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Abstract
We compare numerically the performance of reversible and non-reversible Markov Chain Monte Carlo algorithms for high-
dimensional oil reservoir problems; because of the nature of the problem at hand, the target measures from which we sample
are supported on bounded domains. We compare two strategies to deal with bounded domains, namely reflecting proposals
off the boundary and rejecting them when they fall outside of the domain. We observe that for complex high-dimensional
problems, reflection mechanisms outperform rejection approaches and that the advantage of introducing non-reversibility in
the Markov Chain employed for sampling is more and more visible as the dimension of the parameter space increases.

Keywords Markov chain Monte Carlo methods · Non-reversible Markov chains · Subsurface reservoir simulation ·
High-dimensional sampling

1 Introduction

Markov Chain Monte Carlo (MCMC) methods are popular
algorithms which allow one to sample from a given target
measure π on R

N . In combination with the Bayesian
inference approach, MCMC methods have been very
successfully implemented in a vast range of problems in
the applied sciences, and the literature about MCMC is
extensive. The purpose of MCMC algorithms is to build a
Markov chain {xk}k∈N which has the measure π as invariant
measure. Traditionally this is obtained by ensuring that the
chain satisfies the detailed balance condition with respect
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to the measure π , so that the resulting chains are reversible
with respect to π . In recent years, non-reversible MCMC
algorithms have attracted a lot of attention, because of their
favourable convergence and mixing properties; the literature
on the matter has rapidly become large, here we refer the
reader to e.g. [2, 3, 7, 9, 17, 18] and references therein;
however, to the best of our knowledge, most of the papers
on non-reversible MCMC so far have tested this new class
of algorithms only on relatively simple target measures.
Furthermore, the performance of non-reversible algorithms
has been discussed almost exclusively in the case in which
the measure is supported on the whole of RN . However,
in many applications, it is very important to be able to
sample from measures supported on bounded domains.
This is the case, for example, in applications to reservoir
modelling and petroleum engineering, which we treat in
this paper. The purpose of this paper is twofold: on the one
hand, we want to test the performance of non-reversible
algorithms for complex, high-dimensional problems, which
are completely out of reach for a full analytical treatment;
on the other hand, we want to employ them for situations
in which the target measure is supported in a bounded
domain. The non-reversible algorithms that we consider
in this paper are the so-called Horowitz algorithm, see
[12], and the second-order Langevin-Hamiltonian Monte
Carlo (SOL-HMC) algorithm, introduced in [8]. Both
of them are non-reversible modifications of the well-
known Hamiltonian Monte Carlo (HMC) [16], which is
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reversible. More precisely, the Horowitz algorithm is a non-
reversible version of HMC and the SOL-HMC algorithm
is a modification of the Horowitz algorithm, well-posed in
infinite dimensions and therefore well-adapted to sample
from the high-dimensional target measures that we will treat
here.

All the algorithms we discuss in this paper need in
principle no modification in order to sample from measures
supported on bounded domains. However, if they are not
suitably modified, they will employ proposal moves which
fall outside of the support of the target measure. For
the problem we consider, this seems to give two major
drawbacks, namely (i) proposal moves that fall outside of
the box are immediately rejected, so the algorithm wastes
time rejecting moves which one knows a priori should not be
made;1 (ii) the likelihood function is calculated through the
use of a simulator, which, further to being time-consuming
to run, it will mostly fail to calculate correctly values that
fall outside the support of the target. For this reason, we will
consider two modifications of each one of the mentioned
algorithms in which proposal moves that fall outside of the
support of the target measures are either rejected or bounced
off (or better, reflected off) the boundary of the support (see
Section 2), so that the proposal is not automatically rejected
as it will fall within the support. With these observations in
mind, let us come to summarise the main conclusions of the
paper:

• We compare rejection and reflection strategies and
test them on both low- and high-dimensional targets
and conclude that, for the problems at hand, the two
strategies perform similarly when implemented in low
dimensions; however, in high dimensions (and for
more complex problems where a proxy is employed
for the likelyhood function), reflections seem more
advantageous.

• We compare the performance of HMC, Horowitz and
SOL-HMC and conclude that, in high dimensions, the
SOL-HMC algorithm is substantially outperforming the
other two.

Performance of all the algorithms is compared by using
the normalised effective sample size (nESS) as a criterion
for efficiency, see Section 4. We emphasise that one
of the main purposes of this paper is to demonstrate
how the SOL-HMC algorithm, while being a simple
modification of the HMC algorithm, which requires truly
minimal code adjustment with respect to HMC, can bring
noticeable improvements with respect to the latter method;
furthermore, such improvements are more noticeable when
tackling high-dimensional complex target measures.

1Admittedly, this observation only applies when the size of the domain
is known a priori. See also [4].

The paper is organised as follows: in Section 2, we recall
the HMC, SOL-HMC and Horowitz algorithms, present the
numerical integrators that we use in order to implement
such algorithms and introduce the versions of such meth-
ods which are adapted to sampling from measures with
bounded support. In Section 3, we give details about the
types of target measures used to compare the efficiency
of these various algorithms and how such measures arise
from reservoir simulation problems. This section explains
mostly the mathematical structure of such target measures.
Further details regarding the simulator and some basic back-
ground material about the reservoir model are deferred to
Appendix 2. In Section 4, we present numerical experi-
ments. For completeness, we include Appendix 1, contain-
ing some simple theoretical results regarding the modified
algorithms. In particular, in Appendix 1, we show that our
modification of SOL-HMC (i.e. SOL-HMC with reflec-
tions) is still non-reversible and it leaves the target measure
invariant.

2 Description of the algorithms

In this section, we present the three main algorithms that
we would like to compare, namely the Hamiltonian Monte
Carlo (HMC) algorithm, the SOL-HMC algorithm and the
Horowitz algorithm. With abuse of notation, throughout we
will denote a probability measure and its density with the
same letter, i.e. π(dx) = π(x)dx.

Suppose we wish to sample from a probability measure
π defined on RN which has a density of the form

π(x) ∝ e−V (x)e−〈x,C−1x〉,

i.e. the target density π is absolutely continuous with
respect to a Gaussian measure with covariance matrix C

(as customary, we assume that such a matrix is symmetric
and positive definite). All three of our algorithms make use
of the common trick of introducing an auxiliary variable
p ∈ R

N and sampling from the density π̃ defined on the
extended state space RN × R

N as follows

π̃(x, p) ∝ e−V (x)e−〈x,C−1x〉e− 1
2p2

. (2.1)

The original target measure π is therefore the marginal
of π̃ with respect to the variable x. More precisely, the
algorithms we will consider generate chains {(xk, pk)}k ⊂
R

N × R
N which sample from the measure (2.1); because

(2.1) is a product measure of our desired target times a
standard Gaussian, if we consider just the first component of
the chain {(xk, pk)}k , i.e. the chain {xk}k , then, for k large
enough, such a chain will be sampling from the measure π .
We now focus on explaining how the chain {(xk, pk)} ⊂
R

N × R
N is generated by the three algorithms we consider.
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Let us introduce the Hamiltonian function

H(x, p) = V (x) + 〈x, C−1x〉 + 1

2
p2 ; (2.2)

then the associated Hamiltonian flow can be written as{
ẋ = p

ṗ = −x − C∇V (x).
(2.3)

Let χt denote a numerical integrator for the system (2.3)
up to time t (we will comment below on our choices of
integrator). The HMC algorithm then proceeds as follows:
suppose that at time k the first component of the chain is xk

and

(1) Pick pk ∼ N(0, I )

(2) Compute

(x̃k+1, p̃k+1) = χδ(xk, pk)

and propose x̃k+1 as the next move
(3) Calculate the acceptance probability αk , according to

αk = min(1, e−(H(x̃k+1,p̃k+1)−H(xk,pk)))

(4) Set qk+1 = q̃k+1 with probability αk , otherwise set
qk+1 = qk

In principle, any numerical integrator can be used in an
HMC algorithm (see [16, 20] for more detailed comments
on this). In this paper, we will consider two numerical
integrators χ , which are two popular splitting schemes. The
first is given by splitting the “momentum” and “position”
equations, see e.g. [20] and references therein. That is, let
Mt denote the solution map at time t of the system{

ẋ = 0,
ṗ = −x − C∇V (x)

(2.4)

and Pt denote the solution map at time t of the system{
ẋ = p

ṗ = 0.
(2.5)

For HMC, we shall always use the numerical integrator

χδ
H = Mδ/2PδMδ/2 . (2.6)

Note that we can always write the maps Mt and Pt

explicitly; indeed,

Mδ/2(x, p) =
(

x, p − δ

2
x − C∇V (x)

)
(2.7)

Pδ(x, p) = (x + δp, p) . (2.8)

The other splitting scheme that we will consider splits the
Hamiltonian system (2.3) into its linear and nonlinear part.
More precisely, let Rt and �t be the flows associated with
the following ODEs:

Rt :
{

ẋ = p,

ṗ = −x,
�t :

{
ẋ = 0,
ṗ = −C∇V (x).

(2.9)

The resulting integrator is given by

χδ
S = �δ/2Rδ�δ/2. (2.10)

This is the integrator that we will use in the SOL-HMC
algorithm (see step (1) of the SOL-HMC algorithm below);
the use of this splitting scheme for high-dimensional
problems has been studied in [10]. SOL-HMC is motivated
as a time discretisation of the SDE{

dx = pdt,

dp = [−x − C∇V (x)]dt − pdt + √
2CdWt,

(2.11)

where {Wt }t≥0 is a standard N-dimensional Brownian
motion. Such an equation can be seen as a Hamiltonian
dynamics perturbed by an Ornstein-Uhlenbeck process in
the momentum variable. As is well known, the SDE (2.11)
admits the measure (2.1) as unique invariant measure, see
e.g. [21]. With these observations in mind, define Oε to be
the map which gives the solution at time ε of the system{

dx = 0,
dp = −pdt + √

2dWt .
(2.12)

Note that we may solve this system explicitly, indeed

Oε(x, p) = (x, pe−ε + (1 − e−2ε)
1
2 ξ) (2.13)

where ξ is a standard normal random variable. In Section 4,
we will set

e−2ε = 1 − i2, (2.14)

where i is a parameter we can tune; in which case we have

Oε(x, p) = (x, pe−ε + iξ).

The SOL-HMC algorithm is as follows:

(1) Given (xk, pk), let

(x̂k, p̂k) = Oε(xk, pk)

and propose

(x̃k+1, p̃k+1) = χδ
S(x̂k, p̂k),

where we recall that χδ
S is the integrator introduced in

Eq. 2.10
(2) Calculate the acceptance probability αk according to

αk = min(1, e−(H(x̃k+1,p̃k+1)−H(x̂k,p̂k))) (2.15)

(3) Set

(xk+1, pk+1) =
{

(x̃k+1, p̃k+1) with probability αk,

(x̂k, −p̂k) with probability 1 − αk

Note the momentum flip in case of rejection. This
momentum flip is in principle needed in any HMC
algorithm. However, in HMC, because the momentum is re-
sampled independently at every step (and the Hamiltonian
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is an even function of p) in practice, one does not need to
change the sign of the momentum upon rejection.

Finally, the algorithm that we will refer to as the
Horowitz algorithm is just the SOL-HMC algorithm when
in step one, instead of using the integrator χS , we use the
integrator χH (defined in Eq. 2.6).

Remark 2.1 We do not give many details about HMC, SOL-
HMC and the Horowitz algorithm here, and refer to the
already cited literature. However, we would like to stress the
two following facts:

• The chain {xk}k produced by the HMC algorithm is
reversible with respect to the measure π , in the sense
that it satisfies detailed balance with respect to π [16]—
more precisely, the chain {(xk, pk)}k generated by
HMC satisfies a generalised detailed balance condition
with respect to π̃ , see e.g. [20, Lemma 1] or [5].
In contrast, the chains generated by the Horowitz
algorithm and the SOL-HMC do not satisfy any form of
detailed balance with respect to π̃ and they are therefore
non-reversible, see [7, 8]. In Appendix 1, we will show
that adding reflections to the algorithm does not alter
this property. That is, SOL-HMCwith reflections is still
non-reversible. Note moreover that the fact of adding
reflections does not alter the invariant measure (see
Appendix 1).

• The difference between the Horowitz algorithm and
HMC may seem small, but in reality, this small
difference is crucial. Indeed, thanks to this choice
of integrator, SOL-HMC is well-posed in infinite
dimensions, while the Horowitz algorithm is not. For a
discussion around this matter, see [7, 10].

As mentioned in the introduction, in this paper, we will
be interested in sampling from measures which are not
necessarily supported on the whole space R

N , but just on
some box B = [−a, a]N . If this is the case, then one may
still use any one of the above algorithms and reject proposal
moves that fall outside the box. We will briefly numerically
analyse this possibility (see Section 4). Alternatively, one
may want to simply make sure that all the proposed moves
belong to the box B, so that the algorithm does not waste
too much time rejecting the moves that fall outside the box.
We therefore consider modified versions of the introduced
algorithms by introducing appropriate reflections to ensure
that all of the proposals belong to the box B. Because
the proposal is defined through numerical integration of
the Hamiltonian dynamics, we will need to modify the
integrators χH and χS .

First, consider the map Pδ defined in Eq. 2.8; then, we
define map Pδ

bounce recursively as follows:

(1) If Pδ(x, p) ∈ B, then set Pδ
bounce(x, p) = Pδ(x, p).

(2) Otherwise, define

α = inf{β ∈ [0, 1] : Pβδ(x, p) /∈ B}. (2.16)

In which case Pαδ(x, p) lies on the boundary of the
box, so there exists some2 j ∈ {1, . . . , N} such that
the j th component of Pαδ(x, p) is either a or−a. Then
we define

Pδ
bounce(x, p) = P(1−α)δ

bounce (Sj (Pαδ(x, p)). (2.17)

Here Sj is the reflection map Sj (x, p) = (x, p1, . . . ,

pj−1, −pj , pj+1, . . . , pN).

Similarly, we define Rδ
bounce by

(1) If Rδ(x, p) ∈ B, then set Rδ
bounce(x, p) = Rδ(x, p).

(2) Otherwise, define

α = inf{β ∈ [0, 1] : Rβδ(x, p) /∈ B}. (2.18)

In which case Rαδ(x, p) lies on the boundary of the
box, so there exists some j ∈ {1, . . . , N} such that the
j th component of Rαδ(x, p) is either a or −a. Then
we define

Rδ
bounce(x, p) = R

(1−α)δ
bounce (Sj (R

αδ(x, p))). (2.19)

Note that it may occur that Rδ(x, p) ∈ B; however, there
is some point α ∈ [0, 1] such that Rαδ(x, p) /∈ B, in this
case, we still set Rδ

bounce(x, p) = Rδ(x, p). Therefore, the
algorithm HMC-bounce (Horowitz-bounce, respectively)
is defined like HMC (Horowitz, respectively), but the
numerical χδ

H,Bounce = Mδ/2Pδ
bounceM

δ/2 is employed in
place of the integrator χH ; analogously, the algorithm SOL-
HMC-bounce is defined as the algorithm SOL-HMC with
numerical integrator χδ

S,Bounce = �δ/2Rδ
bounce�

δ/2 in place
of χS (recall the definition of �t has been given in Eq. 2.9).

To conclude this section, we point out that alternative
approaches to handling constraints in the framework of
HMC-type algorithms have been also discussed in [16,
Section “Handling Constraints”]; there “forbidden values”
of the variables to sample from (i.e. values outside the box,
in our context) are ruled out by setting theoretically the
potential energy to infinity for such values. In [3], the issue
of handling constraints has been looked at in the general
context of Piecewise Deterministic Markov Processes.

3 Target measures

In this section, we describe the three target measures that
will be the object of our simulations. The first measure we
consider, πRos , is a change of measure from the popular
5D Rosenbrock, see Eq. 3.2. This is the most artificial

2It could occur that there is more than one j such that the j th
component of Pαδ(x, p) is ±a, in which case apply the operator Sj for
all such j .
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example we consider. The other two target measures
are posterior measures for parameter values in reservoir
simulation models. Roughly speaking, the second target
measure we describe, πfull, is a posterior measure on the
full set of parameters of interest in a reservoir model; for
our reservoir model, which is quite realistic, we will be
sampling from 338 parameters; hence, this measure will
be a measure supported on R

338. The third measure, πlight,
is a measure on R

21, which derives from considering a
considerably simplified reservoir model. We will refer to
the former as full reservoir model and to the latter as
lightweight parametrisation. In this section, we explain the
mathematical structure of πfull and πlight, without giving
many details regarding the inverse problem related to the
reservoir model. More details about the reservoir model
and the simulator used to produce the likelihood function
have been included in Appendix 2 for completeness. In the
following, we let IN denote the N × N identity matrix. Let
us now come to describe our targets.

• Change of measure from 5D Rosenbrock (i.e. πRos).
The first target measure we consider is a measure on R5

and it is a change of measure from the 5D Rosenbrock
measure; namely, the density of 5D Rosenbrock is given
by

f (x) =
4∑

i=1

100(xi+1−x2
i )2+(1−xi)

2, x = (x1, . . ., x5).

(3.1)

The target we consider is given by

πRos(x) ∝ e− 1
2f (x)e− 1

2 〈x,C−1x〉, (3.2)

where C is the prior covariance matrix. In all the
numerical experiments (see Section 4) regarding πRos ,
we take C = 0.3 · I5.

• Full reservoir simulation. We study a Bayesian
inverse problem for reservoir simulation. We consider
a synthetic reservoir with 7 layers, and 40 produc-
ing/injecting wells. A diagrammatic representation of
the reservoir is shown in Fig. 1.3 Each layer is divided
in blocks and, while the well goes through all the layers,
it will not necessarily communicate through perfora-
tions with all the blocks it goes through (in Fig. 1 we
highlight in yellow the boxes containing a perforation
of a well). We also assume that, in each layer, the well

3We emphasise that the reservoir we consider here is a multilayer
reservoir. The reason for considering such a reservoir is that there
exist (quite often) multilayer petroleum reservoirs, where well inflow
from the different layers is generally unknown, i.e. the total inflow
is known, but its allocation is uncertain. Resolving this uncertainty is
an important issue for appropriate management of the reservoir and a
challenge in uncertainty quantification. See [13–15, 22, 23].

goes through at most one block. In total, our subsur-
face reservoir is made of 124 blocks: 38 blocks on the
boundaries to represent the active aquifers, one block
per layer per well, plus some additional blocks (which
are neither aquifer blocks nor crossed by the wells).

The reservoir properties (i.e. the parameters that we
will be interested in sampling from) are described by the
pore volumes V	 of the blocks, 	 ∈ {1, . . . , 124}, the
transmissibilities T	j between the interconnected blocks
	 and j and the perforation productivity coefficients Jw	

for the well-block connections. We do not explain here
the practical significance of such parameters and for more
details on reservoir simulation, we refer the reader to [1].
Altogether, the parameter space for this example is 338-
dimensional. For the sake of clarity, all (non-zero) T	j are
re-indexed with a single index as Tp, p ∈ {1, . . . , 139};
and similarly, Jw	 are re-indexed as Jk , k ∈ {1 . . . 75}
and we denote by x ∈ R

338 the full vector of parameters,
i.e. x = (V1, . . . , V124, T1, . . . , T139, J1, . . . J75)

T . There
are 86 non-aquifer blocks in total, and we always assume
an ordering of the parameters V	 such that the first 86 of
them correspond to the non-aquifer blocks. In our Bayesian
inverse problem for the parameters x, the likelihood
function is defined from the reservoir simulation output,
and the prior is a Gaussian with covariance matrix C. The
observed block pressure and the well bottom hole pressure
(BHP) data are known for certain wells and time steps;
we arrange such data into the vector d0. The likelihood
L(d0|x), see Eq. 3.3 below, is defined using the simulator-
modelled data d(x), the observed data d0 and the covariance
matrix for data errors Cd . The function d(x) is found
by numerical solution of a system of ordinary differential
equations, which we report in Appendix 2, see Eqs. B.1 –
B.4; such a system describes the relation between the vector
of reservoir properties x and the simulated pressures. The
important thing for the time being is that such a system is
high dimensional and the resulting posterior is analytically
intractable.4 Finally, we seek to sample from the measure

πf ull(x|d0) ∝ L(d0|x) · e−〈x,C−1x〉,

where the likelihood function is of the form

L(d0|x) = exp

(
−1

2
(d(x) − d0)

T C−1
d (d(x) − d0)

)
.

(3.3)

In our numerical experiments, we will always take the
matrix Cd to be diagonal, with the entries equal to either
σ 2

BHP = 202 or σ 2
b = 9.We will give more details about this

choice in Appendix 2. The full parameterisation is further

4The simulator we use also allows for fast calculation of the gradients
of the log likelihood by the adjoint procedure [19], so that HMC-type
samplers can be run.
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Fig. 1 Perforations of the 40 wells (columns) in the seven layers
(rows). Yellow “v” stands for the block containing a perforation of a
well. That is, the well goes through all the layers, but there is a hole
for well-block communication only in correspondence of the yellow

boxes. This figure does not show all the blocks—but only those per-
forated by the wells. In particular, it does not show the aquifer blocks
located on the boundary

divided into three subcases denoted here as full-a, full-b
and full-c, which have different min/max bounds for the
parameters of interest or prior covariances. For the full-a
case, we define the minimum Li and maximum Ui bounds
of each parameter xi ∈ {V	, Tp, Jk} as follows: let x̄i be
the maximum likelihood value of the parameter xi , found
approximately, by running an optimisation algorithm on all
the parameters;5 we then take Li = 0.1x̄i , Ui = 10x̄i ,
i = 1, ..., 338. Since the values of physical parameters xi

may differ by several orders of magnitude, it makes sense
to apply a transform to get a similar magnitude for all the
parameters. Such a transform was done by function log10
and a constant shift, mapping the parameters xi from the
original range [Li, Ui] to [− 1, 1]. The prior covariance
is taken as Cfull-a = 0.25 · I338. So, all the parameters in
the transformed representation vary within the box [− 1, 1]
and have standard deviation 0.5. For the full-b case, wider
parameter bounds are taken: Li = 0.001x̄i , Ui = 1000x̄i ,
i = 1, ..., 338. The parameters are transformed by log10
function, and then mapped to the interval [− 3, 3]. The
prior covariance is the same as in the full-a case, so all the
parameters have standard deviation 0.5 in the transformed
representation. Case full-c uses the same parameter bounds
and the same transform as case full-b, but a wider prior
covariance Cfull-c = 9 · Cfull-a, which means the prior
standard deviation is 1.5 in the transformed representation.

• Lightweight parameterisation Here we consider a
reduced, 21-dimensional, parameter space. Here we just
fix the values of V1, . . . , V86 (non-aquifer blocks), and
we find the remaining V87, . . . , V124 (aquifer blocks),
T1, . . . , T139 (all blocks), J1, . . . J75 (all perforations),
which are required by the simulator, using 21 new
parameters. Such parameters essentially act as multi-
pliers; namely, for each one of the seven layers n ∈
{A, . . .G}, we introduce one pore volume multiplier for
the aquifer blocks Ṽn, one transmissibility multiplier T̃n

5The optimisation algorithm used here is BFGS [11], but in principle,
any other could be used.

and one perforation productivity multiplier J̃n. These
parameters, collectively denoted by y ∈ R

21, are those
that we are interested in sampling from, by using the
posterior measure

πlight(y) ∝ L(d0|X(y)) · ρ(y),

where ρ(y) is a zero mean Gaussian with covariance
matrix denoted by C21, described below. Because we
are using the same simulator as for the full reservoir
simulation, the likelihood function L is still the one
defined in Eq. 3.3; hence, necessarily we must have
X(y) ∈ R

338. To define the function X : R21 → R
338,

we need to introduce some notation first. Denote by
An the number of aquifer blocks in layer n, Pn the
number of transmissibility coefficients in layer n and
Kn the number of well perforations in this layer. Let
V̄	 be the maximum likelihood value of the parameter
V	 (similarly for T̄p and J̄k), again found by running a
maximum likelihood algorithm, and let the correspond-
ing full vector denoted by x̄. The first 86 components of
X(y) (corresponding to non-aquifer V	) are taken equal
to V̄	, 	 = 1, . . . 86, irrespective of the input y. The
remaining 338 − 86 = 252 components of X(y) are
found by a linear mappingM ·y, using a 252×21 sparse
matrix M . The first column of M contains the vector

(V̄86+1, . . . , V̄86+A1 , 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . 0)T ,

the second column contains the vector

(0,. . . . . . . . . . . ., 0︸ ︷︷ ︸,V̄86+L1+1,. . .,V̄86+A1+A2 , 0. . .0)
T ,

L1

and so forth until the 7th column. The columns from 8
to 14 are built similarly, such that column n + 7 corre-
sponds to layer n and has Pn non-zero values equal to
T̄p (for appropriate indices p). The last seven columns
are built in the same way, this time using the values J̄k .

For the lightweight parameterisation, the following
minimum and maximum bounds were employed: [0.15, 15]
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for all Ṽn, [0.07, 7] for all T̃n and [0.11, 11] for all J̃n. As
before, the physical parameters (multipliers) yi are mapped
to the interval [− 1, 1]. The prior covariance C21, which
acts in the transformed variables, was taken as essentially
a diagonal matrix with the main diagonal equal to 0.25;
however, additional non-zero covariances equal to 0.1 were
also specified between the transmissibility multiplier T̃n and
perforation productivity multiplier J̃n for each layer n. A
brief summary of the four discussed cases of the model
parameterisation is presented in Table 1.

4 Numerics: sampling frommeasures
supported on bounded domains

To compare efficiency of the algorithms, we compute
a normalised effective sample size (nESS), where the
normalisation is by the number of samples N .

Following [6], we define the effective sample size
ESS = N/τint where N is the number of steps of the chain
(after appropriate burn-in) and τint is the integrated autocor-
relation time, τint := 1+∑

k γ (k), where γ (k) is the lag−k

autocorrelation. Consistently, the normalised ESS, nESS, is
just nESS := ESS/N . Notice that nESS can be bigger
than one (when the samples are negatively correlated), and
this is something that will appear in our simulations. As an
estimator for τint , we will take the Bartlett window estima-
tor (see for example [6, Section 6], and references therein)
rather than the initial monotone sequence estimator (see
again [6, Section 6]), as the former is more suited to include
non-reversible chains. Since the nESS is itself a random
quantity, we performed 10 runs of each case using different
seeds, and our plots below show P10, P50, P90 percentiles
of the nESS from these runs (P50 being the middle circle
point).

For reversible chains, criteria based on monitoring
variance or on exponentially fast convergence are well
known and it is known how such criteria are related to each
other. For non-reversible chains, it is not instead clear how
these criteria relate; that is, while some chains may perform

well by the point of view of variance reduction, they will not
if assessed with spectral methods (i.e. rate of convergence),
see [3, 17, 18] and references therein. For this reason, we
chose a simpler, broadly applicable criterion, the reliability
of which is not altered by the non-reversibility. In our results
below, each chain provides samples for all the unknown
parameters; however, for clarity, we sometimes only display
a representative subset—when this is the case, the choice of
the paramenters is pointed out in the caption.

4.1 Bounces vs rejection

First we consider the performance of the two proposed
methods for sampling from the box B. We illustrate these
by comparing SOL-HMC-bounce and SOL-HMC-rej.

In Fig. 2, we compare performance of SOL-HMC-
bounce and SOL-HMC-rej for sampling from the 5D
Rosenbrock target πRos ; each one of the five parameters
is taken to vary in the interval [−a, a], and Fig. 2 shows
how the performance varies as the size a of the box varies,
a = 0.1, 0.2, . . . , 1.4. The target acceptance rate for both
samplers was set to 0.9, and parameter i = 0.6 (defined in
Eq. 2.14). For each value of a, each chain produced by any
of the two algorithms will create samples for all five coor-
dinates x1, . . . , x5 of the target; in Fig. 2, we just display
results for the first and the third coordinate (see caption).

As a “sanity test”, the plots indicate that for the larger
boxes (a ≥ 0.8), the two implementations SOL-HMC-
bounce and SOL-HMC-rej are almost identical (in terms of
nESS), which is natural as for large box sizes, these two
algorithms coincide. For small box sizes, the performance
of the two samplers depends really on which coordinate is
being sampled, so the performance of the two algorithms
is substantially indistinguishable for this low-dimensional
problem.

It is important to note the following practical drawback of
SOL-HMC-rej (or indeed any other sampler which handles
boundaries by the rejection mechanism) with respect to
SOL-HMC-bounce: during the proposal step, a trajectory
may leave the box, and then return back inside the box.

Table 1 Summary of the subcases for the reservoir simulation model

Case Dim Parameters notation For phys. par. For transformed parameters

li ui Params range Prior cov Prior std

Lightweight 21 Ṽn, T̃n, J̃n, or yi 0.1 10 [− 1, 1] C21 ≈ diag ≈ 0.5

Full-a 338 V	, Tp, Jk , or xi 0.1 10 [− 1, 1] Cfull-a = diag 0.5

Full-b 338 V	, Tp, Jk , or xi 0.001 1000 [− 3, 3] Cfull-b = Cfull-a 0.5

Full-c 338 V	, Tp, Jk , or xi 0.001 1000 [− 3, 3] Cfull-c = 9Cfull-a 1.5

In physical representation, the lower bounds are Li = libi , the upper bounds are Ui = uibi , where li , ui are reported in the table, and bi are some
base case parameter values (e.g. for all full parameterisations bi = x̄i )
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Fig. 2 Normalised ESS for SOL-HMC-bounce (blue) and SOL-HMC-rej (black) for different sizes of the box bounding the parameter space (X
axis). The two plots correspond to coordinates x1, x3 only. The other three coordinates have nESS plots similar to x3

By construction of the algorithm, such a trajectory is not
rejected just because it escaped from the domain for a short
while. The accept/reject decision is made only for the final
point of the proposal trajectory, and thus every trajectory
needs to be calculated till the end. However, if the trajectory
is allowed to leave the box for the intermediate calculations,
it may go to the extreme regions of the parameter space,
where the simulator may suffer from severe numerical errors
and abnormal behaviour. We illustrate this phenomenon by
comparing SOL-HMC-rej against HMC-bounce in Fig. 3
for full-a in (A) and full-b in (B). (Here we think of HMC-
bounce as sort of gold standard and for this reason, we
compare SOL-HMC-rej with HMC-bounce). We examine
the ratio of nESS of SOL-HMC-rej and HMC-bounce
and plot a histogram for the parameters. When the nESS
ratio is bigger than one, then SOL-HMC-rej is performing
better than HMC-bounce. This is the case in (B) for full-b.
However, in (A) for full-a, the boundary of B is encountered
far more frequently, just because the size of the box for
this target measure is smaller, see Table 1. Moreover, a
comparison of the histograms in Fig. 3a with the one in
Fig. 9a shows better performance of SOL-HMC-bounce

with respect to SOL-HMC Rejections. From now on, we
consider SOL-HMC-bounce only.

4.2 Comparison for 5D Rosenbrock

We consider the 5D Rosenbrock target πRos where
the minimum-to-maximum range for each one of the
five parameters was taken as [−a, a], where a =
0.1, 0.2, . . . , 1.4. The plots in Fig. 4 compare the per-
formance of the HMC-bounce, SOL-HMC-bounce and
Horowitz-bounce algorithms. The target acceptance rate is
0.9, and the parameter i = 0.6 for SOL-HMC-bounce and
Horowitz-bounce. For this small dimensional problem, we
observe that SOL-HMC-bounce and Horowitz-bounce have
similar nESS across the range of sizes for the box B. For
smaller boxes B (e.g. a ≤ 0.5), all three algorithms have
similar nESS. For larger box sizes, we see for parameter x1
an advantage in using SOL-HMC-bounce/Horowitz-bounce
over the HMC-bounce; however, for x2, there is a slight
advantage to HMC-bounce. This corroborates the idea that
in low dimension, the advantage of introducing irreversibil-
ity in the sampler is hardly noticeable.

Fig. 3 Ratio of nESS (SOL-HMC-rej divided by HMC-bounce). Parameterisation full-a (a) is shown in green and full-b (b) in blue
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Fig. 4 Normalised ESS for SOL-HMC-bounce (blue), HMC (black) and Horowitz (orange), for different sizes of the box bounding the parameter
space (X axis). The two plots correspond to coordinates x1, x2 only. The other three coordinates show a similar picture

4.3 Increasing parameter space and effectiveness
of non-reversibility

We now consider our more realistic targets and increase the
parameter space to 21 and then to 338. We now clearly see
the advantage of the non-reversible algorithms SOL-HMC-
bounce and Horowitz-bounce over HMC-bounce.

Figure 5 reports the nESS for the lightweight parameteri-
sation of the reservoir simulation problem for the following
four cases: HMC-bounce with an acceptance rate of 0.82
(target 0.8), SOL-HMC-bounce with acceptance rate of 0.77
(target 0.9), SOL-HMC-bounce with an acceptance rate
of 0.69 (target 0.8) and Horowitz-bounce with an accep-
tance rate of 0.68 (target 0.8). All SOL-HMC-bounce and
Horowitz-bounce algorithms took the parameter i = 0.5
and here we give results from a single MCMC run in each
case. The plot clearly shows that the non-reversible algo-
rithms outperform HMC for the majority of the parameters.
We also observe the variability due to acceptance rate: for

SOL-HMC-bounce, a better nESS is achieved for the higher
acceptance rate.

As we further increase the dimension and complexity, the
advantage of the non-reversible algorithm becomes further
apparent. In Fig. 6, we compare for full-a SOL-HMC-
bounce and HMC-bounce and observe a clear improved
nESS for SOL-HMC-bounce across the whole parameter
space.

Finally, we compare SOL-HMC-bounce and Horowitz
against the benchmark of HMC-bounce by examining the
ratio of nESS. Recall that when the ratio is bigger than one,
then SOL-HMC-bounce (or Horowitz) has a larger nESS
than HMC. We consider the targets full-a, full-b and full-c.
In Fig. 7, we compare for full-a SOL-HMC-bounce against
Horowitz-bounce. First, note that in both cases, the nESS
ratio is > 1 for most parameters showing a clear improve-
ment in the non-reversible algorithms over HMC. To aid
comparison between SOL-HMC-bounce against Horowitz-
bounce, we plot on (A) and (B) a fit of the histogram

Fig. 5 Normalised ESS (Y axis)
for the reservoir simulation
MCMC, lightweight
parameterisation. X axis shows
the 21 parameters. In the legend,
the real acceptance rates are
indicated
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Fig. 6 Normalised ESS (Y axis)
for the reservoir simulation
MCMC, full-a parameterisation.
X axis shows the 338
parameters. The samplers are
HMC and SOL-HMC with
i = 0.4

Fig. 7 Ratio of nESS forHorowitz-bounce bynESS for SOL-HMC-bounce. The targetmeasure here is the 338-dimensional full-a. Parameter i = 0.5

Fig. 8 Ratio of nESS for Horowtiz-bounce and SOL-HMC-bounce for target full-b (i = 0.7)

Fig. 9 Ratio of nESS for SOL-HMC-bounce for targets full-a (a), full-b (b) and full-c (c) and in each case i = 0.4
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from (A), this is the black dotted line. We see that the
nESS for SOL-HMC-bounce over the parameters is larger
than that for Horowitz-bounce and that there is an improve-
ment using SOL-HMC-bounce. Here we took i = 0.5.
Figure 8 examines the target full-b. For both SOL-HMC-
bounce and Horowitz-bounce, we see an improvement over
the reversible HMC algorithm as the ratios are > 1 for all
parameters. We also observe a shift to larger values and
hence improvement in the nESS for SOL-HMC-bounce (B)
compared with Horowitz-bounce (A). In this figure, we took
i = 0.7. This can be compared with Fig. 9b where i = 0.4.

Finally, in Fig. 9, we examine SOL-HMC-bounce for
full-a (A), full-b (B) and full-c (C) for the same value of
i = 0.4. We see a clear improvement of the non-reversible
SOL-HMC-bounce over HMC in each case. We compare
here to the SOL-HMC-bounce for full-b for the same value
of i = 0.4 in (B). We observe a similar improvement for
SOL-HMC-bounce over HMC in both cases.

5 Conclusion

We have investigated two different ways to deal with sam-
pling measures on a bounded box B: rejection and bounces.
This is crucial in many practical applications, for exam-
ple to respect physical laws (such as porosity for reservoir
modelling or pixel values in image reconstruction). We have
explained and demonstrated why, for complex problems
involving the use of a proxy, reflection algorithms should
be preferred to rejection strategies. We have furthermore
shown that when sampling from complex realistic target
measures, such as those that arise in reservoir simulation,
non-reversible algorithms such as SOL-HMC and Horowitz
outperform standard reversible algorithms such as HMC. In
addition, we see that as the problem size grows SOL-HMC
is superior to Horowitz having larger nESS.
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Appendix 1

This Appendix gathers some basic results about the
SOL-HMC-bounce algorithm, presented in Section 2.
Throughout we use the notation introduced in Section 2.

Proposition A.1 The SOL-HMC-bounce algorithm with
reflections preserves the target measure.

Proof It is easy to see that the operatorOε preserves the tar-
get measure π̃ . Indeed Oε leaves the x-variable untouched
so, because π̃ is the product of π(x) and a standard Gaus-
sian in the p variable, looking at the definition (2.12)–(2.13)
of Oε, all one needs to show is that if p is drawn from a
standard Gaussian then p̂ := pe−ε + iξ is also a Gaussian
random variable—here ξ is a standard Gaussian indepen-
dent of p. This is readily seen as, by definition, p̂ has
expectation 0 and variance 1, since e−2ε + i2 = 1. There-
fore, if (x, p) are drawn from π̃ , then Oε(x, p) = (x, p̂) is
also distributed according to π̃ .

Let χ = χδ
S,bounce denote the integrator described in the

SOL-HMC-bounce algorithm. SinceOε preserves the target
measure π̃ , it remains to show that the combination of the
integrator χ and the accept–reject mechanism preserves the
target measure.

It is well known, for instance see [20, Theorem 9], that
if the integrator χδ

S,bounce is reversible under momentum flip

(that is, χδ
S,bounce ◦ S = S ◦ (χδ

S,bounce)
−1 where S(x, p) =

(x, −p)) and volume preserving, then the composition of
χδ

S,bounce and of the accept–reject move satisfies the detailed
balance equation. In particular, this step also preserves the
target measure π̃ .

Therefore, it is sufficient to show that χδ
S,bounce =

�δ/2 ◦ Rbounce ◦ �δ/2 is reversible under momentum flip
and volume preserving. Note that both �δ and Rδ are flows
corresponding to a Hamiltonian system so they must be
reversible and volume preserving, see [20, Section 8.2.2
and 8.2.3]. The composition of these operators also has
these two properties and including reflection preserves these
two properties, therefore Rbounce is volume preserving and
reversible, and hence so is χδ

S,bounce.

Proposition A.2 The SOL-HMC-bounce algorithm defined
in Section 2 is non-reversible.

Proof of Proposition A.2 For simplicity, we will only con-
sider the case when N = 1, C = 1 and V (x) = 0. That
is, we consider the target measure to be the “truncation of a
standard two dimensional Gaussian”, namely

π̂(x, p) = 1

Za

e− 1
2 (x2+y2)1[−a,a](x),

http://creativecommonshorg/licenses/by/4.0/
http://creativecommonshorg/licenses/by/4.0/
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where Za is a normalising constant. In this case, �δ/2 is the
identity map, and Rδ can be written as

Rδ(x, p) = (x cos(δ) + p sin(δ), p cos(δ) − x sin(δ)).

With these observations, if at time k the chain is (xk, pk),
then we can write the proposed move (x̃k+1, p̃k+1) in the
k + 1-th step of SOL-HMC-bounce as

(x̃k+1, p̃k+1) = Rδ
bounce(x

k, pke−ε + iξ)

where ξ is drawn from a standard normal distribution. In
this case, the acceptance probability is given by

α = min(1, e− 1
2 ((x̃k+1)2+(p̃k+1)2−(xk)2−(pke−ε+iξ)2)).

Now we wish to calculate the transition kernel,
K((x, p), (y, q)), for this Markov chain, i.e. find the
probability density corresponding to the move from (x, p)

to (y, q).
Observe that Rδ is a rotation about the origin and hence

preserves radial distance, that is if (x̃, p̃) := Rδ(x, p), then

x̃2 + p̃2 = x2 + p2.

Flipping momentum sign, i.e. applying reflections S, also
preserves radial distance; therefore, the operator Rδ

bounce
preserves radial distance. In particular, if x̃2 + p̃2 < a2 (or
equivalently x2 + p2 < a2), then Rδ(x, p) must remain in
the strip [−a, a] × R, so in this situation Rδ

bounce(x, p) =
Rδ(x, p).

Suppose that y2+q2 ≤ a2. Fix some x ∈ [−a, a], p ∈ R,
then let (x̂, p̂) = Oε(x, p) = (x, pe−ε + iξ), where ξ is
a standard normal random variable. In which case we have
that p̂ is normally distributed with mean pe−ε and variance
i2. Set (y, q) = Rδ(x̂, p̂), then

(y, q) = (x̂ cos(δ) + p̂ sin(δ), p̂ cos(δ) − x̂ sin(δ)).

Therefore, y is normally distributed with mean x cos(δ) +
pe−ε sin(δ) and variance i2 sin(δ)2. Once y has been
determined, we may solve for q and find

q = y cos(δ) − x

sin(δ)
. (A.1)

In which case the transition kernel is given by

K((x, p), (y, q)) = 1√
2πi2 sin(δ)2

e
− (y−x cos(δ)−pe−ε sin(δ))2

2i2 sin(δ)2

×αδy cos(δ)−x
sin(δ)

(q)

+(1 − α)δx(y)
1√
2πi2

e
− (q+pe−ε)2

2i2

where α is the acceptance probability and is given by

α = min(1, e
1
2 (x2+p2−y2−q2)).

Now the algorithm is reversible if and only if the detailed
balance condition holds, that is

π̂(x, p)K((x, p), (y, p)) = π̂(y, q)K((y, q), (x, p)),

∀x, y ∈ [−a, a], p, q ∈ R.

(A.2)

To see that this does not hold consider the point (x, p) =
(0, 0) and let (y, q) be some point in the ball of radius a.
Then by (A.1), we must have y = q tan(δ), and the left hand
side of (A.2) becomes

π̂(0, 0)K((0, 0), (q tan(δ), q))

= 1√
2π

1√
2πi2 sin(δ)2

e
− (q tan(δ))2

2i2 sin(δ)2

×min(1, e− 1
2 (q2+q2 tan(δ)2)) > 0.

On the other hand, if we suppose 0 < δ < π/4, then to move
from (q tan(δ), q) to (0, 0) is not possible unless q = 0,
since (A.1) in this case becomes q tan(δ) = 0. Therefore,
for any q �= 0, the right hand side of (A.2) must be zero, in
particular we have that the algorithm is not reversible.

Appendix 2. Description of reservoir model
and simulator

The simulator we use is an in-house single-phase simulator
working on an unstructured grid with finite volumes spatial
discretisation and backward Euler time discretisation,
calculating the dynamics of pressures and fluid flows in the
subsurface porous media.

To obtain the observed pressure data, a fine grid three-
phase model was run in the first place, using Schlumberger
Eclipse black oil simulator [1]. The resulting output Eclipse
pressures were perturbed by the uncorrelated Gaussian
noise, with standard deviation σBHP = 20 bar for the well
BHP data, and σb = 3 bar for the reservoir (block) pressure
data. Altogether 380 measurement points were considered
(365 for the BHP, 15 for the reservoir pressure), taken with
time step of 6 months. The data errors’ covariance matrix
Cd is diagonal, with the entries equal to either σ 2

BHP or σ 2
b .

In the forward simulation mode, the reservoir properties
are fixed, the producing and injecting wells (indexed by
w) are controlled by the volumetric flow rates qw and
the output modelled data are the time-dependent pressures
at the blocks P	 and the bottom hole pressures at the
wells PBHP

w . The equations describing the fluid flow are
as follows. First, the volumetric flow rate Q	j between the
pair of connected blocks 	, j is proportional to the pressure
difference between them, which can be regarded as Darcy’s
law:

Q	j = T	j (P	 − Pj − ρ g h	j ), (B.1)
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where ρ is the known liquid density, h	j is the known
depth difference between the block centers and g is the
acceleration due to gravity.

The inflow qw	 into the perforation of well w in block 	

is proportional to the difference of the bottom hole pressure
(BHP) and the block pressure:

qw	 = Jw	(P	 − PBHP
w − ρ g h	

w), (B.2)

where h	
w is the depth difference between the block center

and the BHP reference depth. The total inflow into well w is
obtained by summing up contributions related to this well;
that is,

qw =
∑

	

qw	. (B.3)

Finally, the volumetric inflows and outflows for block
	 are balanced, with the excessive/deficient fluid volume
leading to the block pressure change via the following
compressibility equation:

c	 V	

∂P	

∂t
=

∑
j

Qj	 −
∑
w

qw	, (B.4)

where t denotes time, and the first (second, respectively)
summation on the right hand side is taken over all the blocks
j connected to the block 	 (all the wells w perforated in
block 	, respectively). The compressibility c	 of the block is
supposed to be known. The simulated reservoir time spans
12 years.
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