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Abstract: We present measurements of the temperature dependence of the absorption cross-
section of Yb:YAG at the zero phonon line (ZPL) near 969 nm. Experiments were carried out on
a 1.08 mm thick, ceramic, 1.1 at-% Yb-doped YAG sample over a temperature range between 80
K and 300 K. Results show that the ZPL characteristics strongly depend on temperature. The
absorption cross section increases from 0.8 · 10−20 cm2 to above 49 · 10−20 cm2 as temperature is
decreased from 300 K to 80 K. The full-width at half maximum of the absorption line decreases
with temperature, from 2.38 nm at 300 K to 0.05 nm at 80 K. The absorption peak shifts from
969.04 nm at 300 K to 968.39 nm at 80 K. To the best of our knowledge, this is the first time that
the ZPL of Yb:YAG has been characterised with enough resolution at cryogenic temperatures
and we expect that this data will assist in the design and optimisation of Yb:YAG lasers pumped
on this absorption line.
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1. Introduction

Laser systems capable of generating high energy (from few J to kJ) nanosecond pulses are
required for a wide variety of applications. These include materials processing [1], research into
extreme states of matter [2] and pumping of petawatt-class femtosecond lasers, which in turn are
used for the realisation of compact, high brightness radiation (X-ray and γ-ray) [3] and particle
(electron, proton, ion, muon) [4,5] sources for a wide range of applications, including remote
high-resolution imaging [6] and medical applications [7,8]. Proof-of-principle demonstrations
of most of these applications have so far been carried out using large-scale lasers relying on
flash-lamp pumped amplifiers, which are limited in terms of pulse repetition rate and efficiency
[9]. However, practicable real-world applications in the industrial and medical sectors require
efficient high energy lasers delivering high average powers. Recently, it has been demonstrated
that diode-pumped solid state lasers (DPSSLs) are capable of delivering multi-J pulse energy at
multi-Hz repetition rate. Yb3+-doped Yttrium Aluminium Garnet (Yb:YAG) has been identified
as one of the most suitable active media for high-energy, high repetition rate DPSSLs [10].
Cryogenically-cooled ceramic Yb:YAG is used, for example, for the production of 105 J pulses
at 10 Hz (> 1 kW average power) [11] and of 1.5 J pulses at 500 Hz (750 W average power)
[12]. The absorption spectrum of Yb:YAG includes two absorption peaks, one around 940 nm
and the other, the so-called zero-phonon line (ZPL), around 969 nm [13]. Most Yb:YAG lasers,
in particular those operating at low gain medium temperature, have so far been pumped at 940
nm because the broader bandwidth of this line imposes less stringent requirements on pump
linewidth and wavelength stability. However, recent improvements in volume Bragg grating
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stabilised diode laser technology enable narrower and more stable pump emission spectra [14],
which could pave the way to high power pumping at the ZPL. This would result in lower quantum
defect, leading to increased system efficiency and reduced thermal load on the gain medium.
As a result, systems would be less affected by unwanted thermal effects, such as aberrations
and thermal stress-induced birefringence, and could be operated at higher average powers. The
advantages of ZPL pumping have already been confirmed in the case of low-energy Yb:YAG
systems, such as thin-disk amplifiers [15]. High-energy, high average power Yb:YAG amplifiers
rely on cryogenic cooling to reduce re-absorption losses and to remove waste heat. Information
on the temperature dependence of the absorption of Yb:YAG around 940 nm is available in
the literature [15,16]. The absorption at the ZPL was included in those measurements, but the
spectrographs employed had insufficient resolution to accurately measure the width and the
absorption of the line at low temperatures. These measurements showed that the ZPL undergoes
thermal narrowing and shift as the temperature is reduced. Previous studies suggest that these
mechanisms are due to a combination of homogeneous broadening and electron-phonon coupling
effects [17,18]. This paper reports on high resolution characterisation of the ZPL between 80 K
and 300 K. We expect that our results will be useful for assessing the feasibility of ZPL pumping
for high-energy DPSSLs and for optimising pump sources for Yb:YAG systems.

2. Materials and methods

Initially, absorption measurements were carried out on a 5.13 mm thick, ceramic, 1.1 atom-%
Yb3+-doped YAG sample. However, results showed that absorption by this sample was too
strong at low temperatures to correctly characterise the ZPL. As a result, a second round of
measurements, reported in this paper, was carried out on a thinner 1.1 atom-% Yb3+-doped
ceramic YAG sample with a size of 24.3 mm x 24.3 mm x 1.08 mm, manufactured by Konoshima
Chemical (Japan) and polished on both square surfaces by Baikowski International (Japan). The
square surfaces are plane parallel and are anti-reflection (AR) coated to achieve <0.2% reflection
per surface between 920 nm and 1050 nm for angles of incidence between 0◦ and 10◦. Figure 1
shows the experimental setup used to characterise the ZPL.

Fig. 1. Experimental setup used to characterise absorption at the ZPL of Yb:YAG (PD1,
PD2 = photo-detectors). The insert shows frontal and rear views of the holder in which the
Yb:YAG sample is mounted.

The radiation source used for the measurement is a continuous wave fibre-coupled external
cavity diode laser (LION P-960-0117-00998, Sacher Laser), tunable over the spectral range
between 920 nm and 985 nm and with a linewidth of <20 kHz. The output beam, with a power of
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around 15 mW, is collimated by a fibre collimator and directed onto the Yb:YAG sample under
study, which is located inside an optical cryostat (Optistat DN-V2, Oxford Instruments). The
sample, oriented normal to the incident beam, is mounted directly under the heat exchanger of
the cryostat using a copper base plate and an aluminium holder. The holder provides contact
onto the whole back surface of the sample with the exception of a 8 mm diameter aperture
to allow transmission of the laser beam (see insert in Fig. 1). Indium foil is placed between
sample and holder surfaces to improve thermal contact. The temperature is measured using a
platinum resistance thermometer attached to the copper plate. Fused silica wedged windows, AR
coated to reduce surface reflectivity below 0.5%, allow optical access to the sample. Two silicon
photo-detectors (PH100-Si-HA, Gentec-EO) monitor the power incident onto and transmitted
through the sample. The first, indicated in Fig. 1 as PD1, measures the power of the beam reflected
off the front surface surface of an uncoated fused silica wedge. The second one, indicated as PD2,
measures the power transmitted through the sample. Before the experiment, the power incident
onto the Yb:YAG sample was calibrated by positioning PD2 directly behind the wedge and by
simultaneously measuring signals provided by PD1 and PD2. Optical losses introduced by the
cryostat windows were determined as a function of the wavelength by measuring transmission
through the system without the Yb:YAG sample in the beam path. Background signals on
PD1 and PD2 were measured and subtracted for all power measurements. A high resolution
spectrometer (Laser Spectrum Analyser, HighFinesse GmbH), coupled with a single mode fibre,
measures the wavelength of the light reflected off the back surface of the wedge. The absolute
accuracy of the spectrometer is 5 pm and the sensitivity for change in wavelength is 1 pm. The
spectrometer was calibrated with a helium-neon laser.

3. Measurement results

The absorption cross-section of Yb:YAG at the ZPL was calculated using Lambert-Beer’s law
[19]:

σa(λ) = ln
(
Ii(λ)

It(λ)

)
/NdopL, (1)

where λ is the wavelength of light, Ii(λ) and It(λ) are the power incident onto and transmitted
through the sample, respectively, Ndop is the density of dopant Yb3+ ions and L is the thickness
of the sample. For 1.1 atom-% Yb3+-doped YAG, Ndop = 1.52 · 1020 cm−3. Absorption
measurements were carried out for a number of discrete temperatures between 80 K and 300
K. The wavelength was changed in nominal steps of 0.01 nm for measurements between 300 K
and 150 K; 0.0025 nm at 125 K and 100 K; and 0.001 nm at 80 K. Data shown in this article is
available at [20]. Figure 2 shows the transmission through the sample as a function of wavelength
at 80 K, 100K, 200 K and 300 K. The transmission at the ZPL centre is 1.12%, 68.8% and 87.6%
at 100 K, 200 K and 300 K, respectively. When the temperature is reduced to 80 K, transmission
at maximum absorption approaches 0%.
Figures 3(a) and 3(b) show, in more detail, transmission measurements as a function of the

wavelength at 80 K and 100 K, respectively. Figure 3(c) shows data points collected at 80 K
over a small wavelength range around the ZPL absorption peak. It is possible to notice that the
measured transmission remains fairly constant over a small range around the line centre. This
indicates that, over this range, the incident beam is completely absorbed because the sample is
still too thick. A lower-absorption sample is therefore required for accurate characterisation of
the ZPL at 80 K. The 0.03% transmission signal at maximum absorption provides an upper limit
to the estimate of the spectral impurity of the source. This data, once processed using Eq. (1),
provides a lower limit to the actual absorption cross-section at 80 K. However, given the small
spectral range over which the sample absorbs all of the incoming light, the data still provides a
good estimate of the width of the absorption line and of the peak wavelength at 80 K. Figure 3(d)
shows a similar view of data collected at 100 K. In this case, the lack of flattening of the curve at
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Fig. 2. Transmission through the sample at the ZPL at 80 K, 100 K, 200 K and 300 K.

the centre of the line and the higher value of transmission indicate that the measured transmission
is largely unaffected by systematic errors such as spectral impurity.

Fig. 3. Transmission through the sample as a function of wavelength at 80 K (a) and at 100
K (b). Zoomed-in views of the measurement at the centre of the ZPL at 80 K (c) and at 100
K (d).

Figure 4(a) shows the absorption cross-section, calculated using Eq. (1), at the ZPL at
temperatures between 80 K and 150 K and Fig. 4(b) between 175 K and 300 K. Some spectra
show oscillations consistent with an etalon effect caused by the sample. Oscillations are more
apparent at higher temperature because etalon finesse increases with decreasing absorption.
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Fig. 4. Absorption cross-section at the ZPL of Yb:YAG at temperatures between 80 K and
150 K (a) and between 175 K and 300 K (b).

Figure 5 summarises the temperature dependence of the full-width at half maximum (FWHM)
linewidth (a), of the peak wavelength (b) and of the peak absorption cross-section (c).

Fig. 5. ZPL characteristics between 80 K and 300 K: FWHM linewidth (a), peak wavelength
(b) and peak absorption cross-section (c). The data point at 80 K represents a lower limit to
the actual value of the absorption cross-section.

At 300 K, the ZPL is centred at 969.04 nm, with a peak absorption cross-section of 0.8 · 10−20
cm2 and a FWHM linewidth of 2.38 nm, in agreement with data published in [21,22]. As the
temperature is decreased, the FWHM linewidth reduces, reaching 0.05 nm at 80 K (Fig. 5(a)),
and the peak wavelength shifts to lower values, with 968.39 nm measured at 80 K (Fig. 5(b)). At
the same time, the peak absorption cross-section sharply increases (Fig. 5(c)), reaching 28 · 10−20
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cm2 at 100 K and a value above 49 · 10−20 cm2 at 80 K. Error bars in Fig. 5(c) take into account
uncertainty in the laser power measurement (±5%), in sample doping concentration (±1.8%
relative) and in the amount of sample material thickness (±0.9%).
The narrow linewidth of the ZPL at low temperatures constitutes the main challenge towards

ZPL pumping because it imposes tight demands on pump linewidth and wavelength stability. The
feasibility of ZPL pumping at low temperatures needs to be investigated along with the practical
implications of the high absorption cross-section and of the resulting low saturation fluence. We
have started work on modelling pump absorption to analyse the feasibility of ZPL pumping for
high-energy, high average power DPSSLs.

4. Conclusion

In this paper, we investigated the temperature dependence of the absorption cross-section near
the ZPL of Yb:YAG between 80 K and 300 K. To the best of our knowledge, this is the first time
that the ZPL of Yb:YAG has been characterised with sufficient resolution at low temperatures.
Measurements show that peak absorption cross-section and FWHM linewidth strongly depend
on the temperature of the material. The FWHM linewidth reduces from 2.38 nm at 300 K to
0.05 nm at 80 K, while the peak absorption cross section increases from 0.8 · 10−20 cm2 to above
49 · 10−20 cm2. The absorption peak shifts from 969.04 nm at 300 K to 968.39 nm at 80 K. We
expect that these results will be useful for the design and optimisation of Yb:YAG lasers pumped
at the ZPL.
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