ≤ γ] ≥ 1− β}

The CV aRβ[f(y, d)] is the mean value of the random variable f(y, d) having a realization

higher than V aRβ[f(y, d)] at a probability 1− β, i.e.,

CV aRβ[f(y, d)] = E[f(y, d) | f(y, d) ≥ V aRβ[f(y, d)]].

To use the CVaR in a linear model, the expectation in the de�nition above can be

discretized, see [19], and the CVaR can be approximated by

CV aRβ[f(y, d)] = min
γ

γ +
1

β

∑
ξ∈Ω

pξ(f(y, d(ξ))− γ)+

 (41)

where (a)+ = max{0, a}, Ω is the sample set of scenarios and pξ is the probability that

scenario ξ occurs.

To the best of our knowledge the CVaR has not previously been used when solving

MIRPs. Using CVaR, we create two di�erent models. In the �rst, the CVaR is used to

control the global penalty of inventory limit violations (surplus at the production ports

and shortages at consumption ports) over the planning horizon. This represents a mix

between the stochastic programming technique and the robust optimization technique.
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In the second model, the CVaR is used to establish an independent inventory bu�er for

each port visit.

3.3.1. CVaR based on the total inventory limit violation

In this approach, function f(y, d) is the total inventory violation penalty cost given by∑
(i,m)∈SA Pirim(ξ), with the random event d represented by traveling scenario ξ ∈ Ω, Pi

the penalty cost and rim(ξ) the violation quantity (both de�ned in Section 3.2). Given

a probability β and a set Ω of scenarios, the VaR, represented by variable γ, is the

minimum value such that the probability of the total penalty cost being lower than this

minimum value γ is at least 1 − β. Let g(ξ) =
(∑

(i,m)∈SA Pirim(ξ)− γ
)+

. The CVaR

is given as follows:

CV aR = min
γ

γ +
1

β

∑
ξ∈Ω

pξg(ξ)

 .

Including the CVaR risk measure for the total inventory limit violation in the MIRP,

the mathematical formulation becomes

min C(X) +
∑
ξ∈Ω

∑
(i,m)∈SA

pξPirim(ξ)+ ε

γ +
1

β

∑
ξ∈Ω

pξg(ξ)

 (42)

s.t. (2)− (8), (20)− (24), (30)− (39),

g(ξ) ≥
∑

(i,m)∈SA

Pirim(ξ)− γ, ∀ ξ ∈ Ω, (43)

g(ξ) ≥ 0, ∀ ξ ∈ Ω. (44)

The objective function minimizes the routing cost plus the average penalty cost for the

inventory bounds violation plus the CVaR weighted by the nonnegative parameter ε.

Constraints (43) and (44) de�ne g(ξ) as a set of linear constraints.

Remark 1. The stochastic programming model for the MIRP can be derived from the

model (42)�(44) by considering ε = 0. In that case, constraints (43) and (44) can be

removed from the model.

In this model the CVaR is used to control not only the probability of having a global

penalty cost for the inventory bounds violation above the VaR, but also the magnitude

of those values. The parameter ε is used to balance the routing and the average penalty

cost against the CVaR. Figure 3 compares the penalty cost for the inventory bounds

violation for both stochastic and CVaR approaches. Assuming the same penalty cost
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unit for the inventory bounds violation in all ports, i.e, P=Pi for all i ∈ N , Figure 3

shows that when the total amount of inventory bounds violation is greater than γ
P its unit

cost is more penalized in the CVaR approach than in the stochastic approach (where

the penalty cost per unit is the same independently of the total amount of inventory

bounds violation). For β close to one and for a very large ε, the model highly penalizes

any inventory limit violations, which tends to approximate the model to the robust one.

In the case of ε = 0, as remarked above we obtain the stochastic model.

CVaR 

Stochastic 

Backlog 

Cost 

Backlog  𝛾

𝑃
 

 

 

 

 

 

Figure 3: Penalty cost for both stochastic and CVaR approaches in terms of the total amount of penalty
cost for the inventory bounds violation, assuming the same penalty cost per unit for all the ports.

3.3.2. CVaR applied to the inventory level at each port

In the second model using CVaR, the inventory bu�ers are established using the

information provided by the CVaR risk measure. The idea is motivated by the fact

that the inventory bu�ers are usually de�ned a priori, without any knowledge of the

routes and do not take into account the probability of violation of the corresponding soft

inventory bounds. Thus, for some visits, the inventory bu�er can be large, resulting in a

low probability of violation of the soft inventory bounds. For other visits, the inventory

bu�er can be small, leading to high probabilities of inventory bounds violations. In this

model we consider a VaR for each port visit (i,m), denoted by γim, and use such values

to de�ne the soft inventory bounds and therefore, the inventory bu�ers.

For a consumption port i ∈ N , to protect the �rst-stage solutions against the uncer-

tainty, it is desirable to keep the stock level far from the lower stock limit or, equivalently,
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keep the stock level close to the upper stock limit. A natural strategy is to consider large

safety stocks for each port visit, which is equivalent to creating tight bounds to the gap

between the upper stock limit and the stock level, i.e., L = S̄i − (sim(ξ) + rim(ξ)). Note

that the amount of backlog in each port visit must be added to the corresponding in-

ventory level since the stock limits can be violated, see Figure 4, at right. Hence, given

a probability β, the VaR for each port visit (i,m), γim, is the minimum value such that

the probability of gap L in port i and visit m being lower than γim, is at least 1− β, for
a given set Ω of scenarios.

A similar idea can be followed for the de�nition of inventory bu�ers to the production

ports. In that case, the aim is to keep the inventory levels as low as possible, that is, to

minimize the di�erence L = sim(ξ) + rim(ξ)− Si, see Figure 4, at left.
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Figure 4: Penalties for the inventory level for the production and the consumption ports.

To de�ne the CVaR measure consider the function gim(ξ) =
(
S̄i − sim(ξ)− rim(ξ)− γim

)+
for the consumption ports and gim(ξ) = (sim(ξ) + rim(ξ)− Si − γim)+ for the produc-

tion ports. The CVaR can be de�ned by

CV aR = min
γ

γ +
1

β

∑
ξ∈Ω

pξgim(ξ)

 .
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Including the CVaR in the MIRP, the mathematical formulation becomes as follows:

min C(X) +
∑
ξ∈Ω

∑
(i,m)∈SA

pξPirim(ξ) + ε
∑

(i,m)∈SA

γim +
1

β

∑
ξ∈Ω

pξgim(ξ)

 (45)

s.t. (2)− (8), (20)− (24), (30)− (39)

gim(ξ) ≥ S̄i − sim(ξ)− rim(ξ)− γim, (i,m) ∈ SA : Ji = −1, ξ ∈ Ω, (46)

gim(ξ) ≥ sim(ξ) + rim(ξ)− Si − γim, (i,m) ∈ SA : Ji = 1, ξ ∈ Ω, (47)

gim(ξ) ≥ 0, (i,m) ∈ SA, ξ ∈ Ω. (48)

The objective function consists of the routing cost plus the average penalty cost for the

inventory bounds violation plus the CVaR associated to each port visit weighted by the

nonnegative parameter ε. Constraints (46) and (48) de�ne gim(ξ) using a set of linear

constraints for the consumption ports and constraints (47) and (48) de�ne gim(ξ) using

a set of linear constraints for the production ports.

The model above can be used directly when solving the MIRP. However, one can

also use the V aR values (the values of variables γim) to de�ne soft inventory bounds for

each port visit. These soft inventory bounds can be used in the deterministic model with

inventory bu�ers described in Section 3.1. For the consumption ports, the safety stock

for the mth visit is de�ned by SSim := S̄i − γim, while for the production ports the soft

upper bound for visit m is de�ned by SSim := Si + γim.

From preliminary computational experience, we observed that the values obtained for

γim using model (45)�(48) can sometimes be very low, leading to large inventory bu�ers.

To overcome this problem we add the following two additional sets of constraints to

model (45)�(48) in order to restrict the values of γim.

γim ≥ δ × (S̄i − Si), ∀(i,m) ∈ SA, (49)

γim ≤ S̄i − Si, ∀(i,m) ∈ SA. (50)

The parameter δ is a nonnegative parameter lower than one, δ ∈ [0, 1), and is used to

impose a lower limit on the VaR values. Constraints (50) impose an upper limit on the

VaR values.

3.4. Robust optimization

The robust approach presented here was introduced in [4]. In the robust approach we

assume that the travel times Tijv belong to an uncertainty set as introduced by Bertsimas

16



and Sim [6],

ΞΓ = {ξ : ξimjnv = T̄ijv + T̂ijvδimjnv,

0 ≤ δimjnv ≤ 1, v ∈ V, (i,m, j, n) ∈ SXv ,
∑
v∈V

∑
(i,m,j,n)∈SX

v

δimjnv ≤ Γ}

where T̄ijv is the nominal value corresponding to the expected travel time, T̂ijv is the

maximum allowed deviation (delay), δimjnv is the deviation of parameter Timjnv from its

nominal value, and Γ limits the number of deviations.

Similar to the stochastic programming and the CVaR models, the robust model is

also an adjustable model with the same two levels of decisions. However, backlog is

not allowed. Hence, the �rst-stage solution must ensure that for each travel time vector

belonging to the uncertainty set, the stock level at each port i is within the bounds Si

and Si. For the robust model the time and inventory constraints are replaced by the

following constraints:

Time constraints

tim(ξ) +
∑
v∈V

TQi qimv − tjn(ξ) +
∑
v∈V

max{T ′im + ξijv −Ajn, 0}ximjnv ≤ T ′im −Ajn,

(i,m), (j, n) ∈ SA, ξ ∈ ΞΓ, (51)

tim(ξ)− ti,m−1(ξ)−
∑
v∈V

TQi qi,m−1,v − TBi yim ≥ 0, (i,m) ∈ SA : m > 1, ξ ∈ ΞΓ, (52)

Aim ≤ tim(ξ) ≤ Bim, (i,m) ∈ SA, ξ ∈ ΞΓ. (53)

Inventory constraints

si1(ξ) = S0
i + JiRiti1(ξ), i ∈ N, ξ ∈ ΞΓ, (54)

sim(ξ) = si,m−1(ξ)− Ji
∑
v∈V

qi,m−1,v + JiRi(tim(ξ)− ti,m−1(ξ)),

(i,m) ∈ SA : m > 1, ξ ∈ ΞΓ, (55)

sim(ξ) +
∑
v∈V

qimv −Ri
∑
v∈V

TQi qimv ≤ Si, (i,m) ∈ SA|Ji = −1, ξ ∈ ΞΓ, (56)

sim(ξ)−
∑
v∈V

qimv +Ri
∑
v∈V

TQi qimv ≥ Si, (i,m) ∈ SA|Ji = 1, ξ ∈ ΞΓ, (57)

siµi(ξ) +
∑
v∈V

qi,µi,v −Ri(T − tiµi(ξ)) ≥ Si, i ∈ N |Ji = −1, ξ ∈ ΞΓ, (58)

17



siµi(ξ)−
∑
v∈V

qi,µi,v +Ri(T − tiµi(ξ)) ≤ Si, i ∈ N |Ji = 1, ξ ∈ ΞΓ, (59)

sim(ξ) ≥ Si, (i,m) ∈ SA|Ji = −1, ξ ∈ ΞΓ, (60)

sim(ξ) ≤ Si, (i,m) ∈ SA|Ji = 1, ξ ∈ ΞΓ. (61)

As in the deterministic case, the objective function of the robust model minimizes

the routing cost, so the robust model is de�ned by (1)�(8), (20)�(24), (51)�(61). See [4]

for more details.

4. Experimental setup

Here we describe the set of instances, the solution approaches tested that are based

on the general models presented in Section 3, and discuss the corresponding parameter

values for the proposed solution approaches.

4.1. Instances description

The instances used are the same as the ones considered in [4]. They are based on

real data and come from the short sea shipping segment with long loading and discharge

times relative to the travel times. The number of ports of each instance vary between

3 and 6 and the number of ships vary between 1 and 5. We consider 7 combinations of

these values giving 7 groups of instances, I, I ∈ {A,B,C,D,E, F,G}. Each group has

three instances ( {I1, I2, I3} ) that di�er from each other through the initial inventory

levels, giving a total of 21 instances. The time horizon considered is T = 30 days. These

instances can be found at http://home.himolde.no/~hvattum/benchmarks/.

Following [14], we assume that the travel time Tijv follows a three-parameter log-

logistic probability distribution whose cumulative probability function can be written

as

F (Tijv) =
1

1 + (1
t )
α
,

where t =
Tijv−η

ζ . For this distribution, the minimum travel time is η, and the ex-

pected travel time E[Tijv], which is estimated by the average travel time T ijv, is equal to
ζπ

α sin(π/α) + η. As in [3], we consider η = 0.9 T ijv, and α = 2.24, and ζ is obtained from

the equation T ijv = ζπ
α sin(π/α) +η. Samples of the travel times are generated by using the

inverse transformation method.
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4.2. Calibration

To e�ciently approximate the continuous three-parameter log-logistic probability

distribution, we have to determine the appropriate number of scenarios that should be

considered in both stochastic programming and CVaR models. To obtain this number,

some out-of-sample stability tests were conducted.

Let Ω be a large set of scenarios sampled from the three-parameter log-logistic dis-

tribution. For each number n of scenarios, n ∈ {1, 5, 10, 15, 20, 25, 30, 35},we consider

30 di�erent sampled n-scenario trees. For each one of the 30 n-scenario trees, we solve

the corresponding stochastic programming model. Hence, for each number n, we obtain

30 solutions. Let Xn
i be the �rst-stage solution of the stochastic programming model

corresponding to the n-scenario tree i, i = 1, . . . , 30, and let f(Xn
i ,Ω) be the objective

function value of solution Xn
i when evaluated using the large set of scenarios, Ω. For

every instance the minimum, the average and the maximum objective function values

f(Xn
i ,Ω), i = 1, . . . , 30, are obtained.

As an example, for each of the n-scenario trees, the minimum, the average and the

maximum objective function values f(Xn
i ,Ω), i = 1, . . . , 30 of the 30 obtained solutions

are displayed in Figure 5, for instance B3. The �gure shows that the gap between the
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Figure 5: Minimum, average and maximum objective function values of the 30 �rst-stage solutions for
each of the n-scenario trees, n ∈ {1, 5, 10, 15, 20, 25, 30, 35}.

three lines tends to decrease as the number of scenarios used increases, and it is very
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close to zero when at least 25 scenarios are considered for sampling scenario trees. This

means that for instance B3 we have out-of-sample stability when at least 25 scenarios

are used, since the obtained objective function value is the same independently of the

sample of 25 scenarios used.

For all instances, the computational tests provide similar results to the ones presented

in Figure 5. Therefore, we use scenario trees with n = 25 samples whenever the stochastic

programming or CVaR models are used.

4.3. Solution approaches

Based on the general models described in Section 3, we derive 13 particular solution

approaches by considering di�erent parameters or combining methods. These solution

approaches are tested in Section 5.

Deterministic model (D). The deterministic solution approach includes no inventory

bu�ers. This solution approach corresponds to solving the model in Section 2 and is

denoted by D.

Deterministic model with inventory bu�ers (F). The deterministic solution approach

with inventory bu�ers corresponds to solving the model in Section 3.1. For each visit to

a production port, the soft upper inventory bound corresponds to 90% of the upper stock

limit and the lower inventory bound coincides with the lower stock limit. For all visits

to a consumption port the soft lower bounds are set to Si + 0.1(Si − Si), while the soft
upper bounds are set to the upper stock limit. In both cases, the obtained soft inventory

bounds give rise to inventory bu�ers of 10% of the di�erence between the upper and

the lower stock limits. The unit penalty considered for soft inventory bounds violations

is 5. Results reported in Section 5.3 show the suitability of the values chosen for the

parameters of this model. Since the uncertainty is not considered in the de�nition of

the inventory bu�ers, this is a pure deterministic solution approach and is denoted by F.

Stochastic programming (S). This approach consists of solving model in Section 3.2. We

consider two di�erent values, 5 and 25, for the inventory violation penalty, Pi. It is

reported in [2, 3] that the use of large penalties make the model hard to solve as the

integrality gaps tend to increase. Thus the two chosen values represent the use of a

small and a medium penalty, respectively. Other values for this penalty (1, 10, 15, 20

and 30) were tested, however, the obtained results, not reported here, showed that for

the most of the instances the obtained solutions coincide with the ones corresponding
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either to Pi = 5 or Pi = 25. These models are solved using the decomposition procedure

proposed in [3]. The decomposition follows the idea of the L-shaped algorithm. The

problem is decomposed into a master problem and one subproblem for each scenario.

The master problem is solved for a subset of scenarios. Then for each disregarded sce-

nario the subproblem checks whether a penalty for inventory limit violations is incurred

when the �rst-stage decision is �xed. If such a scenario is found, additional variables

and constraints enforcing that deviation to be penalized in the objective function are

added to the master problem. The revised master problem is solved again, and the pro-

cess is repeated until all the recourse constraints are satis�ed. The resulting stochastic

optimization solution approaches are denoted by S5 and S25, respectively.

CVaR on the global inventory limit violation (C). This method consists of solving model

in Section 3.3.1 using the violation probability β = 0.01, parameter ε = 10 and the same

penalties as in the stochastic model, 5 and 25. Since the structure of the CVaR model

is similar to the structure of the stochastic model, these CVaR models are solved using

the same decomposition procedure. These solution approaches are denoted by C5 and

C25.

CVaR on the inventory level at each port visit (V). This method consists of solving

model in Section 3.3.2 using the violation probability β = 0.01, δ = 0.8 and ε taking

values 0.01 and 1. Again, the models are solved with the same decomposition procedure

used for the stochastic method. These CVaR solution approaches are denoted by V0.01

and V1.

Combined CVaR and deterministic model with inventory bu�ers (F). This is an hybrid

approach. The VaR on the inventory level at each port visit is determined to de�ne

soft inventory bounds for each port visit. Then the deterministic model with inventory

bu�ers is solved using the obtained values for the soft inventory bounds. If the solution

approach V0.01 is used to de�ne the bounds, then the solution approach is denoted by

F0.01 and if the solution approach V1 is used, the solution approach is denoted by F1.

Robust optimization (R). We consider the nominal travel times T̄ijv and a maximum

allowed delay, T̂ijv. The nominal travel times are de�ned to be equal to the expected

travel times values, that is, T̄ijv = E[Tijv]. The maximum allowed delay, T̂ijv, is a

constant value selected for each instance and obtained as follows. The deterministic

model is solved for several values of the travel times Tijv = T̄ijv + λT̄ijv, starting with
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λ = 0 and increasing its value by steps of 0.01 until the corresponding deterministic

model has no feasible solutions. The last value of λ leading to an instance with a feasible

solution is selected, and the maximum allowed delay, T̂ijv, is set to λT̄ijv.

We consider three robust solution approaches corresponding to Γ = 1, 2, 3. These

values are choseen since for the most of the instances the solution of the box-constrained

problem corresponds to Γ ≤ 3. Each robust model is solved by using the decomposition

procedure described in [4] that iterates between a master problem that considers a subset

of scenarios and an adversarial separation problem that searches for scenarios that make

the solution from the master problem infeasible. These robust solution approaches are

denoted by R1, R2 and R3.

5. Computational tests

This section reports the computational experiments carried out to compare the per-

formance of the thirteen solution approaches described in Section 4.3. A set of 21 in-

stances of a MIRP described in Section 4.1 is used. All tests were run on a computer

with an Intel Core i7-6700HQ processor, having a 2.60GHz CPU and 16GB of RAM,

using the Xpress-Optimizer 28.01.04 solver with the default options.

To evaluate the performance of each solution approach and how it reacts to the

uncertainty, after the �nal solution is obtained, the �rst-stage decision variables are

�xed and the two-stages stochastic model de�ned in Section 3.2 is solved for a large

sample of 1000 scenarios. For each scenario, the value of the recourse variables (the

second-stage variables) as well as the total amount of backlog are computed. For the

large sample, the minimum, average, and maximum amounts of backlog are computed.

Additionally, the stock-out probability that corresponds to the empirical probability of

having a scenario with a positive amount of backlog is computed. For the �rst-stage

solution, the total routing cost, the total amount of product loaded at all production

ports, and the total amount of product unloaded at all consumption ports during the

planning horizon are also computed. These values are compared with the corresponding

values obtained by the deterministic solution approach D.

Section 5.1 presents the computational results for 18 of the 21 instances. These 18

instances are solved to optimality by all the solution methods tested. The results for the

three most di�cult instances are reported in Section 5.2.
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5.1. Global results for instances solved to optimality

Here we present the computational results of the 18 instances solved to optimality by

all solution approaches. The instances are I1, I2 and I3 where I ∈ {A, B, C, D, E, F}.
Table 2 reports average computational results for the 18 instances obtained by each

of the 13 solution approaches. The �rst column gives information about the solution

approach. The second column named �Routing� displays the routing cost when compared

to the routing cost obtained by the deterministic solution approach D. The displayed

value is the average routing cost for all the 18 instances divided by the routing cost

obtained by solution approach D. The third, fourth and �fth columns (named �Min�,

�Average� and �Max�, respectively) report average values of the minimum, average and

maximum amounts of backlog over all instances. The sixth column, named �SOut(%)�,

displays the average of the stock-out probability over all instances. The seventh and

eighth columns, named �LQ� and �UQ�, respectively, display the average over all instances

of the total quantity loaded (LQ) and unloaded (UQ) divided by the total quantity loaded

(LQ) and unloaded (UQ) in the corresponding solution obtained by solution approach

D. The last column reports the average computational time, in seconds, to solve the

problem.

Table 2: Average computational results obtained by the 13 solution approaches for the 18 instances.
Sol. Approach Routing Min Average Max SOut(%) LQ UQ Seconds
D 1.00 0.0 2.2 43.3 20.3 1.00 1.00 15
F 1.06 0.0 0.6 24.1 5.0 0.99 1.01 49
F0.01 1.07 0.0 0.5 19.1 4.4 1.03 1.05 335
F1 1.06 0.0 0.9 21.8 6.7 1.01 1.05 1289
V0.01 1.00 0.1 0.7 22.1 17.3 1.02 1.05 306
V1 1.07 0.1 0.8 19.0 16.7 1.02 1.06 1245
C5 1.08 0.1 0.7 23.5 16.9 1.06 1.07 982
C25 1.11 0.0 0.7 24.9 5.8 1.05 1.03 877
S5 0.94 0.8 1.9 29.4 28.0 1.03 1.05 352
S25 1.00 0.1 0.8 25.1 17.6 1.00 0.99 326
R1 1.07 0.0 1.0 23.4 7.4 1.11 1.17 26
R2 1.10 0.0 0.8 18.4 6.0 1.12 1.16 62
R3 1.13 0.0 0.8 17.7 6.1 1.12 1.24 139

Table 2 shows that, on average, the worst solutions for the average and maximum

values of the backlog correspond to the solutions obtained by the deterministic solution

approach D. The stochastic programming approach S5, with backlog cost equal to �ve,

provides solutions with high amounts of backlog. The average stock-out probability in

this solution approach is the highest among all the solution approaches, followed by the
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deterministic approach D. This behavior can easily be explained by the fact that the

cost of the backlog used in solution approach S5 is not su�ciently high to avoid so-

lutions with a large amount of backlog. However, S5 has the lowest (average) routing

costs. The average routing cost is high in the robust solution approaches R2 and R3,

and this cost tends to increase as the allowed maximum number of delays increases. The

routing cost is also high in the CVaR solution approach C25. Comparing the stochastic

solution approach S25 and the robust solution approaches (R1, R2 and R3), the robust

solution approaches show to be less sensitive to high travel times delays, which is re-

�ected by the lower value of the average maximum amount of backlog. Furthermore,

the stock-out probability is lower in the robust approaches than in the stochastic ones.

A signi�cant di�erence between the robust solutions and the solutions obtained by the

remaining solution approaches is that the quantities loaded and unloaded are higher.

When comparing the solutions obtained by the stochastic solution approaches S5 and

S25 with the solutions obtained by the CVaR approaches C5 and C25 it is possible to see

that the CVaR approaches have solutions with higher routing cost while having lower

amount of backlog. Hence, the average values of the minimum, average and maximum

amounts of backlog as well as the stock-out probability are lower in these solution ap-

proaches. Another interesting comparison is between the deterministic approach F with

inventory bu�ers and the hybrid approaches F0.01 and F1. All these methods have high

(average) routing costs, however the solutions obtained by the solution approaches F0.01

are characterized by lower values of the average backlog, the maximum backlog and the

stock-out probability. In fact, among all the solution approaches, approach F0.01 gives

results with lowest average amount of backlog and stock-out probability.
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Figure 6: Graphical comparisons between the 13 solution approaches.

Based on the results in Table 2, Figure 6 shows the comparison of the average routing

costs with the average backlog, maximum backlog, and stock-out probability. In each of

three graphs, a dotted line is drawn, separating the dominated from the non-dominated

solution approaches. Analyzing the �gure we observe that the stochastic programming

approach S25 is clearly dominated by approach V0.01, and these two solution approaches

dominate the deterministic approach D.
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5.2. Results for the hard instances

Here we report the computational results for the most di�cult instances G1, G2 and

G3. These three instances are solved to optimality by the robust solution approaches R1,

R2 and R3, and by the deterministic approach D without inventory bu�ers and approach

F with inventory bu�ers in a reasonable amount of time. Instance G2 is also solved to

optimality by the stochastic programming approach S5. The instances are not solved to

optimality by the remaining approaches. To solve these instances using these solution

approaches, the MIP based local search procedure described in [3] is used. The procedure

starts by using the deterministic approach D to obtain an initial solution. Then, the

local branching inequality limiting to four the number of variables wim, (i,m) ∈ SA,

allowed to �ip their value is added to the stochastic model containing all the scenarios.

The resulting model is run for a time limit of 1000 seconds. The process is repeated until

no improvement in the objective function is observed. Since a time limit is imposed, the

solution obtained in each iteration may not be optimal.

Table 3 displays the computational results for instances G1, G2 and G3, where an

asterisk indicates that the instance is solved to optimality. The description of the contents

of the columns is the same as in Table 2, however the values are shown for each instance

and not as averages of a set of instances. The third column in Table 3 reports the

optimality gaps for the instances not solved to optimality by each method. Notice that

both the stochastic and the CVaR models are solved by an ILS heuristic, hence, in

order to obtain a lower bound to estimate the optimality gap for these methods, we run

the corresponding complete models (with all the 25 scenarios) imposing a time limit of

two hours. After the inventory bounds are determined by approaches V0.01 and V1, the

corresponding deterministic models with inventory bu�ers are solved to optimality for

almost all the instances, except for the instance G3 with the inventory bounds given by

method V1.

The comments for Table 2 do not hold here. For instance, solution approach V0.01

does not dominate solution approaches S25 and D. However, in general, the determinis-

tic approach D produces solutions with a high amount of backlog and a high stock-out

probability. Note that the stochastic programming and CVaR approaches have, in gen-

eral, the highest computational time. These are the solution approaches hardest to solve

and, in each iteration, we noticed that the integrality gap is large.

For some instances, the optimality gaps associated to some approaches are too large,

as happens for instance G1 in relation to the approaches C5 and C25. These large gaps
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Table 3: Computational results for instances G1, G2 and G3.
Approaches Gap(%) Routing Min Average Max SOut(%) LQ UQ Seconds

D 0.0 1.00 0.0 2.7 55.0 19.8 1.00 1.00 203
F 0.0 1.05 0.0 2.4 53.2 18.4 0.99 0.96 241
F0.01 0.0 1.05 0.0 2.4 53.2 18.4 1.00 0.96 3116
F1 0.0 1.05 0.0 2.4 53.2 18.4 1.00 0.96 6496
V0.01 25.8 1.07 0.0 2.4 53.2 18.4 1.00 1.00 2586
V1 18.9 1.07 0.0 1.9 63.3 10.6 1.00 1.00 6000

G1 C5 82.6 1.46 0.0 5.2 80.1 27.6 0.94 1.00 2000
C25 95.6 1.46 0.0 5.2 80.1 17.6 0.94 1.00 2000
S5 8.9 1.00 0.0 2.4 53.2 18.4 1.00 1.00 543
S25 24.2 1.00 0.0 2.4 53.2 18.4 1.00 1.00 1363
R1 0.0 1.00 0.0 2.6 54.0 20.8 1.04 1.04 123
R2 0.0 1.10 0.0 1.7 64.3 10.4 1.07 1.08 8485
R3 0.0 1.10 0.0 1.7 64.3 10.4 1.07 1.08 8485
D 0.0 1.00 0.0 5.7 86.0 43.2 1.00 1.00 254
F 0.0 1.00 0.0 2.0 48.4 15.6 0.94 1.02 90
F0.01 0.0 1.00 0.0 1.6 45.2 13.6 0.94 1.02 5807
F1 0.0 1.00 0.0 1.2 44.0 10.0 1.00 1.09 5802
V0.01 11.8 1.05 0.0 0.2 23.8 1.8 0.88 1.15 5714
V1 6.9 1.05 0.0 0.2 23.8 1.8 0.88 1.15 5714

G2 C5 14.3 1.13 0.0 0.1 26.9 1.4 0.88 1.15 3585
C25 19.2 1.13 0.0 0.4 40.9 3.4 0.91 1.15 5271
S5 0.0 1.00 0.0 0.2 23.8 1.8 0.91 1.00 1202
S25 13.3 1.05 0.0 0.2 23.8 1.8 0.88 1.16 1275
R1 0.0 1.00 0.0 0.8 39.7 6.8 1.01 1.09 446
R2 0.0 1.05 0.0 0.1 10.4 1.0 1.00 1.28 2251
R3 0.0 1.05 0.0 0.0 0.0 0.0 1.00 1.28 1984
D 0.0 1.00 0.0 3.2 58.3 26.2 1.00 1.00 874
F 0.0 1.05 0.0 2.7 50.5 20.8 0.89 1.05 156
F0.01 0.0 1.05 0.0 3.5 55.5 28.2 0.91 1.05 4238
F1 18.9 1.25 0.0 0.3 21.0 3.0 0.89 1.02 9068
V0.01 32.3 1.22 0.0 4.9 79.1 35.6 0.97 1.03 4144
V1 12.3 1.41 5.0 7.6 59.5 100.0 0.98 1.00 5468

G3 C5 40.2 1.57 0.0 0.4 30.0 4.0 0.94 1.00 4589
C25 40.6 1.61 0.0 0.8 35.3 7.2 0.89 1.00 3625
S5 19.7 1.07 4.6 6.0 32.4 100.0 0.99 1.00 1259
S25 39.2 1.31 0.0 0.8 46.7 8.8 0.97 1.00 4484
R1 0.0 1.05 0.0 1.1 44.0 9.0 1.01 1.00 317
R2 0.0 1.05 0.0 1.3 46.0 10.0 1.02 1.06 579
R3 0.0 1.05 0.0 1.3 46.0 10.0 1.02 1.06 538
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can be explained by the fact that for these approaches a running time limit of 1000

seconds was imposed to each iteration. Hence, from the last column of Table 3 we can

see that only two iterations were performed in both cases. It means that a feasible

solution was founded in the �rst iteration and it was not possible to obtain a better

solution in the second iteration within the imposed time limit.

5.3. Sensitivity analysis of the parameters for the deterministic model with inventory

bu�ers

The performance of the deterministic solution approach with inventory bu�ers F

depends on two parameters: the inventory bu�ers used and the penalty consider for the

violation of the soft inventory bounds. In this section we report average results obtained

with model F for 12 combinations of these two parameters. The inventory bu�ers used

correspond to 5%, 10%, 15% and 20% of the di�erence between the upper and the lower

stock limits while the unit values used to penalize soft inventory bounds violations are

1, 5 and 10. Table 4 reports the average results obtained for all the 18 instances that are

solved to optimality by all the proposed approaches (the ones used in Section 5.1). The

�rst line identi�es the value of the penalty, while the second one identi�es the percentage

used to de�ne the inventory bu�ers. The third line reports the average routing cost of

the solutions obtained by model F divided by the cost of the solutions obtained by the

deterministic model without inventory bu�er (model D). The forth and the �fth lines

report the average and the maximum number of backlog units, respectively, when the

�nal solution is evaluated in a large sample of 1000 scenarios (as described in Section

5.1). The sixth line reports the average values of the stock-out probability while the last

line reports the number of times that each combination of parameters leads to the best

solutions based on each of the four quality parameters identi�ed in the previous lines.

For example, the solutions obtained with penalty equal to 1 and percentage equal to 5

are the best for all the 18 instances in terms of the routing cost, for 5 instances in terms

of the average number of backlog units, for 2 instances in terms of the maximum number

of backlog units and also for 2 instances in terms of the stock-out probability, hence, the

number presented for this combination of parameters is 27 (18+5+2+2).

Table 4 shows that the results associated with inventory bu�ers larger than 5% are

not sensitive to the penalty used. The same does not hold for inventory bu�ers equal

to 5% where larger di�erences can be observed for di�erent penalty values. In terms of

the routing cost, best results are in general associated to low inventory bu�ers and low

penalties, while the best results in terms of the maximum number of backlog units are
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Table 4: Results for the deterministic model with inventory bu�ers for di�erent values of the inventory
bu�ers and the penalty of the violations.

Penalty =1 Penalty=5 Penalty=10
5% 10% 15% 20% 5% 10% 15% 20% 5% 10% 15% 20%

Routing 1.00 1.06 1.06 1.07 1.02 1.05 1.06 1.06 1.06 1.06 1.06 1.06
Average 1.2 0.6 0.8 0.8 0.9 0.6 0.8 0.8 0.7 0.6 0.8 0.8
Maximum 35.7 23.8 21.5 19.8 32.9 24.1 21.4 20.1 25.8 24.1 21.5 19.9
SOut(%) 10.1 5.1 6.1 6.1 7.2 5.0 6.2 6.1 6.0 4.8 6.1 6.1

# BS 27 38 35 35 30 38 37 32 27 34 36 33

associated to the approaches with larger inventory bu�ers. The best results in terms of

the average number of backlog units, the stock-probability and the total number of best

solutions founded are in general obtained when a value of 10% is used for the inventory

bu�ers. Furthermore, for this percentage there are no big di�erences between the results

associated to di�erent penalties. Hence, on average, a percentage of 10% and a penalty

equal to 5 are suitable values for the deterministic model with inventory bu�ers.

5.4. Evaluating the use of CVaR in the stochastic programming model

Here we compare the stochastic programming and the CVaR approaches over the

sample of 25 scenarios used to obtain the �rst-stage solutions. Figure 7 displays four

bars for each of the 18 instances solved to optimality by all the 13 solution approaches. In

each set of four bars, the �rst two (gray) bars represent the average number of backlog

units observed in the solutions provided by methods C5 and S5, while the next two

(black) bars represent the maximum number of backlog units for the same methods.

Since no relevant information can be draw from the bars associated to the minimum

units of backlog, such bars are not presented here.
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Figure 7: Di�erence between the solutions obtained by the approaches S5 and C5 for the minimum,
average and maximum amount of backlog.

When comparing the approaches S25 and C25, the results are very similar, so they

are not displayed here. However, we note that the di�erences between approaches S5

and C5 are higher than between approaches S25 and C25. For all instances, the results

displayed in Figure 7 allow us to conclude that the maximum number of backlog units is

lower in the solutions obtained by the CVaR approaches than in the solutions obtained

by the corresponding stochastic programming approaches. In almost all the instances,

the same behavior is observed for the average amount of backlog, except for instances

D1 and D2. However, in these two cases, the di�erences between the average values are

very small. Mann-Whitney hypothesis tests were conducted to realize if there are signif-

icant di�erences between the solutions obtained by both the CVaR and the stochastic

approaches, in terms of the average and the maximum number of backlog units. The

obtained results reveal that the di�erences in terms of the average and the maximum

number of backlog units between the two approaches are signi�cant for a signi�cance

level greater than 0.004 and 0, respectively. Hence, for the con�dence levels usually

considered (90%, 95% and 99%), the average and the maximum number of backlog units

is signi�cantly lower in the solutions provided by the CVaR approaches than in the ones

obtained by the stochastic approaches.
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Figure 8 shows a pair of bars for each instance. The �rst bar represents the di�erence

between the stock-out probability in the solution approaches S5 and C5. The second bar

represents the di�erence between the stock-out probability in the solution approaches

S25 and C25.
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Figure 8: Di�erence between the stock-out probability in the solutions obtained by the stochastic pro-
gramming approaches (S5 and S25) and the corresponding CVaR approaches (C5 and C25).

For almost all the instances, the stock-out probability is less in the solutions from the

CVaR approaches than in the solutions from the stochastic programming approaches,

except for instances B1, D1 and D2.

Observe that in the CVaR approaches the amount of backlog tends to be much lower

than in the corresponding stochastic approaches and the same holds for the stock-out

probability. Furthermore, higher values of the backlog amounts correspond to lower

routing costs in the solutions obtained by the stochastic approaches.

5.5. Results for instance E2

In this section we report some results for instance E2. This instance is selected

because its solutions obtained by the hybrid solution approach F0.01 have the largest

variation of the inventory bu�ers for each port. Instance E2 has 2 production ports

and 3 consumption ports, and the maximum number of visits allowed to each port is 4.

Table 5 reports the stock limits and the soft inventory bounds (that were used to de�ne

the inventory bu�ers) in both approaches F and F0.01, for all port visits. Ports 1 and

2 are the production ports while ports 3, 4 and 5 are the consumption ports. The �rst
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column, named �Port�, identi�es the port, with P for production and C for consumption.

The second column named �Stock limits� presents the lower and the upper stock limits.

The lower and upper soft inventory bounds used in method F are presented in the third

and forth columns while the values used by approach F0.01 are presented in the �fth and

sixth columns. Note that, for each port, the soft inventory bound used in approach F

Table 5: Inventory bu�ers used in the solution approaches F and F0.01 for the instance E2. The values
are presented in terms of the number of units.

F F0.01

Port Stock limits Lower IB Upper IB Lower IB Upper IB
240

P1 [0 , 300] - 270 - 249
252
240

P2 [0 , 350] - 315 - 280

C3 [0 , 250] 25 - 50 -

7
C4 [0 , 145] 15 - 29 -

29
29
30

C5 [0 , 300] 30 - 22 -
54
60

is the same for all visits. In approach F0.01 the soft inventory bound used is the same

for all the visits in ports 2 and 3, while for ports 1, 4 and 5 they di�er for each visit.

Moreover, the upper soft inventory bounds are de�ned for the production ports but not

for the consumption ports, while the lower soft inventory bounds are de�ned for the

consumption ports but not for the production ports. Instance E2 shows the advantage

of de�ning inventory bu�ers by using a CVaR approach for each port visit, because

the use of such inventory bu�ers produced better results than the ones obtained using

approach F .

Table 6 presents results for the solutions obtained using solution approaches F and

F0.01, when evaluated using the large set of 1000 scenarios. This table also displays
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the results for other solution approaches: the deterministic approach D (as the reference

approach), the CVaR approach C25, the stochastic approach S25 and the robust approach

R2. These solution approaches were selected because they have the best behavior for this

instance and also a global good behavior as shown in Table 2. Notice that the average

results for solution approaches R2 and R3 are similar but the routing cost is higher for

R3.

Table 6: Results for instance E2.
Model Routing Min Average Max SOut(%) LQ UQ Seconds

D 1.00 0.0 8.4 137.9 55.6 1.00 1.00 123
F 1.02 0.0 0.5 36.3 2.6 0.99 1.00 47
F0.01 1.01 0.0 0.3 22.4 4.0 1.00 1.02 1037
C25 1.01 0.0 0.3 22.4 4.0 1.00 1.02 1051
S25 1.01 0.0 0.3 26.8 3.8 1.00 1.00 1058
R2 1.01 0.0 0.3 22.4 4.0 1.25 1.02 401

The large set of 1000 scenarios used to evaluate the solutions obtained by each so-

lution approach considered in Table 6 leads to a sample of values where each value

corresponds to the amount of backlog in one of the scenarios. The obtained values for

each solution approach for instance E2 are represented in box-plots in Figure 9. The

solution approaches are identi�ed in the x-axis. Each point in the �gure corresponds to

the backlog amount observed in one scenario.
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Figure 9: Sample box-plots for instance E2.

This box-plot is representative for most of the instances. The highest variance is

obtained by solution approach D, where the uncertainty is not considered. A similar

behavior can be observed for the results obtained by approach S5, not presented here.

In general, for the remaining solution approaches, there is no stock-out in at least 75%

of the scenarios (750 scenarios).

Figure 10 displays the empirical distribution of the backlog for each solution approach

considered in the box-plots. Notice that only 5 curves can be observed in this �gure

because the results for approaches F0.01 and C25 are exactly the same for this instance.
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Figure 10: Empirical distribution of the backlog for some solution approaches for instance E2.

The results presented show the highest variance of the empirical backlog distribution

derived from the deterministic approach D. When the uncertainty is not explicitly

considered in the approach, the empirical distribution of the backlog is characterized by

heavy tails. In general the tails tend to be smoother in the robust and CVaR approaches

than when using stochastic programming.

6. Conclusions

We consider a maritime inventory routing problem where the travel times are uncer-

tain. The impact of the uncertainty is analyzed according to �ve di�erent general models

of the problem: a deterministic model, a deterministic model with inventory bu�ers,

robust optimization, stochastic programming, and stochastic programming models ex-

tended using the conditional value-at-risk measure. To the best of our knowledge, models

using the conditional value-at-risk have never been used before to solve this problem.
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The results obtained for a set of 21 instances show that substantial gains can be

achieved when uncertainty is explicitly considered into the problem. In general, the

deterministic approach and the stochastic approach with a low penalty value for inventory

limit violations generate solutions where both the probability of violation and the total

amount of violation are higher. However, these approaches are characterized by lower

routing costs. Conversely, the solutions obtained by both the robust and the CVaR

solution approaches are characterized by high routing costs but provide solutions that

are more protected against the uncertainty, in the sense that the inventory limit violation

in the obtained solutions is lower. The stochastic programming approach including high

penalties for inventory bounds violations, the deterministic approach with inventory

bu�ers and the hybrid approach that solves a deterministic approach with the inventory

bu�ers derived from the CVaR approach show a tradeo� between routing costs and the

amount and probability of inventory limit violations.

For the planning problem and stochastic programming method described in this

paper, it is assumed that the arrival times to ports and the inventory levels may be

adjusted due to uncertain traveling times. No �exibility in the route planning is allowed.

Therefore, an interesting topic for further research would be to study additional �exibility

in the route planning by a multi-stage stochastic model or by a two-stage model solved

in a rolling-horizon fashion with updated information.
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