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Abstract: It is well known that the conformable and the symmetric differential operators have
formulas in terms of the first derivative. In this document, we combine the two definitions to get
the symmetric conformable derivative operator (SCDO). The purpose of this effort is to provide a
study of SCDO connected with the geometric function theory. These differential operators indicate
a generalization of well known differential operator including the Salagean differential operator.
Our contribution is to impose two classes of symmetric differential operators in the open unit disk
and to describe the further development of these operators by introducing convex linear symmetric
operators. In addition, by acting these SCDOs on the class of univalent functions, we display a
set of sub-classes of analytic functions having geometric representation, such as starlikeness and
convexity properties. Investigations in this direction lead to some applications in the univalent
function theory of well known formulas, by defining and studying some sub-classes of analytic
functions type Janowski function and convolution structures. Moreover, by using the SCDO, we
introduce a generalized class of Briot-Bouquet differential equations to introduce, what is called the
symmetric conformable Briot-Bouquet differential equations. We shall show that the upper bound of
this class is symmetric in the open unit disk.

Keywords: univalent function; conformable fractional derivative; subordination and superordination;
analytic function; open unit disk

MSC: 30C45

1. Introduction

The term Symmetry from Greek means arrangement and organization in measurements.
In free language, it mentions a concept of harmonious and attractive proportion and equilibrium.
In mathematics, it discusses an object that is invariant via certain transformation or rotation or scaling.
In geometry, the object has symmetry if there is an operator or transformation that maps the object
onto itself [1,2].

Salagean (1983) presented a differential operator for a class of analytic functions (see [3]).
Many sub-classes of analytic functions are studied using this operator. Al-Oboudi [4] generalized
this operator. These operators are studied widely in the last decade (see [5-10] for recent works).
Our investigation is to study classes of analytic functions by using the symmetric differential operator in
a complex domain. Recently, Ibrahim and Jahangiri [7] defined a special type of differential operators,
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which is called a complex conformable differential operator. This operator is an extension of the
Anderson-Ulness operator [11].

A conformable calculus (CC) is a branch of the fractional calculus. It develops the term x' =% f'(x).
While the complex conformable calculus (CCC) indicates the term ¢ ¢’ (&), where ¢ is a complex variable
and ¢ is a complex valued analytic function. In this work, we present a new SCDO in the open unit
disk. We formulate it in some sub-classes of univalent functions. As applications, we generalize a class
of Briot-Bouquet differential equations by using SCDO.

2. Methodology

This section deals with the mathematical processing to study the SCDO for some classes of
analytic functions in the open unit disk U = {¢ € C : || < 1}. Let A be the following class of
analytic functions

Y(@)=C+) vaul", Ceu (1)
n=2

A function Y € A is starlike via the (0,0) (origin in U) if the linear segment joining the origin to
every other point of Y lies entirely in Y (& : |{| < 1). A univalent function (Y € (®) is convex in U if the
linear segment joining any two points of Y (& : || < 1) lies entirely in Y (¢ : || < 1). We denote these
classes by $* and C for starlike and convex respectively. In addition, suppose that the class P involves
all functions Y analytic in U with a positive real part in U achieving Y (0) = 1. Mathematically, Y € S*
ifand only if Y/ (¢)/ Y ({) e Pand Y € Cifand only if 1 +¢& Y" (&)/ Y’ ({) € P. Equivalently,
R(EY'(Z)/ Y (&) > 0 for the starlikeness and 1+ R(& Y" (&)/ Y’ (&)) > 0 for the convexity.

For two functions Y and Y belong to the class A, are said to be subordinate, noting by Y; < Y5,
if we can find a Schwarz function 7 with 7(0) = 0and | T (¢)| < 1 achieving Y1(&) = Y2(7(§)), { € U
(the detail can be located in [12]). Obviously, Y1(&) < Y2(¢) if Y1(0) = Y2(0) and Y1(U) C Y2 (U).

Lemma 1 ([12]). Suppose that a € C, n is a positive integer and N[a,n] = {Y : Y({) = a+ a,{" +
Ay 18" + ..} is a set of analytic functions.

i If { € R then 9%( Y (&) +LEY (g)) >0 == R(Y (&) > 0. Inaddition, if ¢ > 0and ¥ € R[1,n], then

there occurs some constants a > 0 and b > 0 with b = b({,a, n) where

@+avie<(15) = v« (175)"

ii. If0 € [0,1) and Y € R[1,n]| then a constant k > 0 exists satisfying k = k(a, n) so that
R(Y2@) +27(©)4Y' (@) > 0= R(¥ (&) > k.

iii. If Y € N[a,n] with R(a) > 0 then %(Y &)+ &Y (&) + &Y ((’f)) > 0orfor1: U — R with

R(v (@) + z(g)gléf)) > 0 then R(Y (€)) > 0.

Lemma 2 ([12]). Assume that h is a convex function satisfying h(0) = a, and letk € C\ {0} be a complex
number with R(k) > 0. If Y € N[a, n], and

Y () +1/k)EY(2) < (@), Ceu,
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then Y (&) < 1(z) < h(z), where

k

k ¢ =1
n@T/”/o ﬁ(T)T(n Dar, ¢eu.

i(z) =
Lemma 3 ([13]). Suppose that Y € A and there occurs a positive constant 0 < v < 1. If

e (@) -¢ 20t
(G

then

Y

: <14vg, ¢eU.

And the result is sharp.

The Operator SCDO

This sections deals with definition of the SCDO as follows:
Definition 1. Let Y (§) € A\, and let v € [0,1] be a constant then the SCDO keeps the following operating
S)Y (§) =Y(8)

_ K (V/‘:) / (V C) /
S0 () = <K1(v,€1)+1<o(v/§))ﬁ - (xl( RET C))CY (=6)

= M 3 n nl— M — 3 n(—=1)" n
B ("1@'5”"0@'5)) y Y”é> (Kl(V/§)+K0(V/§))( Ly Y"(‘:)
(=

_ Kl v, (Z) 1)n+1K0(V/‘:) n
§+Z ( 1(v,8) T x0(v, ) )Y”

S2 (2) = SHSLY (@) @)
e a (AE e L,
> ( 0 (0,2) + ra(v,2) > e

Sk (&) = SHSE T v (@)

e (D () wd))
‘5+§?1( 1 (0,8) T oV, 8) ) Yl

so that k1 (v, &) # —xo(v, ),
liirg)xl(v,é) =1, 1ii>r} k1(v,&) =0, x1(v,&) #0,V¢e U, ve(0,1),
and

151(1);(0(1/@) =0, liiﬂxo(v,é) =1, x(v,&) #0,V&ieuUve(01).

The value v = 0 indicates the Salagean operator S¥ Y (&) = & + Y5, n¥ Y, &". We proceed to impose
a linear differential operator having the SCDO and the Ruscheweyh derivative. For ¥ € A, the
Ruscheweyh derivative is defined as follows:

C+ch+n 1 Y" ’
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where Cﬁ 4n_ are the combination terms.

Definition 2. Let Y € A\,v € [0,1] and 0 < a < 1. The linear combination operator joining R* Y (&) and
Sk (&) is given by the formal

Cia Y (§) = (1= a)RFY (&) +aSS Y (2)

e S ik a8+ (" 0w\, o O
= o R -wh e [ (M) e

Remark 1.

e k=0=0C), Y () =Y();

e v=0= le,a Y (&) = Lk Y (&); [14] (Lupas operator)

¢ a=0=Cl,Y(¢)=R Y ()

e a=Lx=1=C} v (§) =8 (),

c a=1=C Y (@) =8

Definition 3. Let € € [0,1),v,a € [0,1and k € N. A function Y € N belongs to the set By (v, a, €) if and
only if
R((CE Y (@))) >e e,

Definition 4. The function Y € A is specified to be in J,(A, B, k) if it satisfies the inequality

k+1
. 28k+1 v (7) ) 1+A¢

b(SﬁY(Q-—SﬁY(—@ 1+B¢’

(ceu -1<B<A <1 k=12.,0€C\{0}, ve[0,1]).

e v=0=]6];
e v=0,B=0=17];
e v=0A=1B=-1,h=2=[8].

The class J B(A, B, k) is a generalization of the class of the Janowski starlike functions [15]

1+A¢
PE) =< 157

Eeu,

where p(0) = 1, p(U) C Q[A, B]. The domain Q[A, B] is a circular domain and it is referring to an
open circular disk with center on the real axis and diameter end points %, provide that B # —1.
Functions in the class J? (A, B, k) have a circular domain with respect to symmetrical points.

Definition 5. Let € € [0,1),v,a € [0,1and k € Ny. A function Y € A is in the set S (v, €) if it achieves the
real inequality
k+1
%(Sv ! (©)
Sy (€)

Note that Sg(v,e) = S*, S1(0,€) =C

)>e, ¢eu.

3. The Outcomes

In this section, we study some properties of the SCDO.

Theorem 1. For Y € A and « € C\{0}, if one of the sequencing subordination valid
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*  The operator Sk Y (&) is of bounded turning type;
* Y satisfies the relation

1+¢

b
1_(3) , b>0,¢ey;

kv < (
e Y fulfilled the inequality

R((sEr @S LY 54 sep, cey,

* Y admits the inequality

R(estr @) sty @y 220 5,

¢
® Y confesses the inequality
ESEY (©) | ,8EY (@)
R( S T )>1,

then % €P(e), e €[0,1).

Proof. Formulate a function o as pursues:

Sk
o@) = S s @) 4 ol@) = (S Y @) @

By the first relation, S¥ ¥ () is of bounded turning, this indicates that

R’ (E) +0(Z)) > 0.

Therefore, according to Lemma 1—i, we attain R(c(¢)) > 0 which gets the first term of the
theorem. According to second inequality, we indicate the pursuing subordination inequality

=

Now, by employing Lemma 1—i, there occurs a fixed constant a > 0 with b = b(a) with the
pursuing property

(SEY (©)) = £0(@) +0(E) < (

SiY (@) (H«:)“
¢ 1-¢)

Consequently, we indicate that R(SX ¥ (&)/¢) > €, for values of € € [0,1). Lastly, agree with the
third relation to get

SEY (§)
T> > 6. )

R(2(@) +20(0)50'(©) = 2R((8F ¥ (@)

According to Lemma 1—ii, there occurs a positive fixed number A > 0 achieving the real inequality
R(c(¢)) > A, and yielding
_ S (@)

7(¢) 7

€ P(e)
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for a few value in € € [0,1). It indicates from (5) that %(S{j Y (&) ) > 0; thus, according to

Noshiro-Warschawski and Kaplan Lemmas, this leads to SX Y (&) is univalent and of bounded turning
in U. Now, via the differentiating (4) and concluding the real case, we indicate that

R(0(8)+¢0'(2) + 80" (2))
k
= R(2(SE ¥ (@) = (S (@) +22—
> 0.
Thus, by the conclusion of Lemma 1—ii, we have

ShY (©)
¢

Taking the logarithmic differentiation (4) and indicating the real, we arrive at the
following conclusion:

R( ) > 0.

ga'(§) 7
) TET)

)
V(@) LAY ()
o oY

R(o(@) +

-5(5G

> 0.

A direct application of Lemma 1—iii, we get the positive real i.e., $( Sﬁg(g) ) > 0. This completes

the proof. O

Theorem 2. Suppose that Y € J},(A, B, m) then for every function of the form

x(@) = 5[¥(@) - v(-9), eu

agrees with the pursuing relation

1 (35“35@) B 1) L 1+AC

HB Skx(¢) 1+BE&

and

GX(@)y 1= 2 _
ER(se(g))ZHAZ’ el =<1,

((eu -1<B< A<, m=12.,5€C\{0}, ve 0,1]),

Proof. Because the function Y € J (A, B, m) then there occurs a function o € J(A, B), where

25541 v (¢)
w0 -1 = (FvE v o)

and

_nGk+1 _
(o0 -1 = (grroa s )

SEY(8) = SiY (=
This implies that

14 H(S20) gy _ p@+e(d)

b\ Skx(g) 2
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1+ A¢Z 1+ AZ
1Jr]5,§,where1+B€
1/,81x(g) 1+ A¢

s Gapre ) < Toee

Also, since p(&) < is univalent then by the concept of the subordination,

we have

b
But the function X(§) is starlike in U, which means that

ex@y 1-2
X 1w

and there occurs a Schwarz function 1 € U, | T (¢)| < |¢] < 1,7(0) = 0 such that

Cx()  1-1(0)?
@) 1+1(0)*

This implies that there exists ¢, |{| = A < 1 achieving

_1-¥(9)

Y(C) =

72(0) = T1%(Q) geu.
A computation yields

1-Y()| _

Tw‘ =|T@FP <5

Thus, we conclude that

1+[2*)2 4z
O - gl = A
" e LI 2F
L= [g = (=g
Consequently, we obtain
1— A2
ROP@) > 1 lil=a<t

O

Theorem 3. Suppose that Y € By (v, a, €), and the convex analytic function g satisfies the integral equation

g
F(g):zglt:/o Y (T)dt, €U

then the subordination

(¢8'(8)

(Chav (@) <5@+ , >0,

implies the subordination

and the outcome is sharp.

Proof. Here, we aim to utilize the result of Lemma 2. By the conclusion of F({), we acquire

, (k@)

(ChaF@) + 2 = (Cha v @)
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Following the conditions of the theorem, we get

(et k@)
(&10).

e+ €@

(ChaF(@) + L

By assuming

Heheve (6¢(¢) (6©)
Q g
0(@) + S < g(@) + 5
According to Lemma 2, we obtain
(ChaF@®) = 5(@),

and g is the best dominant. O

Theorem 4. Let g be convex such that g(0) = 1. If

(S @) <3@+2@), ey,

ck v
then Wé@ < ¢(&), and this result is sharp.
Proof. Define the following function
ck oy (&
0(8) = g() € N[1,1]. 6)

A direct application of Lemma 1 yields

/
Cha Y () = 0(8) = (Cha Y (©)) = 0(2) +2¢'(2).
Thus, we introduce the following subordination:

0(&) +20'(8) =< g(&) +24'(3).
Cr LY (2)

Hence, we conclude that —&

g

Theorem 5. If Y € A fulfills the subordination

< g({), and g is the best dominant. [

b
1
v @) < (155) , ceu b=
then .
Cia Y (8)
RSl D)o e cep
Proof. Construct ¢ as in (6). Thus, by subordination possessions, we indicate that

w)l"

(5 (@) =E¢(E) + 00 < (1
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With the help of Lemma 1—i, there occurs a fixed number a > 0 with b = b(a) where

c’é,ag © . G+§>”

This leads to real conclusion R(Cf, Y (¢)/&) > €, e €[0,1). O

Theorem 6. If Y € A fulfills the real inequality

/C{g,zx Y (g)

R((Cha v (@) =5

)>§R(%), ey aeC

then Ck , ¥ () € By(v,a,€).
Proof. Formulate ¢ as in (6). A clear evaluation gives

ck, Y (2)

R(¢7(0) +20(0)5'(©)) = 2R(Cha ¥ (€)' =5

) > R(a).

90f13

@)

By the advantage of Lemma 1—ii, there occurs a constant x concerning on R(«a) where (0(&)) >
k, this gives ®(0(&) ) > €, € € [0,1). By virtue of (7), it implies that %(Cﬁ,a Y (C))’) > € and hence

based on the idea of Noshiro-Warschawski and Kaplan Theorems, C’;/a Y (&) is univalent and of

bounded boundary rotationin U. O

Theorem 7. The set Bi(v, a, €) is convex.

Proof. Suppose that Y; € By(v,a,€), i = 1,2 achieve the formulas Y1(¢) = ¢+ Y, ,a,¢" and

Y2(&) = &+ Yp buC" respectively. It is adequate to show that the linear combination function

G() =w1 Y1 (§) +waY2(8), GeU

belongs to By (v, a, €), where wy; > 0,w; > 0and wy +w, = 1.

By the definition of G({), a computation yields that

GE) =&+ Y (wray + waby)E"
n=2

then under the formal Cﬁ/a, we obtain

agh

CtG(&) =+ Y (wian +woby)

n=2

X {(1 —a)Cp g (

Kl(V,C) + (*1)""'11{0(1/,6) n
1 (1,8)  Ko(v, ) >}§'
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By considering the derivative, we have

R{(Ch.G(©)}
3 K1(v, —1)"* Lk (v, k .
=1+ w{ Yn[(-a) Gl o (D CU 0. 0Y] iy
= n k
ol 0o e (S0

>14+wi(e—1)+wy(e—1) =e.
O

4. Applications

A set of complex differential equations is an assembly of differential equations with complex
variables. The most important study in this direction is to establish the existence and uniqueness results.
There are diffident types of techniques including the utility of majors and minors (or subordination
and superordination concepts) (see [12]). Investigation of ODEs in the complex domain suggests the
detection of novel transcendental special functions, which currently called a Briot-Bouquet differential
equation (BBDE)

(h(o) =Y(0),we[01], €U, Y€ /\).

In this place, we shall generalize the BBDE into a symmetric BBDE by using SCDO. Numerous
presentations of these comparisons in the geometric function model have recently achieved in [12].

Needham and McAllister [16] presented a two-dimensional complex holomorphic dynamical
system, pleasing the 2-D form

=0 w), w=0Ew), ¢weU

and ¢ is in any real interval. Development application of the BBDE seemed newly, with different
approaches (see [17]) to solve the equation of electronic nano-shells (see [18]). Controlled by
the situation effort of traditional shell theory, the transposition fields of the nano-shell take the
dynamic system

61‘ = ®(€rw) + 89(61(")); Wt = ®(€/w) + 99(5/0)/ (:,(U ey,

where 0 is the angles between ¢ and w and their conjugates.
Our purpose is to generalize this class of equation by utilizing the SCDO and establish its
properties by applying the subordination concept. In view of (2), we have the generalized BBDE

k i
WY (&) +(1- w)(m) = K(€), K(0)=Y(0), &€ . @®)

The subordination settings and alteration bounds for a session of SCDO specified in the following
formula. A trivial resolution of (8) is given when w = 1. Consequently, our vision is to carry out the
situation, ¥ € A and w = 0. We proceed to present the behavior of the solution of (8).
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Theorem 8. For Y € A, w € [0, c0) and h is univalent convex in U if

( &Sy

Sy g) <Me geu ©)

then

Sff‘( () < Cexp (./Og %dﬂ),

where T is a Schwarz function in U. In addition, we have

elexe (| "o a0 < [y @] < felewe () MY o).

g g

Proof. The subordination in (9) implies that there occurs a Schwarz function T such that

(6(35‘( ©))

st ) M), geu

This yields the inequality

(5(35 Y (6))’) 1_nT@E) -1

SEY (©) ¢ ¢
By making the integrated operating, we have
SEY (@) _ [faT) -1
log <§ = /0 #dﬁ (10)
Consequently, we have
Ch(T() -1
log S ¥ (2) = ( / ((2)%) ~ log (). (1)

A calculation brings the next subordination relation

sty (&) <zexp ([ M=),

Moreover, the function & translates the disk 0|&|c < 1 into a convex symmetric domain toward
the x-axis; in other words, we have

A(—algl) < R(A(T(0¢))) < A(elg]), o€ (0,1],[¢] # 0,

which implies the inequalities:
h(=0) < h(=elg]), hlelé]) < h(o)

and

[ HTCAN =14, g [T 1y o [ ETIED 1y,

o o - 1

By employing (10) and the last inequality, we arrive at

og.

[T =1y, o Y @) [T -1,
0 (o B 0

o
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This equivalence to the fact

exp </01 H(T (=cl2])) —Lio) < ‘M’ e (/01 Ww).

o ¢ o

O

We note that the condition of Theorem 8, which the BB formula subordinates by a convex univalent
function % can be replaced by a general condition as follows:

Theorem 9. Suppose that Y € A\, a € [0,00) and 0 < v < 1. If

ESEY () =2y , 208
= p cu 12
( Sk (¢) ) 1+¢ ¢ 12
then .
RS Y (13)
¢
Moreover, define the term
V= #, 0<r<l,
(I—r)®
for some positive constant v, then
/
SEy (¢) v+1
v \e/ <__-'-
(259 | < 12
Proof. In view of Lemma 3, we have the subordination inequality
L}Y (©) <1+vg
7 .

Since the result is sharp, then directly, we obtain the inequality (13). Consequently, by ([19],
lemma 5.1.3), we have the inequality (14). O
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