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Abstract

In recent years natural language processing research has tended to evolve through the

successive modelling of various tasks. Examples include part-of-speech tagging, named

entity recognition, co-reference resolution, various parsing tasks, language modelling,

dialogue state tracking, extractive question answering (also called reading comprehen-

sion), answer sentence selection, text summarization, machine translation, and even

visual question answering. The goal of this thesis is threefold: to provide new architec-

tures for a subset of the above; to propose a new model or task capable of generalising

some of the above; finally, to build a dataset suitable for extractive question answering.

We present results close to or above the state-of-the-art in named entity recognition

(91.48 F1 on the CoNLL-2003 English dataset) and answer sentence selection (a 70.1%

and 67.4% accuracy on the two test sets of InsuranceQA). Additionally, we provide

a detailed ablation study of the well-known Bi-directional Attention Flow (BiDAF)

model which we then use to suggest improvements to it. Finally, we introduce a new

question answering dataset of labelled news data from armed-conflict events in the Iraq

war.
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Chapter 1

Introduction

Language is fundamentally inquisitive. Not only do we use it to convey information,

we also use it to inquire for new information. Historically, most written text was of

the former kind but with today’s popularity of messaging applications, we have seen

an explosion in the amount of written data we have of the latter. This in turn has

spurred research into question answering (QA) which is the study of models capable

of answering questions across data.

The natural language processing (NLP) community divides question answering into

two main categories depending on what the questions are being asked across. If across

structured data, it is called structured QA, whereas if across unstructured data, it is

called text QA. The two divisions have developed a separate focus.

Text QA research has focused heavily on attention models capable of detecting

affinities between text and question. Much work has been done on detecting, mostly

contiguous, answer spans in text. This has led to claims of human-level performance

on certain well-known datasets. Recently however, there has been mounting evidence

that suggests these models often learn to answer in a wrong way. They tend to focus

on wrong parts of the question which makes them brittle in new contexts. There have

been two main ways of remedying this. One has been through new datasets, the other

through better inductive biases in the models themselves. Both strategies serve to help

prevent models from learning spurious forms of reasoning.

Structured QA research has focused on two main data sources: knowledge bases

(KBs) and tables. In the case of KBs, affinities between question and the contents of

the KB (usually in the form of KB triplets) are modeled. Work on QA across tables on

the other hand has seen attention from the neural semantic parsing community. Here,

the mapping between question and logical form (such as a SQL query which then gets

run across a table) is modeled. The logical form can be thought of as a blueprint for

14



1. Introduction

how to reason your way to the answer. Its generation can even be constrained to be

both syntactically and semantically correct. However, it is unclear how this could be

applied across unstructured data.

Many well known NLP tasks can be turned into a question answering task. For

example, named entity recognition (NER) can be seen as a multi-span QA task. Sim-

ilarly, much of information extraction (IE) can be seen as just QA across documents.

Even seemingly unrelated tasks such as parsing can be thought of as questions answer-

ing across text where the goal is to generate a parse. This unifying aspect of QA has

helped open the door for the study of transfer and multi-task learning across differ-

ent domains in NLP. For a long time NLP was forced to focus on small independent

tasks; different models were developed and tailored for specific tasks like co-reference

resolution, part-of-speech tagging, or constituency parsing. They were then pitted

against each other on open datasets until they were “solved” only to have new, harder,

datasets appear. Over time new datasets introduced harder and harder problems such

as tasks involving dialogue or elements of computer vision. Concurrently, the unsu-

pervised learning of word and sentence-level embeddings has armed downstream QA

models with better inputs that have led to spikes in performance. Nevertheless, NLP

is yet to have its ImageNet moment and although at least in question answering, the

predominant mood now seems to be that of taking a step back and re-evaluating what

it is our models are trying to learn.

All this, of course, matters, not only in and of itself, but also because of its use

in application. Written questions nowadays appear in two main contexts: search and,

more recently, dialogue (whether with an automated customer support agent or a home

assistant). The proliferation of human-computer interaction is undoubtedly set to

continue and the task of NLP research is to help equip it with ever better tools. This is

not to say that the relationship between research and application is a one-way street,

for surely it has been application which has over years heavily dictated the interests

and directions of researchers in NLP. One need not look further than tasks which have

preoccupied NLP for decades such as machine translation (MT) or more recent tasks

such as . sentiment analysis, both driven by applicative need. In the former case, as a

means of translating Cold War documents from Russian into English en masse; in the

latter, as a way of predicting market sentiment in financial modeling or as a gauge of

the quality of a product. Similarly, with question answering, it is clear that until we

one day have fully automated customer service centers or home assistants with more

human-like capabilities, applications such as these will continue to guide research in

QA.

The goal of this thesis is to explore and extend our current understanding of text
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QA by focusing on three things: (1) the pitfalls of existing QA models, (2) entities and

how they relate to QA, and (3) a new dataset created for QA across armed-conflict

related texts. The thesis is divided into eight chapters and starts with chapter two

where question answering, its history, and how it is viewed in linguistics is described.

This is followed by a discussion of various different neural models used in the field in

chapter three. The first substantive chapter with contributions is chapter four where we

present a detailed ablation study of one of the most popular QA models and propose a

new named entity QA task. Chapter five focuses on named entity recognition. Chapter

six introduces a new answer selection model. Chapter seven introduces a new dataset

for armed conflict analysis and presents results on it. Finally, chapter eight concludes

this thesis with proposals for future work.

1.1 Contributions

The contributions in this thesis are contained in Chapters 4, 5, 6, and 7. We describe

them briefly in turn:

Chapter 4

Chapter four presents an ablation study on the BiDAF reading comprehension model.

We show that: (1) the model relies on its strong attention mechanisms to achieve good

results (2) it is not sensitive to the complexity or simplicity of the question represen-

tation (3) we propose a new form of attention which does not prematurely compress

the question (4) we introduce a new dataset which combines reading comprehension

with NER (5) we introduce an extension of the BiDAF model to the multi-span setting

which we call BiDAF-MS.

Chapter 5

Chapter five introduces a new multi-LSTM model which is an end-to-end neural archi-

tecture comprised of multiple ensemble-like bi-directional LSTMs. We show that our

models achieves state of the art results on the CoNLL 2003 NER dataset.

Chapter 6

Chapter six focuses on another QA task called answer selection and introduces a new

answer selection model which achieves state-of-the-art results on the InsuranceQA an-

swer selection dataset. We achieve this by using a siamese architecture augmented with

attention and a global view of the question and candidate answer.

16



1.2. List of Papers 1. Introduction

Chapter 7

Chapter seven introduces a new dataset of annotated armed-conflict news data. Using

human-coded incident-level data about casualties in the ongoing conflict in Iraq we

construct a base dataset which can be posited as either a NER, relationship extraction,

event de-duplication, or question answering dataset.

1.2 List of Papers

The thesis is in part based on the following papers:

• Named Entity Recognition With Parallel Recurrent Neural Networks.

[39].

• An Attention Mechanism for Neural Answer Selection Using a Com-

bined Global and Local View [7, 6].

• Neural Named Entity Recognition Using a Self-Attention Mechanism

[40].

• IBC-C: A Dataset for Armed Conflict Analysis [41].
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Background
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Chapter 2

Question Answering

This chapter provides a thorough background on the topic of the thesis. The

literature on this particular topic is huge, but we will try our best.

Question answering has a long history in both computing and natural language

processing. This chapter begins by introducing the history behind question answering,

followed by a review of what the areas of focus are today.

2.1 The History of Question Answering

Question can be thought of as utterances which we employ to retrieve information.

Whether from or own memory or from some external context. As such, it is easy to

see the central role question answering plays in natural language processing.

2.1.1 A brief history of NLP

Natural language processing is a very young field. We can trace its history back to

the late 1940s. World War II had just ended and academia was spoiled for research

directions to pursue. An entire generation of mathematicians, linguists, and engineers,

on both sides, had just spent years contributing towards the war effort of their respec-

tive sides. Many of them focused on code breaking and the machinery which made it

feasible at scale - early computers. Code breakers developed a stable of techniques,

runnable on the electromechanical or early electronic computers of the time or by so-

called human computers - groups of primarily women whose job it was to operate and

program the computers as well hand-calculate or transcribe things when automated

methods were found to be unfeasible. The code breaking techniques involved count-

ing character, word, or n-gram frequencies; comparing documents; and through other

means statistically analyzing cyphertext and how it relates to plaintext. With the war
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over, questions naturally arose over whether the computers and techniques developed

in code breaking could be applied to natural language instead of code.

This was a time of unprecedented international cooperation. International organi-

zations such as the World Bank, the International Monetary Fund, the United Nations

and its various agencies, had just been formed. The Nuremberg trials were ongoing,

the Marshall plan was about to begin, and suspicions between the West and the So-

viet Union festered. What a burning need, all of a sudden, to understand the world’s

languages! And so, between roughly 1946 and 1949, Warren Weaver, a departmental

director at the Rockefeller Foundation and a mathematician who had spent the war in

operations research but who was familiar with communication theory and cryptogra-

phy, began thinking about what would later become machine translation (MT). The

result of his thoughts was a memorandum, entitled Translation, which he completed in

1949. In it he cites a wonderful exchange between him and Norbert Wiener of MIT:

One thing I wanted to ask you about is this. A most serious problem, for

UNESCO and for the constructive and peaceful future of the planet, is the

problem of translation, as it unavoidably affects the communication between

peoples. Huxley has recently told me that they are appalled by the magnitude

and the importance of the translation job.

Recognizing fully, even though necessarily vaguely, the semantic difficulties

because of multiple meanings, etc., I have wondered if it were unthinkable

to design a computer which would translate. Even if it would translate only

scientific material (where the semantic difficulties are very notably less),

and even if it did produce an inelegant (but intelligible) result, it would

seem to me worth while.

Also knowing nothing official about, but having guessed and inferred con-

siderable about, powerful new mechanized methods in cryptographymethods

which I believe succeed even when one does not know what language has been

codedone naturally wonders if the problem of translation could conceivably

be treated as a problem in cryptography. When I look at an article in Rus-

sian, I say: ”This is really written in English, but it has been coded in some

strange symbols. I will now proceed to decode.”

Have you ever thought about this? As a linguist and expert on computers,

do you think it is worth thinking about?

Wiener replied in the negative:
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Second - as to the problem of mechanical translation, I frankly am afraid

the boundaries of words in different languages are too vague and the emo-

tional and international connotations are too extensive to make any quasi-

mechanical translation scheme very hopeful. I will admit that basic English

seems to indicate that we can go further than we have generally done in the

mechanization of speech, but you must remember that in certain respects

basic English is the reverse of mechanical and throws upon words a burden

which is much greater than most words carry in conventional English. At

the present time, the mechanization of language, beyond such a stage as

the design of photoelectric reading opportunities for the blind, seems very

premature. . . .

Despite not having convinced Wiener, Weaver convinced many others including

policy makers which responded with plentiful funds to fund research into the topic. In

tandem with Weaver, disparate efforts elsewhere were ongoing. In particular, Andrew

D. Booth of Birkbeck College and Richard H. Richens (a botanist turned computational

linguist) of the Commonwealth Bureau of Plant Breeding and Genetics were by then

working on a mechanized dictionary capable of translating individual words using a

rule-based method. Similar efforts were being worked on, on one of the computers in

California.

Research into machine translation soon opened other areas of focus which needed

to be addressed such as syntactics and semantics. From this, new grammars, parsers,

and what today we would call lexical databases were created. As these sub-problems

turned into sub-fields, modern NLP slowly began to be born. In 1954 the ability to

translate simple technical Russian into English was showcased in the IBM-Georgetown

demonstration. In 1962 the Association for Machine Translation and Computational

Linguistics (AMTCL) was formed - later to be renamed to today’s well known Associ-

ation for Computational Linguistics (ACL) in 1968.

Progress in MT was nevertheless slow. Despite early optimism that machine trans-

lations would be solved within years, the end was nowhere in sight. In 1964 the US

government set up the Automatic Language Processing Advisory Committee. Their

task: to evaluate progress in machine translation and computational linguistics. Their

1966 report titled Computers in Translation and Linguistics was critical of the progress

achieved and as a result funding for MT was heavily curtailed. The report emphasized

the need for more basic research in computational linguistics and as a result NLP

became more diversified.

The 1970s and 80s saw researchers focus on ways of representing contextual knowl-

edge and systems capable of building and answering questions about these early knowl-
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edge bases. Lexical databases such as WordNet and other knowledge bases based on

semantic frames, were developed. Work in these areas complemented and intersected

with work being done on expert systems. This was the era of great optimism that soft-

ware systems could help humans solve tasks faster. Systems exposed natural language

interfaces to be able to query structured data. SHRDLU (1970) could answer ques-

tions and enact prompts in a simple block world; PARRY (1972) was an early chatbot

which attempted to simulate a person with paranoid schizophrenia; KL-ONE (1974)

reasoned across knowledge bases, SAM (1975) and PAM (1978) understood stories and

could launch procedures as a result or answer questions about them. These systems in

turn spurred research into more basic NLP research such as statistical parsing, part-

of-speech tagging POS tagging, knowledge-base creation, and intent recognition.

In the early 1980s it was hoped that natural language interfaces would be the

de facto way of interfacing with computers (instead of having to type complicated

commands into the terminal). Entire companies such as Symantec were founded on

this premise. Instead, with the advent of GUI operating systems (Mac OS 1.0 in 1984

quickly followed by Windows 1.0 and AmigaOS 1.0 in 1985), curtailed research into

expert systems and natural language interfaces.

Running in parallel with the work being done on the above, research into the sta-

tistical analysis of language started gaining traction. Hidden Markov models, which

had been developed in the late 1950s and throughout the 1960s by the likes of Rus-

lan Stratonovich and Leonard E. Baum (known for the Baum-Welch algorithm), saw

their application first in speech recognition and later in tasks which could be posited

as sequence classification problems such as POS tagging and eventually named entity

recognition (NER).

The 1990s saw an explosion in statistical NLP methods as the machine learning

and NLP communities edged ever closer. Structured support vector machines (SVMs),

conditional random fields (CRFs), recurrent neural networks (RNNs) 1 all started to be

applied to language by the end of the decade. The standardization and proliferation of

NLP tasks allowed the community to more easily compete on solving them. Conferences

such as the first Text Retrieval Conference (TREC, 1992), SemEval-1 (1998), and

Conll-1999, promoted shared tasks which saw researchers around the world compete

on information retrieval (IR) and computational semantics analysis tasks.

The 2000s saw a maturing of these methods as researchers focused on an ever-

growing list of shared tasks, various flavors of models, and perhaps what looking back

would mark the decade - hand-engineered features. By the end of the decade, intri-

cate models, complicated pipeline systems, and baroque hand-engineered features had

1Not long-short term memory (LSTM) networks yet, although they were already around.
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achieved measurable progress in most tasks. Simple tasks such as POS tagging and

NER were considered close to being solved and much progress had been made on tasks

such as co-reference resolution, semantic role labeling, word sense disambiguation, and

sentiment analysis. Important caveats where the then state-of-the-art models failed

remained. Pointedly, the way this was tackled was usually by adding more and better

hand-engineered features.

An important shift happened in the early 2010s with a few key incursions of deep

learning into the field. Distributed word representations in vector space appeared in

2011 2 and were shown to substantially improve the performance of downstream models.

As a direct result of this research, study into distributed word vector space models has

blossomed and researchers are now trying to encode as much information into word

embeddings as possible. In 2012 the now widely used sequence-to-sequence model was

developed, immediately improving results in machine translation and semantic parsing.

It was in the 2010s that mobile phones went from being devices used to call and text

people to so-called smartphones - devices with which users could book flights, bank,

check cycle routes, video call, book a cab, and, towards the end of the decade, even

begin to use as smart personal assistants. Despite it being easier than ever before to

place a call, smart phones users in the 2010s turned unexpectedly to messaging each

other. This has reignited hopes that natural language, whether through voice or text,

could again be used to interface with complex systems. As a result, study into dialogue

systems saw increased interest, as did some of its sub-tasks, including semantic parsing

and question answering.

At the time of writing it is late 2018 and we are slowly edging towards the end of

another decade. Looking forward we can probably expect work in the next decade to

continue to push the boundaries of deep learning NLP models. We can expect to see

word and sentence or document level embedding models to mature as we find better

ways of encoding information in them. This will lead to significant improvements in

downstream tasks. Just as in the computer vision community, we are beginning to

see more attention being paid to the robustness of our models and their brittleness

to adversarial examples. Dialogue systems will improve as households acquire smart

home assistants en masse, as a result we can expect continued interest in dialogue state

tracking, question answering, and semantic parsing. A tougher nut to crack will be

problems which we have only skirted the surface of such as true transfer learning and

how memories are stored, retrieved, and used.

And what of machine translation? The original problem which helped spark re-

2The first such models was actually introduced by Rumelhart, Hinton, and Williams in 1986 but
distributed word representations first really saw their use in the early 2010s.
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search into what would become modern NLP? As of 2018, the strongest neural machine

translations systems perform close to par with humans.

2.1.2 A brief history of QA

Question answering traces its history back to the early days of NLP. From the very

beginning there was a distinction between structured QA and text QA. The two branches

distinguished themselves not only by the types of data questions were asked across

but also by their application. Structured QA was seen as a means of providing an

interface to complex structured data whereas text QA was initially seen as a frontend

to information retrieval. Later, text QA would become an object of separate study as

part of reading comprehension.

In 1961 researchers at MIT revealed BASEBALL [38], a system capable of auto-

matically answering questions across a structured baseball dataset. Its introduction

confidently stated that:

Men typically communicate with computers in a variety of artificial, styl-

ized, unambiguous languages that are better adapted to the machine than

to the man. For convenience and speed, many future computer-centered

systems will require men to communicate with computers in natural lan-

guage. The business executive, the military commander, and the scientist

need to ask questions of the computer in ordinary English, and to have

the computer answer questions directly. Baseball is a first step toward this

goal.

In 1965 a survey by Simmon et al. [128] mentioned no fewer than fifteen English

language QA systems built over the preceding five years including early conversational

agents. In the mid 1970s work by Wendy Lehnert influenced by Roger Schank and

conceptual dependency theory introduced QUALM [74], a question answering program

capable of answering questions about text. It was later used as a part of the SAM and

PAM story understanding systems. Lehnert was one of the first NLP researchers to

focus on text QA as an area of independent study. QUALM worked by first classifying

the question into one of thirteen conceptual categories before using heuristics to find

the answer.

Despite having studied text QA in situ, QUALM failed to spark research into the

new field. Perhaps one of the most decisive reasons for this was the lack of a stan-

dardized dataset, or task, to help research coalesce around a shared goal. This at last

happened with the inclusion of a QA task into the 1999 Text Retrieval Conference
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(TREC) [139] where the task was to retrieve a ranked list of five documents and cor-

responding answer snippets (short passage of text which contain the answer). As a

result, research into QA has continued to blossom over the past 20 years.

Initially, researchers used pipeline approaches to try and tackle these new shared

QA tasks. A common pipeline was:

1. Question Analysis questions would first be analyzed and classified as belonging

to a particular type using either heuristics or through some machine learning

method (see [78]).

2. Candidate Document Selection A limited subset of candidate documents

believed to contain the answer would be selected.

3. Answer Extraction Items at varying granularities depending on the task would

be ranked or classified in terms of their probability of containing the answer. Items

here could range from the individual documents themselves down to sub-strings

of the documents, individual sentences, or even short sequences of words.

4. Response Generation An appropriate response to be returned to the user was

generated or selected.

With continued adoption of statistical and later deep learning methods in NLP the

above pipeline began shedding heuristics and adopting a more end-to-end approach.

In what follows we cover some of the recent work done in the various sub-tasks

of QA that have matured over the past two decades with a special focus on reading

comprehension and sentence selection - the two main topics of this thesis.

2.2 Question Answering Research Today

Question answering, just like the rest of NLP research today, slots almost wholly

within the prevailing deep learning paradigm. Deep learning methods have consis-

tently achieved state-of-the-art results in the field and progress has been rapid.

The reason behind the move in NLP from the more traditional, statistical, ap-

proaches to deep learning is for the most part because deep learning methods allow for

the more expressive modelling of textual inputs and as a result have achieved much

better results on NLP tasks. As an example, modeling the long and short distance

sequential dependencies in variable length text is a lot easier to achieve using recurrent

neural networks than more traditional approaches which would have either disregarded

these dependencies or modelled them using models not as expressive or as general as

recurrent neural networks.
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2.2.1 Open-Domain Question Answering and Sentence Selection

Open-domain QA is the task of finding answers in collections of unstructured docu-

ments. Today, it roughly corresponds to steps 2. and 3. of the previous section. With

emphasis on the lots of documents! It is the most closely related sub-field of QA with

information extraction and as such also closely related to some of the technology under-

pinning modern search engines. It is also the branch of QA championed by TREC-QA

between 1999 and 2007. The emphasis was always on having to handle large numbers

of documents which makes it a great problem to think of in terms of learning to rank all

the documents. In 2007, the now somewhat confusingly named TrecQA, or sometimes

QASent, dataset was created using some of the original TREC data. It contained a

total of 227 questions and 8,478 candidate answers. Significantly, the dataset contained

only question-answer pairs with overlapping words.

Recently, research has coalesced around a number of frequently used datasets which

try to address some of the deficiencies observed in the original TREC data.

WikiQA [150], released in 2015, is an order of magnitude larger than the datasets

released by TREC-QA and focuses on the candidate document selection step (now

more commonly called sentence selection or answer selection) from a set of pre-selected

sentences. A total of 3,047 questions and 29,258 candidate answer sentences are col-

lected from Bing search queries and Wikipedia summaries respectively. Notably, some

questions do not have any corresponding correct answer sentences. Further, unlike

many instances in TREC, WikiQA data significantly reduces the bias towards lexical

overlap (shared words) between question and candidate answer text.

InsuranceQA [26], also released in 2015, expanded the size of sentence selection

datasets again this time including many more questions (17,487) and a comparable

number of candidate answers (24,981). Released by IBM, the dataset is noteworthy

for focusing on a single domain - insurance - using actual questions searched for by

users and featuring answers written by experts. Put otherwise, the dataset came from

a real-world use case.

Finally, the SemEval-2016 cQA challenge [30], introduced three selection sub-tasks:

(1) question-comment similarity where the task is to rank the comments left beneath a

question according to their relevance (2) question-question similarity where the task is

to rank a question to a set of other related questions according to their similarity, and

(3) question-external comment similarity where the task is to, given a new question,

rank the 100 comments associated with the 10 most related questions to the new

question.

The above datasets have all contributed towards a range of deep learning models

which divide roughly into three architectural categories:
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• Siamese Architectures. First introduced in 1993 by [13], siamese networks

work by encoding input into embeddings using the same encoder before comparing

the embeddings using some scoring function. The idea is to make the model

score correct question-candidate pairs above wrong (so called distractor) pairs

by learning an encoder which brings correct pair embeddings closer together in

space. Recent examples include the non-attentive model in [134] as well as [108],

[44] which even outperform some attentive architectures.

• Attentive Architectures. Learning an encoder function can be hard. To make

the computation of an embedding more dependent on other inputs, we may attend

across them. Attention mechanisms were first described in 2014 in [8] and have

seen wide adoption in NLP since. Recent works on answer selection include the

attentive model in [134] and the work by [117].

• Compare-Aggregate Architectures. The motivation behind compare-aggregate

architectures is to delay the aggregation into embeddings to occur as late as possi-

ble and to compare as much as possible along the way. Each contextual represen-

tation of one input (such as a word) is compare to all contextual representations

of the other input thus forming an outer product matrix of representation com-

parisons. These are then reasoned across using various aggregation steps thus

allowing for more fine-grained inter-dependence than with normal attentive ar-

chitectures. There has been a lot of work very recently on these types of models

including initially in work by [45] followed by [144] and [136].

An excellent review of the above methods can be found in [69].

2.2.2 Reading Comprehension

Reading comprehension is the task of reasoning across, usually a single passage, of

unstructured text to answer a question. The answer can either be a (1) span extracted

from the passage (2) a set of multiple extracted spans (3) an answer picked from a set

of multi-choice candidate answers, or (4) generated.

The history of modern reading comprehension dates back to Hirschmann et al. [51]

and their work on - the fashionably named - DEEP READ, an automated reading com-

prehension system which learned to find the sentence containing the right answer using

a combination of heuristic pattern-matching techniques on hand-engineered features.

The data their system was tested against comprised of easy to understand simulated

news stories with associated questions of a 3rd-6th grade comprehension difficulty. The

system was tested on a small development set made up of 60 passages and applied on a
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similarly sized test set. Each passage was associated with 5 questions giving a total of

600 questions. DEEP READ could identify the sentence containing the correct answer

30-40% of the time. These scores were later to be improved on by others. A year later

Ng et al. [95] published the first statistical model (logistic regression) to be used on

the dataset achieving results competitive with previous heuristic approaches (this was

still a time in NLP when it wasn’t clear whether statistical approaches would prevail).

New datasets much like the above were released throughout the 2000s, Breck et al.

[12] released 75 stories from the Canadian Broadcasting Corporation’s website together

with 650 associated questions. This data was then enriched in 2003 by Leidner et al.

[75]. On the modelling side, efforts remained much the same and were either heuristics

or simple machine learning methods (both of which used hand-engineered features as

input).

With increased computational power and the adoption of deep learning methods in

NLP towards the end of the 2000s came the need for new datasets and new models.

MCTest [114], released in 2013, contains 500 stories and 2000 questions and is a multi-

choice reading comprehension task with 4 candidate answers per question.

Neural models continued to struggle on reading comprehension tasks and the best of

models only recently began to perform on-par with the best handcrafted ones. Notably,

[138] presented at ACL 2016, was the first neural model to outperform handcrafted ones

on MCTest by a small margin.

2016 was also the year in which the Stanford question answering dataset (SQuAD)

was released. Considered somewhat of a watershed moment for reading comprehension,

it catapulted reading comprehension into the limelight and there have been over 70

proposed models which have been submitted to its leader board where models compete

against one another. Version 1.1 of the dataset contained over 100,000 questions and

536 passages of (so called) context text. The recently released version 2.0 of the dataset

[104] adds unanswerable questions into the mix.

The vast majority of SQuAD models are very similar. Roughly speaking they all

divide into three layers:

• Input Layer. The input layer’s responsibility is to take input representations

(usually of words, or characters) and transform them into contextual embeddings

which better represent the input passage and question. A very common approach

is to combine pre-trained word embeddings with character-level embeddings by

appending the output of an LSTM or CNN across the characters which make up

the corresponding word embeddings. The combined word-character embeddings

are then passed through an LSTM to contextualize them. We are left with a

sequence of embeddings of the same length as the context (or question depending
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on what is being embedded) which contain information about their surrounding

context and thus represent the inputs better.

• Body Layer. The body layer is where reading comprehension models model the

dependencies between passage and question. This is done through various atten-

tion steps using attention, co-attention and/or self-attention modules. Notable

examples include BiDAF [123], Dynamic CoAttention Networks [148], Stochas-

tic Answer Networks [80], QANet [151], FusionNet [55]. We explore BiDAF in

greater detail in a subsequent chapter.

• Answer Layer. The answer layer takes the outputs of the body layer and

converts them into predictions. Predictions in reading comprehension come in

two main flavours: (1) span predictions; where the goal is to predict one or more

spans of passage text by either predicting the start and end index (or indexes)

or by enumerating across all spans in order to classify across them or classify

each one of them or (2) generative predictions; where the goal is to generate the

correct answer.

Since SQuAD 1.0’s release there has been work criticizing the dissecting the dataset’s

structure and the models which compete on it. My work on analyzing BiDAF can be

looked at in this vein. Three recent works stand out here. Jia and Lang (2017) [58]

show that simple adversarial examples such as adding extra characters to questions

can successfully trick models. Even more recently, [113] formalize adversarial examples

for reading comprehension through their semantically equivalent adversarial examples

framework which shows that models perform poorly on simple paraphrases. Finally,

[141] perform a comparative error study of various reading comprehension models on

SQuAD.

Another popular machine comprehension dataset which has seen continuing focus

recently is the set of bAbI tasks [147] originally introduced in 2015 and since expanded.

Whereas SQuAD tries to cover as broad of a set of topics and questions as possible and

to make sure that all text is human generated, bAbI on the other hand is a synthetic

dataset with a focus of exploring how comprehension models perform on simple well

structured synthetic datasets allowing researchers to see where specifically these models

fail.

2.2.3 Cloze-style Tasks

Cloze-style datasets, where the the goal is to predict the missing word in a passage of

text, have become a popular way of automatically generating large reading compre-

hension datasets. Often, named entities are blotted out and the task is to fill them in.
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The most popular dataset in the field is the Children’s Book Test (CBT) [49] where the

goal is to predict a blanked-out word of a sentence given 20 previous sentences. Other

examples include the cloze-style CNN / Daily Mail corpus created by [46]. However, as

discussed in [105], it is difficult to create hard cloze-style datasets because the blanked

out words are usually entities or single words which are heavily dependent on a short

context.

2.3 Datasets

In this section, I describe in more detail the datasests used in the thesis.

2.3.1 CoNLL 2003

The CoNLL 2003 NER shared task dataset [137] is a collection sentences where each

word is assigned an entity label which identifies it as a organization, person, location,

or as miscellaneous. The task is most commonly posited as a sequence labelling task.

Traditionally, models such as HMMs and CRFs would have been used to solve this

task but more recently, research has focused on studying the performance of various

recurrent neural architectures.

.

English data Articles Sentences Tokens

Training set 946 14, 987 203, 621

Development set 216 3, 466 51, 362

Test set 231 3, 684 46, 435

Table 2.1: Number of news articles, sentences, and tokens (words)
in the CoNLL-2003 English dataset.

English data LOC MISC ORG PER

Training set 7140 3438 6321 6600

Development set 1837 922 1341 1842

Test set 1668 702 1661 1617

Table 2.2: Number of named entity types in the CoNLL-2003
English dataset.
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U.N. NNP I-NP I-ORG

official NN I-NP O

Ekeus NNP I-NP I-PER

heads VBZ I-VP O

for IN I-PP O

Baghdad NNP I-NP I-LOC

. . O O

Table 2.3: An example sentence from the CoNLL-2003 English
dataset.

2.3.2 WikiQA

The WikiQA dataset is an early answer selection dataset [150]. The task is to classify

or learn to rank across a number of candidate answers given a question. Questions are

usually short, whereas candidate answers are usually multi-sentence paragraphs. In

the case of WikiQA, the former are human-coded whereas the latter are collected from

Wikipedia.

Train Dev Test Total

Questions 2,118 296 633 3,047

Sentences 20,360 2,733 6,165 29,258

Answers 1,040 140 293 1,473

Average ques. length 7.16 7.23 7.26 7.18

Average sent. length 25.29 24.59 24.95 25.15

Questions w/o ans. 1,245 170 390 1,805

Table 2.4: WikiQA dataset statistics.

Question type Counts %

Location 373 12

Human 494 16

Numeric 658 22

Abbreviation 16 1

Entity 419 14

Description 1,087 36

Table 2.5: WikiQA question type statistics.
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Question Who wrote second Corinthians?

Answer

Second Epistle to the Corinthians The Second Epistle to the Corinthians,

often referred to as Second Corinthians (and written as 2 Corinthians),

is the eighth book of the New Testament of the Bible. Paul the

Apostle and Timothy our brother wrote this epistle to the church of

God which is at Corinth, with all the saints which are in all Achaia.

Table 2.6: An example question-answer pair from the WikiQA
dataset.

2.3.3 InsuranceQA

Similar to WikiQA, InsuranceQA is an answer selection dataset where answers must

be classified across or ranked [26].

Train Validation Test1 Test2 Total

Questions 12,887 1000 1,800 1,800 17,487

Answers 18,540 1,454 2,616 2,593 25,203

Table 2.7: InsuranceQA dataset statistics.

Question Does Medicare cover my spouse?

Answer

If your spouse has worked

and paid Medicare taxes for the entire required 40

quarters, or is eligible for Medicare by virtue of

being disabled or some other reason, your spouse

can receive his/her own medicare benefits. If your

spouse has not met those qualifications, if you have

met them, and if your spouse is age 65, he/she can

receive Medicare based on your eligibility.

Table 2.8: An example question-answer pair from the Insur-
anceQA dataset.

2.3.4 SQuAD

The Stanford Question Answering Dataset [105] is a machine reading comprehension

dataset where the task is to find the correct answer span of words in the context text

given a question. In the case of SQuAD, there is only ever one correct answer span in
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every context-question pair and it is always contiguous (i.e. a sequence of neighbouring

words).

Train Validation Test (hidden)

Question-answer pairs 87,599 10,570 9,616

Articles 442 48 46

Context paragraphs 18,891 2,067 2,257

Table 2.9: SQuAD dataset statistics.

Answer type Percentage Example

Date 8.9% 19 October 1512

Other Numeric 10.9% 12

Person 12.9% Thomas Coke

Location 4.4% Germany

Other Entity 15.3% ABC Sports

Common Noun Phrase 31.8% property damage

Adjective Phrase 3.9% second-largest

Verb Phrase 5.5% returned to Earth

Clause 3.7% to avoid trivialization

Other 2.7% quietly

Table 2.10: SQuAD answer types.

Context paragraph Nikola Tesla (Serbian Cyrillic: ;

10 July 1856 7 January 1943)

was a Serbian American inven-

tor, electrical engineer, mechani-

cal engineer, physicist, and futur-

ist best known for his contribu-

tions to the design of the modern

alternating current (AC) electric-

ity supply system.

Question What does AC stand for?

Answer alternating current

Table 2.11: An example taken from the SQuAD dataset.
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2.3.5 IBC-C

Please see Chapter 7 for a further description of IBC-C.

2.4 Evaluation

A few common evaluation metrics are used throughout this thesis. We briefly go over

them here.

2.4.1 Precision@k

Precision at k (often denoted as p@k) corresponds to the number of relevant results in

the k retrieved results. As a result, p@1 can be thought of as accuracy whereas, for

example, p@5 is the ratio of times the correct answer appears in the top 5 retrieved

results. We use p@k as a measure of accuracy in answer selection.

2.4.2 MRR

Mean reciprocal rank (MRR) is another metric used to score retrieval models. Retrieval

models (including answer selection models which learn to rank) output a sorted list of

predictions. The rank is the index of the first correct answer to appear in that list.

The reciprocal rank is just the rank−1. And the mean reciprocal rank is just the mean

of reciprocal ranks.

For example, in a test set made up of three examples where our model ranked the

correct answers as 1, 3, 6; the reciprocal ranks would be 1, 13 ,
1
6 and the MRR would be

1
2

MRR =
1

|Q|

|Q|∑
i=1

1

ranki
(2.1)

2.4.3 F1 Score

The F1 score is defined as the harmonic mean of precision and recall:

F1 =

(
recall −1 + precision −1

2

)−1
= 2 · precision · recall

precision + recall
(2.2)

It is probably the single most used metric in NLP. The motivation behind that

is that it takes a look at both the recall and precision of a model and not just the

accuracy. In cases where there are class imbalances, the discrepancy between the two

can be very large and accuracy results can be misleading.
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2.4.4 Micro and Macro Scores

Micro- and macro-score on any of the above metrics will compute two different things.

A macro-average will compute the metric independently for each class and then take

the average (hence treating all classes equally), whereas a micro-average will aggregate

the contributions of all classes, before computing the average score.

2.5 Summary

We have now reviewed the history of question answering and how it fits in the wider

NLP context. Further, we have gone over some of the most recent research in question

answering. Finally, we introduce the datasets used in this thesis. In the next chapter

we will look at our first question answering model.
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Chapter 3

A Deep Learning Primer

This chapter provides yet more background information.

3.1 Views of Language

3.1.1 A Compositional View of Language

It is generally agreed that language is compositional and follows a hierarchy ranging

from words and characters to clauses, sentences, and entire documents - the under-

standing any of which might even be dependent upon knowledge of some external

context. Linguists and NLP researchers have long explicitly modelled the composi-

tional structure of language. Perhaps the two best examples of this are constituency

and dependency parses of sentences (Figure 3.1 and Figure 3.2, respectively).

Parses of language model it as being made up of terminals (words) and non-

terminals (in the case of Figure 3.1 Penn Treebank tags) which can operate on terminals

or on other non-terminals themselves. Work on recursive neural nets which function

across such parse trees (as popularized [129])has been a promising recent avenue of

research but has been hampered by the difficulty of efficiently training such neural

architectures.
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S

NP

Det

The

N

man

VP

V

ate

NP

N

pizza

PP

P

at

NP

N

home

Figure 3.1: An example of a constituency parse tree.

A hearing is scheduled on the issue today .

ROOT

ATT

ATT

SBJ

PU

VC

TMP

PC

ATT

Figure 3.2: An example of a dependency parse tree.

3.1.2 A Sequential View of Language

Another way of looking at language is just as a sequence of words. The task is then

to model language using models capable of reasoning across sequences. This view on

language traces its history back to early sequential models such as hidden Markov

models and conditional random fields. In deep learning, the most popular models have

become recurrent neural networks starting with vanilla RNNs, followed by LSTMs,

GRUs, and other recurrent neural network variants.

The sequential modelling of language does not fully ignore the compositional view,

but instead, models it implicitly and argues that its explicit modelling is unnecessary.

This thesis follows the sequential view of language.
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3.2 Recurrent Neural Networks

Recurrent neural network architectures are a family of neural architectures capable of

handling sequntial input. Their names originate from the recurrent application of the

same set of parameters at each time-step and their dependence at each time-step on

not only the present input but also the networks previous state.

3.2.1 Vanilla RNNs

The simplest form of recurrent neural network is the vanilla RNN shown here:

ht = σ(Whht−1 +Wixt + bh)

ot = σ(Woht + bo)
(3.1)

Where Wi, Wh and Wo are the input, recurrence, and output parameters; bh and

bo the bias terms; ht the hidden states (or network states); and, xt and ot the inputs

and outputs. Notice that one can unroll the above across time-steps and think of it as

a deep feed-forward neural network where inputs are fed to it at every layer.

The problem with the above vanilla RNN model is that it comes with a set of

deficiencies which make it hard to train. Above all else, the above model is unstable

because during optimization, its gradients may explore or vanish. It is easy to intu-

itively see why that is. Thinking of Equation 3.1 in its unrolled form and taking its

derivative with respect to any of its parameters it is easy to see how one must borough

through the function using the chain rule. This leads to a product of Jacobians as

the derivative passes through the hidden layers. Just as the product of numbers just

smaller than 1 collapse to 0 and just above 1 explode to infinity, so too do the gra-

dients of vanilla RNNs behave. There are many hacks which to varying degrees solve

this problem, such as clipping the gradients if they pass a certain threshold, but there

has been much research since on architectures which do not experience this problem.

3.2.2 LSTMs

Motivated by the exploding and vanishing gradients problems of vanilla RNNs, long-

short term memory networks (LSTMs) were invented as a result.

ft = σg (Wfxt + Ufht−1 + bf )

it = σg (Wixt + Uiht−1 + bi)

ot = σg (Woxt + Uoht−1 + bo)

ct = ft ◦ ct−1 + it ◦ σc (Wcxt + Ucht−1 + bc)

ht = ot ◦ σh (ct)

(3.2)
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. . . LSTM LSTM LSTM LSTM . . .

x2 x3 x4 x5

y2 y3 y4 y5

h2 h3 h4

. . . . . .

Figure 3.3: An LSTM network

. . . LSTM→ LSTM→ LSTM→ LSTM→ . . .

LSTM←LSTM←LSTM←LSTM←. . . . . .

x2 x3 x4 x5

←→
h 5

←→
h 4

←→
h 3

←→
h 2

h→2 h→3 h→4

. . . . . .

h←3 h←4 h←5

Figure 3.4: A bi-directional LSTM network

An LSTM is a gated recurrent neural network architecture which is designed to

prevent the gradient from vanishing. Looking at Equation 3.2 we see the LSTM has

three so-called gates: the forget gate ft, input gate it, output gate ot are all functions

of the networks previous hidden state and the current input. These gates modulate

the input flowing into it ◦σc (Wcxt + Ucht−1 + bc), the output flowing out of ot ◦σh (ct)

and the previous state flowing into ft ◦ ct−1 the cell state ct. By gating the cell state,

vanishing derivatives are avoided. An intuitive way of seeing why this is by noticing that

to take derivatives with respect to parameters will involve taking derivatives through

cell states ct across time. Since the derivative of ∂ct/∂ct−1 is ft, the network can learn

to keep ft = 1 when it wants the gradient to flow through it unimpeded.

3.2.3 Bi-directional RNNs

Bi-directional RNNs (incluidng bi-directional LSTMs as seen in Figure 3.4) are a special

form of RNN where the data is modelled in both directions. This allows bi-directional

39



3.3. Attention Mechanisms 3. A Deep Learning Primer
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ht

Next Hidden State
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Figure 3.5: The inside of an LSTM cell

models to capture features of the input a normal RNN wouldn’t have. In practice,

creating a bi-directional RNN is simple. Two normal RNNs are initialized, data is then

fed in correct order through one of them, and in reverse order through the other. The

outputs are then concatenated.

3.2.4 Other architectures

There are many other RNN architectures in addition to vanilla RNNs and LSTMs.

Notably, gated recurrent units or GRUs [20] have become popular as a more efficient

and simpler alternative to LSTMs. Nevertheless, vanilla LSTMs have become standard

in NLP.

3.3 Attention Mechanisms

In RNNs, information from previous inputs is compressed within the current most

network state. Attention mechanisms instead allow to attend to the entire sequence

and model it as a whole.

In general, an attention function computes a weighted sum over some values V ,

where the weights are a normalized compatibility function of two values: a query Q and

a key K.

Attention (Q,K, V ) = softmax
(
QKT

)
V (3.3)

This general form of attention allows us to introduce a few specific forms of it:
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3.3.1 Self-Attention

In sel-attention the keys, values, and queries are all the same giving us:

Attention (V ) = softmax
(
V V T

)
V (3.4)

3.3.2 Parametarized Attention

Parameterized attention parametarizes the compatibility function with some function

f :

Attention (Q,K, V ) = softmax
(
f(QKT )

)
V (3.5)

3.3.3 Multi-head Attention

Multi-head attention takes multiple heads of parametarized attention (Equation 3.5)

on the same input and concatenates the outputs of the heads.

3.4 Word and Sentence Representations

The question of how text should be represented as input to models is a longstanding

one. In the simplest case, a sequence of words could be represented using a sequence

of one-hot vectors. Concretely, imagine a vocbulary of size three containing the words:

the, ate, and dog. Then we may form vectors of size three to represent the three words

as:

the = (1, 0, 0)

ate = (0, 1, 0)

dog = (0, 0, 1)

(3.6)

The sentence the dog ate can then be represented as a sequence of these one-hot

embeddings:

[(1, 0, 0), (0, 0, 1), (0, 1, 0)] (3.7)

Or as an input matrix of stacked one-hot column vectors:

X =

1 0 0

0 0 1

0 1 0

 (3.8)
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Adding up the one-hot vectors of a sentence’s words gives us its bag of words (BoW),

also called term frequency (TF), representation.

The problem with such simple embeddings is that they fail to capture any form

of similarity or relatedness between words. One-hot embeddings at the very least still

preserve order whereas a TF representation loses information even about that.

3.4.1 Distributed Word Embeddings

One way of elucidating a word’s meaning is to look at the company it keeps. This so-

called distributional view of semantics is what inspired neural word embedding models

such as word2vec [89]. These work by encoding compressed word co-occurrence counts.

It is perhaps best to understand word2vec through example. The word book often

co-occurs with words such as flight, library, buy, room, hotel, and cover.

To learn a good embedding for the word book using the skip-gram model we sample

word-context pairs from within some window (in our case book-flight, book-library, book-

room, and so on) and try and predict the context word from the input word for all word-

context pairs. To do this for the example pair book-flight, we take the vocabulary-sized

one-hot encoding of book, multiply it by the input embedding parameter matrix Win

to get its compressed representation, then decode it back using the output matrix

Wout into a vocabulary-sized vector. We then softmax across this vector and expect

the output to approach the one-hot embeddings for the word flight. After training is

complete, Win becomes our embedding matrix with every row being a different word

embedding (corresponding to the index of the 1 in the one-hot embeddings of our

words).

The CBOW model learns word embeddings in the opposite way. It takes context-

word pairs, converts the contexts into a bag-of-words representation, and then tries to

predict the correct word.
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Figure 3.6: CBOW model
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Figure 3.7: Skip-gram model

Models such word2vec [89] (described above), GloVe [99], and more recently fast-

Text [60], all attempt to learn such compressed word embeddings. However, notice

that that (1) the sampled word-context pairs all come from a fixed-sized window, and

(2) context words are modelled independently and at no point are contexts considered

as a sequence.

3.4.2 Sentence and Document Embeddings

Recently, word and sentence-level embeddings which capture information from the

context in its entirety have begun to appear. Notably, a string of publications in 2018

[102, 54, 103] were the first to introduce such models and show that their representations

are transfer well to downstream tasks. We describe one of these, ELMo [102], because

we use it in Chapter 4 as part of our ablation study of BiDAF.
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Figure 3.8: An example of a Siamese Network

3.4.3 ELMo

Embeddings from language models (ELMo) is a recently released models which uses a

bi-directional language model to learn word embeddings. A language model is a model

which models the probability of a sentence by continiously trying to predict the next

word given the already seen ones, i.e.:

P (w1, . . . , wm) =
m∏
i=1

P (wi|w1, . . . , wi−1) (3.9)

One way of modelling the above is by using an LSTM to, at every time-step, predict

the next word. ELMo does just that but instead of using a single LSTM it uses multiple

stacked bi-directional LSTMs to model at every timestep model the next word given

past and future words. It has been shown [102, 100] that ELMo seems to improve

results in many NLP tasks across the board.

3.5 Siamese Networks

Siamese networks are networks which follow a specific kind of architecture. They consist

of two identical networks with shared weights which are used to embed usually two

inputs. The embeddings of these inputs and then compared in the objective function

using a contrastive loss. The goal is not to classify, but rather to differentiate between

inputs. For example, in Chapter 6 we look into training siamese-like networks for answer
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selection where we train the model to differentiate between correct context-candidate

pairs and wrong (distractor) context-candidae pairs.

3.6 Summary

The above brief introduction to some of the most important deep learning and NLP

concepts used throughout this thesis will help us as we present new models in subse-

quent chapters. Throughout, I will refer the reader back to this chapter whenever we

use, with little description, any of the techniques described above. Already in the next

chapter, we will make heavy use of almost all that has been introduced here.
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Question Answering
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Chapter 4

A Detailed Ablation Study of the

BiDAF Model

This chapter contains our first contribution.

4.1 Introduction

Since the release of the Stanford Question Answering Dataset (SQuAD) [105] in 2016,

dozens of models have competed on it. Although all different, they are comprised of

many of the same or similar components. Just as LSTMs have become a staple compo-

nent of many NLP models, so too has the bi-directional attention flow (BiDAF) [123]

model become a popular model within reading comprehension research. Subsequent

publications have all either analyzed it, based their proposed models on it, or compared

themselves against it. A review of these can be found in Section 4.7. Like other ques-

tion answering models, BiDAF divides into three sections. The input layers, the body

layers, and the output (or answer) layers. A general description of these can found in

Section 2.2.2. We describe how exactly BiDAF implements these layers in Section 4.2.

In this chapter we are interest in exploring which sections of neural QA models

matter most to their performance. We take BiDAF as a canonical example of a neural

QA model and SQuAD as a canonical dataset and (1) explore BiDAF’s performance

by conducting a detailed ablation study of its components. In so doing we attempt

to isolate parts of it which contribute most to end performance; (2) We propose an

extension of the BiDAF model to multiple spans.

We begin by describing the model in detail, followed by describing our modifications

and ablations of it. Our changes touch on four sections of the model: (1) we analyze

different attention mechanisms in the body layer used to fuse information about the
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passage and query; (2) we analyze different fusion functions used to do this; (3) we

look at how important the question representation is to the success of the model in the

input layer; finally (4) we look at the new multi-span setting.

4.2 The BiDAF Model

4.2.1 The Input Layers

The goal of the input layers is to vectorize the question and the passage (also referred

to as the context) and represent them in such a way so as to lighten the modeling

burden of downstream layers. Put simply, the better the representations produced by

the input layers, the easier it is for the body and output layers to make sense of the

question and passage.

All this is achieved by using fusing word- and character-level representations and

passing them through recurrent models to ‘contextualize’ so as to be able to model

inter-word dependencies.

To form contextualized embeddings of passage words hi and contextualized embed-

dings of question words uj we model them at different granularities:

• Character-level. Every word is made up of individual characters. Characters

can tell us a lot about a word. For example, by just looking at a word’s characters

we may quickly get a sense of whether it denotes a name or place, or whether it

is an acronym. Thus, encoding character-level features has become standard in

modern NLP models. BiDAF opts for encoding characters using a convolutions

neural network (CNN) as done in [62]. Denote by xi:i+h a window of characters

(of some single word). A convolution operation takes a filter parameter w ∈ Rh

and applies it to a window of h characters:

ci = f (w · xi:i+h−1 + b) (4.1)

Where b is a bias term and f a non-linear function. The filter is applied to a

rolling window of character representations (taking pad values if boundaries are

crossed) to produce a feature map:

c = [c1, c2, . . . , cn−h+1] (4.2)

where c ∈ Rn−h+1. The feature-map is then max-pooled to produce the final

feature ĉ = {c}. By applying many such filters to character representations, a

character vector representation can be come up with.
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• Word-level. Words are represented as concatenations between their pre-trained

GloVe word embeddings [99] and their character vector representations. These

are then passed through a two-layer highway network [131] to produce the final

word-level embeddings.

• Context-level. The word-level embeddings from the previous layer are passed

through a bi-directional LSTM [52] to produce contextualized passage and ques-

tion word embeddings hi and uj , respectively. Packed together in matrix form

we denote these by H ∈ R2d×T and U ∈ R2d×J . where d is the dimension of the

word embeddings from the previous layer and 2d is the size of the contextual-

ized embeddings (their dimension is 2d instead of d because of the bi-direcitonal

LSTM). T and J denote the length of the context and question, in number of

words, respectively.

The above sequence of input layers have become popular in many different NLP

models. In short, the character layers encode character-level features such as capital-

ization and they are especially useful when a corresponding pre-trained word embed-

ding does not exist. The word-level layer appends to the character-level features a

pre-trained word embedding which captures information learned about the word from

large external unsupervised text corpus by learning about the contexts in which the

word appears and which words it co-occurs with. Finally, the context-level layer con-

textualizes these disparate representations to make them co-dependent on each other

by passing them through an LSTM.

Very recently, the word-level and context-level layers are being replaced by pre-

trained language models [102] in what is widely expected to be NLP’s ImageNet mo-

ment. Unfortunately, these are beyond the scope of this thesis.

4.2.2 The Body Layers

The body is what usually differentiates many NLP models. In cases where we are mod-

elling two inputs (a passage of a text and a corresponding question) the obvious thing

we want to do is to model the dependencies between these inputs. BiDAF proposes a

particular flavour of doing this.

• Attention Flow. What makes BiDAF’s body different from many other models

is that it avoids aggregating the result of attention into vectors prematurely

thus reducing the loss incurred by early summarization. The inputs to the layer

are the context-level embbedings of the context H and the query U from the

previous layer. The layer’s outputs are the query-aware vector representations
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of the context words, G, and the contextual embeddings from the previous layer

which are passed through.

We now describe how the query-aware context word representations are formed:

1. We first create a similarity matrix S ∈ RT×J where every component is a

function of a context and question word:

Stj = α (H:t,U:j) ∈ R (4.3)

In the original model α is set to be:

α(h,u) = w>(S)[h;u;h ◦ u] (4.4)

2. Next, we apply attention to the similarity matrix S. Two attentions are

applied:

Context to Query. The focus here is on the context words. For each

context word, the model attends across all question words to see how relevant

they are to the context word. First, an attention distribution at is computed

by:

at = softmax (St:) ∈ RJ (4.5)

Next, for every tth word in the context, the corresponding attention weights

at are used to attend across the question:

Ũ:t =
∑
j

atjU:j (4.6)

where Ũ ∈ R2d×T .

Query to Context. The second attention mechanism we apply flow the

opposite way. The focus here is on the query words. For each query word,

the model now attends across all context words to see how relevant they are

to the query word. We begin by forming the attention weights:

b = softmax

(
max
col

(S)

)
∈ RT (4.7)

where the max is taken column-wise, i.e. for every row in S ∈ RT×J , we

pick its maximum value. Next we apply the attention weights to every word

in the context:
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h̃ =
∑
t

btH:t ∈ R2d (4.8)

We now copy this vector T times and tile it to form H̃ ∈ R2d×T .

A natural question one might have is why context-to-query attention is so

different from query-to-context attention. Ultimately, it boils down to a

design choice. Were the same attention mechanism as seen in context-to-

query to have been used in query-to-context it would result in a H̃ ∈ R2d×J .

This would lead to a miss-match in dimensions between the new H̃ and

Ũ ∈ R2d×T .

3. Combining Attention Flow Results

Given the results from the previous two sections we combine them into a

single matrix:

G:t = β
(
H:t, Ũ:t, H̃:t

)
∈ RdG (4.9)

where G ∈ RdG×T , β is some fusion function, and dG its output dimension.

In the original paper, the fusion function is set to be:

β(h, ũ, h̃) = [h; ũ;h ◦ ũ;h ◦ h̃] ∈ R8d. (4.10)

The matrix G now contains T query-aware context embeddings. These are

now further contextualized by passing them through a bi-directional LSTM

of total size 2d giving us a matrix M ∈ R2d×T .

4.2.3 The Answer (Output) Layers

• Finding answer spans. To find the correct answer span, the model learns to

point to its correct start and end index. This involves calculating two probability

distributions across all context words. The start index distribution is

p1 = softmax
(
w>(p1)[G;M ]

)
. (4.11)

And the end index distribution is

p2 = softmax
(
w>(p2)

[
G;M2

])
. (4.12)

Where the two w are trainable parameters and M2 is the result of M being
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passed through another bi-directional LSTM. The concatenation G;M is done

across the token, T , dimension so that [G;M ] ∈ R(8d+2d)×T .

4.2.4 Model Optimization

During training we minimize the following objective function:

L(θ) = − 1

N

N∑
i

log
(
p1y1i

)
+ log

(
p2y2i

)
(4.13)

where θ denotes all the trainable parameters used in the model. To recap, these include:

• The CNN filter parameters used for character embeddings.

• The various LSTM parameters. BiDAF uses 4 LSTMs (two input LSTMs, a

fusion LSTM, and an LSTM to differentiate the input for predicting p2).

• Output layers parameters used for computing p1 and p2.

Importantly, notice that no parameters are used in the attention mechanism.

52



4.2. The BiDAF Model 4. A Detailed Ablation Study of the BiDAF Model

x
(c)
1 c

(c)
1 x

(c)
2 c

(c)
2 x

(c)
T c

(c)
T

h1 h2 hT...

... x
(q)

1
c
(q)

1
x
(q)

2
c
(q)

2
x
(q)
J c

(q)
J

u1 u2 uJ...

...

hT

h2

h1

u1 u2 uJ

S2,1

...

ST,1

S1,1

S2,2

ST,2

S1,2

S2,J

ST,J

S1,J

St,j = α{ , }ht uj

S ∈ ℝ
T×J

softmax 

softmax 

softmax 

a1

a2

∈aT ℝ
J

max 

max 

max 

softm
ax 

b ∈ ℝ
T

Query2Context

a
1
U
⊤

 
a
2
U
⊤

 
a
T
U
⊤

b
1
H

⊤

 
b
2
H

⊤

 
b
T
H

⊤

U ∈ ℝ
2d×JH ∈ ℝ

2d×T

∈U˜ ℝ
2d×T

∈H˜ ℝ
2d×T

G ∈ ℝ
×TdG

biLSTM

M ∈ ℝ
2d×T

∈p1 ℝ
T

∈p2 ℝ
T

biLSTM

∈M2
ℝ

2d×T

Context2Query

Figure 4.1: The BiDAF model.
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4.3 Ablations

In this section we first go over a worked example of BiDAF’s attention mechanism. We

then introduce Uncompressed query-to-context attention in Section 4.3.2 and propose

four of its variants. In Section 4.3.3 we propose a simpler question representation input.

Finally, in Section 4.3.4 we propose four new fusion functions.

4.3.1 Understanding Context2Query and Query2Context

Most machine reading comprehension models hinge on using context2query and query2context

attention. We first go over a worked example to gain an intuition over how these two

attention mechanisms work.

Consider the context passage:

Nikola Tesla was born in Smiljan.

And consider the question:

Where was Nikola Tesla born?

Assume the similarity matrix for this context-question pair to be S ∈ RT×J (where

T = 6 and J = 5):

Where was Nikola Tesla born

Nikola 1 1 5 4 1

Tesla 1 1 4 5 2

was 3 5 1 1 2

born 2 1 2 2 5

in 3 1 1 1 4

Smiljan 4 1 4 4 2

Context2Query. In context2query we attend across all question words for each con-

text words where the attention weights are a function of similarity score between the

current context word and all question words.

To get the attention weights we take S and apply a softmax across it column-wise

giving us the attention matrix A = softmaxcol(S):
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Where was Nikola Tesla born

a1 Nikola 0.01 0.01 0.7 0.26 0.01

a2 Tesla 0.01 0.01 0.25 0.69 0.03

a3 was 0.11 0.82 0.01 0.01 0.04

a4 born 0.04 0.02 0.04 0.04 0.86

a5 in 0.24 0.03 0.03 0.03 0.66

a6 Smiljan 0.31 0.02 0.31 0.31 0.04

We now use the attention weights at to attend across the the question embeddings

U ∈ R2d×J . If we consider our attention weight vectors in matrix form A(c2q) ∈ RT×J

then the application of our attention weights (as in Equation 4.5) is:

Ũ = softmax(S)U> = A(c2q)U> (4.14)

Query2Context. The way query2context is computed is different. We first take a

column-wise max, i.e. maxcol(S) giving us:

Question Max

Nikola 5

Tesla 5

was 5

born 5

in 4

Smiljan 4

Taking the softmax of this we are left with:

b = softmax(maxcol(S)) =


0.21

0.21

0.21

0.08

0.08

 (4.15)

Which we use to attend across question words (just as in Equation 4.8):

h̃ = b>H> (4.16)

We now tile h̃, T times to get, H̃ ∈ R2d×T .

Notice how context2query and query2context attentions are different. The latter

compresses information contained in the similarity matrix S by taking a column-wise
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max across it whereas the former doesn’t. In the next subsection we propose forgoing

this compression.

4.3.2 Uncompressed Query2Context Attention

Instead of the compressed attention proposed in the original BiDAF (see Equation 4.7),

we study what happens when uncompressed attention (see Equation 4.5) is applied

during query2context. Equation 4.7 collapses the similarity matrix using a column-wise

max function. This throws away any information contained in most components of S.

Our motivation here is to study whether by forgoing this compression, we may achieve

better overall results.

Just as in Equation 4.7 but in reverse we attend across all context embeddings for

every question word:

V = softmax(S>)H> (4.17)

Since V ∈ RJ×2d, we have to find a way of merging it into what later becomes G (see

Equation 4.9). To achieve this we need it to be the same dimension as H̃ ∈ R2d×T . We

study four variants of achieving this:

Variant 1

Our first attempt is to re-apply generalized attention to the new V in much the same

way as in context2query. Notice that under this variation, H̃ is a function of both

context-to-query attention and uncompressed query-to-context attention.

H̃ = (softmax(S)V )> = (A(c2q)V )> (4.18)

Variant 2

Our second attempt is to map V into a shape resembling H̃. This is done by passing

V through a feed-forward neural network. Under this variation, H̃ is a function of

uncompressed query-to-context attention and a non-linear mapping which maps it into

the correct form.

H̃ = FFNN(V ) (4.19)
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Variant 3

Our third attempt is to compress V into a single vector using a feed-forward neural

network and then tile it. In a way this is similar to the original compressed attention.

The key distinction is that all similarities in S are retained and it is up to the feed-

forward neural network to correctly compress them into a single vector which is than

tiled rather than a max function as in Equation 4.7.

Variant 4

The fourth variant on the original architecture is to take S and apply both column-wise

and row-wise softmax followed by applying the original query2context attention to it.

Under this variation V isn’t used but a similar effect is reached since the softmax is

taken in the same way as in Equation 4.17.

4.3.3 Using Different Question Representations

Variant 5

There has been continued criticism of existing SQuAD models failing to generalize well

(see related work section). We set the question representations to be independent word

embeddings which are not passed through an LSTM to contextualize them.

4.3.4 Different Fusion Functions

We study four different fusion functions which replace Equation 4.10.

Variant 6

Under this variation we only bring forward the result of the query-to-context attention

branch.

β(h, ũ, h̃) = [h̃] ∈ R2d×T (4.20)

Variant 7

Under this variation we only bring forward the result of the context-to-query attention

branch.

β(h, ũ, h̃) = [ũ] ∈ R4d×T (4.21)
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Variant 8

Under this variation we only bring forward the results of the two attention branches

and not the original input h.

β(h, ũ, h̃) = [h̃; ũ] ∈ R4d×T (4.22)

Variant 9

Under this variation we bring forward everything present in Equation 4.10 apart from

h ◦ h̃ - i.e. the interaction between the input and the result of query-to-context.

β(h, ũ, h̃) = [h; ũ;h ◦ ũ] ∈ R8d×T (4.23)

4.4 Multi-Span Answers

This section proposes an extension of the BiDAF architecture to the multi-span setting

where an answer can belong to multiple spans. We wish to classify each span j in a

passage of text D as being correct or not given a question Q. We denote by TD and

TQ the number of words in the passage of text and question, respectively. The total

number of spans in a passage of text is M = TD(TD+1)
2 .

We denote the start and end word indexes of a span sj by start(j) and end(j).

We assume an ordering of spans based on start(j); spans with the same start index

are ordered by end(j).

As the goal is to figure out the correct set of spans given an input we can think of

this as a multilabel classification problem.

For further notation, assume we have a set of inputs xi ∈ X (where every input is

comprised of D and Q) and that we denote our neural network model by f(·). The

output of f(·) is a scoring function that produces a vector of activations.

4.4.1 Multilabel Loss

The loss layer specifies how network training penalizes the deviation between the pre-

dicted and true answer spans. There has been a lot of study into different multilabel

loss layer types, particularly in the computer vision community. A nice review can be

found in [36]. In this thesis, we opt for the multilabel softmax loss.

The posterior probability of input xi and span j can be expressed as

pij =
exp(fj(xi))∑M
k=1 exp(fk(xi))

(4.24)
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where fj(xi) is the output activation of the model for input xi and span j. We

can now minimize the KL-divergence between the predictions and the ground-truth

probabilities. Since each input can have multiple correct spans (labels), we can form a

label vector y ∈ R1×M for each input where yj = 1 denotes the presence of a label and

yj = 0 its absence. Ground truth probabilities can then be obtained by normalizing y

as y/||y||1. If the ground truth probability for input i and span j is defined as p̄ij , the

cost function to be minimized is

J = − 1

N

N∑
i=1

M∑
j=1

p̄ij log(pij) (4.25)

where N is the number of training examples.

4.4.2 BiDAF-MS

We propose a modified version of BiDAF which we call BiDAF-MS (‘MS’ for multi

span). Using the contextual vectors {hi} we form recursive span representations, just as

in [72], by taking the {hl} and forming span representations sj = [hSTART(j); hEND(j)].

The span representations are passed through a final feed-forward neural network which

collapses them to a single value. These values are then fed to Equation 4.23.

4.4.3 Large Span Spaces

The total number of spans in a passage of text might seem exceedingly large. For

example, the longest passage of text in SQuAD is made up of 300 tokens. That equates

to 45,510 possible spans. Can this number be reduced? One possible way is to look at

how this number behaves as we limit span lengths. The number of span lengths up to

and including some length d can be expressed as:

gdoc(d) =
TD(TD + 1)− (TD − d)(TD − d+ 1)

2
(4.26)

where d ≤ TD. For span lengths up to and including ten, g(10) = 2955 which is

a much more manageable sum. Further reductions in the total number of spans to

be considered can be achieved by disregarding cross-sentence spans. In this case, the

number of total spans can be calculated using:

gsent(d) =
∑
s

Ts(Ts + 1)− (Ts − d)(Ts − d+ 1)

2
(4.27)

which reduces the total number of spans further.
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4.4.4 A CoNLL QA dataset

We create a new dataset by repositing the CoNLL 2003 dataset as a multi-span reading

comprehension problem where the questions are synthetically generated based on the

entity type. For example, given a sentence such as:

London’s Royal Opera House opens up its doors to toddlers with the aim of

opening up opera to a younger generation.

London is tagged as a LOCATION and Royal Opera House as an ORGANIZA-

TION. Out of the above we form two context-question pairs where the context is the

above and questions (or rather prompts) are Mark all people and Mark all organizations,

respectively. In so doing we end up with the below dataset:

Training Set Development Set Test Set Total

PER 634 159 937 1,730

ORG 748 160 215 1,123

LOC 937 181 228 1,346

Total 2,319 500 1,380 4,199

Table 4.1: CoNLL QA dataset statistics.

Note that wheras the original CoNLL dataset is usually considered as a collection

tagged sentences (and the documentation demarcation boundaries are ignored), in our

case, we consider it as a list of documents, each of which becomes a context passage in

our dataset.

4.5 Results

The results sections covers the two main branches of this chapter: the ablation study

with and the multi-span extension. We discuss them in turn.

4.5.1 Ablation Results

We run our model across the SQuAD dataset. The original BiDAF ablation study

can be found in Table 4.2. Our ablation results with its variations can be found in

Table 4.3. A quick glance at Table 4.3 shows that under certain variations we beat the

original BiDAF model’s F1 and EM scores. We go over a few key takeaways from the

results next.
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Ablation EM F1

No char embedding 65.0 75.4

No word embedding 55.5 66.8

No C2Q attention 57.2 67.7

No Q2C attention 63.6 73.7

Dynamic attention 63.5 73.6

Original BiDAF 67.7 77.3

Table 4.2: Existing BiDAF ablation results on the SQuAD
dataset. [123] The Exact Match (EM) score measures the per-
centage of predictions that match any one of the ground truth
answers exactly.

Ablation variant EM F1

v1 67.9 78.2

v2 59.2 76.3

v3 57.3 75.8

v4 66.5 76.5

v5 65.8 72.3

v6 55.1 65.3

v7 64.5 68.6

v8 65.2 69.9

v9 64.3 67.3

Original BiDAF 67.7 73.3

Table 4.3: Our BiDAF ablation results on the SQuAD dataset.
[123]

Loss of Information In Query2Context Attention

By using an uncompressed form of query2context we are able to achieve results which

beat the original model’s score. This indicates that by column-wise maxing the similar-

ity matrix we degrade performance by ignoring important information relating question

words to context words. This can be seen by looking at v1-v4 in Table 4.3. Interestingly,

our v1 proposal does best out of the four.
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Performance Degradation With Simple Question Embeddings

Perhaps most interestingly, performance did not substantially degrade in v5 which

points to the form of the question embedding not being that important. This further

corroborates recent work which shows that even with complex question embeddings,

models like BiDAF tend to model simple patterns between context and question instead

of somehow modeling more general reading comprehension reasoning.

Importance of Various Embeddings

We note that other than using query2context embeddings alone (v6), results are re-

markably stable as soon as context2query embeddings ũ are included which points to

their importance.

What Does This Mean for Reading Comprehension Models?

Most recent reading comprehension models follow a structure similar to BiDAF’s. Be-

cause of the evidence that the complexity of the question embeddings matters little and

that context2query attention is more important than query2context attention we can

hypothesize that most BiDAF-like models heavily rely on the context2query attention

mechanisms across short questions which originate from a comparatively small vocab-

ulary. This helps explain in part why existing reading comprehension models are so

prone to making mistakes on adversarial examples.

4.5.2 Multi-Span Results

F1

BiDAF-MS 85.1

BiDAF-MS

(no Q2C)
85.3

BiDAF-MS

(no Q2C +

simple Q

embedding)

85.3

Table 4.4: CoNLL QA test set results using the BIDAF-MS multi-
span model.

We run the BiDAF-MS model on our new CoNNL QA dataset. The first thing dis-

cernible from the results is that, because the questions are synthetic, the model does
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not rely heavily on the question embedding branch. This can be seen by looking at

how performance does not degrade when query2context is turned off, nor when the

question is represented using just word embeddings and without contextualization us-

ing an LSTM. Despite the complexity of the output space, the model still performs

competitively compared to the sequence-tagging models discussed in the next chapter

which indicates it is capable of learning good span representations for NER.

4.6 Implementation Details

Individual experiments were run on NVIDIA P100 GPUs. Training time is around 7h

for SQuAD and 1h for the CoNLL QA dataset. 100 dimensional Glove vectors are used

as the input embedding representations, 16 dimensional character embeddings are used

(the CNN which generates them uses 100 filters of size 5). All LSTMs in the various

models are of size 100 (making the biLSTMs of size 200), the span encoder FFNNs are

also of size 100. ADAM is used to optimize the models.

4.7 Related Work

The BiDAF model was introduced in November 2016, only six months after the release

of SQuAD. Since then it has consistently been shown to perform well on various QA

tasks. The original model presented in [123] was shown to achieve the then state-of-

the-art in reading comprehension and on the cloze-style QA task on the CNN and Daily

Mail corpus [46]. Since then it has become one of the most popular QA models.

Works exploring BiDAF’s performance under various settings have recently been

studied. Min et al. [90] trained a modified BiDAF model capable of sentence selection

on SQuAD and then fine-tuned it on sentence selection tasks achieving state-of-the-art

results on WikiQA and SemEval-2016 (task 3A).

After dozens of model submissions to the SQuAD leaderboard, more in-depth er-

ror analysis and criticisms of the SQuAD dataset appeared. What unified many of

these works is their use of BiDAF model. Jia and Liang [58] showed that random

ungrammatical or non-sensical sentence insertion into the SQuAD dataset can lead to

a catastrophic collapse in BiDAF’s performance, from 75.1 F1 down to 34.3 and 4.8

F1 respectively. More recently, [112] have shown that performance can be improved

from 4.8 F1 to 52.3 F1 by first selecting the sentence most likely to contain the correct

answer and only then running BiDAF.

Another recent work by Ribeiro et al. [113] studies the performance of BiDAF

on paraphrases of development set questions. The paper introduces the Semantically
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Equivalent Adversary (SEA), defined to be a paraphrase x′ of input text x which

leads to changed predictions f(x) 6= f(x′). Paraphrases are created by translating

x into multiple pivot languages to and taking the score of their back-translations to

be proportional to P (x′|x). For these score to be consistent they are normalized into

what the paper calls a semantic score S(x, x′). Semantic equivalence is then defined as

SemEq (x, x′) = 1 [S (x, x′) ≥ τ ].

The paper also introduces Semantically Equivalent Adversarial Rules (SEARs)

which are rule-based system which generate SEAs. A rule is taken to be of the form

r = (a→ c) where the first instance of the antecedent a is replaced by the consequent

c for every instance that includes a. For example, r = (movie → film) would lead to

r(”Great movie!”) = ”Great film!”. More general rules can be formed such as (What

NOUN → Which NOUN).

Using SEAs and SEARs, the work shows that paraphrases of questions can change

a model’s understanding of it. Simple change like What to What’s or What was to So

what was flip up to 2% of SQuAD dev set instances.

Another line of work [92] has used integrated gradients introduced in [132] to see

which input features reading comprehension model performance can be attributed to.

Instead of analyzing BiDAF, the paper analyses QANet [151], a newer model closely

related to BiDAF which replaces its recurrent layers with self-attention or convolu-

tion layers. They analyse QANet’s performance on the non-sensical sentence insertion

dataset of [58] (called ADDSENT) by looking which question words the model focuses

on most. They find two types of ADDSENT examples which when added to the con-

text successfully trick the model: (1) ones where a contentful word in the question

gets low attribution but the adversarially added sentence modifies it; (2) ones where

a contentful word in the question that is not present in the context is added in the

context.

4.8 Summary

We show BiDAF works well even with simple question representations. Given the

biggest degradation in performance come when the attention mechanism relating every

context word to every question word is switched off, we hypothesize that what the

model learns is to match keywords in the question with keywords in the context -

a very shallow form of reasoning. By incorporating more advanced attention from

question words to context words we show a small gain in performance can be observed.

Additionally, we create a new dataset by re-positing the CoNNL-2003 English NER task

as a multi-span reading comprehension problem. To solve this dataset, we introduce a
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new version of BiDAF capable of extracting multiple spans (BiDAF-MS). Because we

use synthetic questions in the dataset, results show that BiDAF-MS mostly relies on

the context embedding branch of the model.
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Chapter 5

A New NER Model

This chapter presents our second contribution.

5.1 Introduction

The ability to reason about entities in text is an important element of natural language

understanding. Named entity recognition (NER) concerns itself with the identification

of such entities. Given a sequence of words, the task of NER is to label each word with

its appropriate corresponding entity type. Examples of entity types include Person,

Organization, and Location. A special Other entity type is often added to the set of all

types and is used to label words which do not belong to any of the other entity types.

Recently, neural network based approaches which use no language-specific resources,

apart from unlabeled corpora for training word embeddings, have emerged. There

has been a shift of focus from handcrafting better features to designing better neural

architectures for solving NER.

In this thesis, we propose a new parallel recurrent neural network model for entity

recognition. We show that rather than using a single LSTM component, as many other

recent architecture have, we instead resort to using multiple smaller LSTM units. This

has the benefit of reducing the total number of parameters in our model. We present

results on the CoNNL 2003 English dataset and achieve the new state of the art results

for models without help from an outside lexicon.

5.2 Named Entity Recognition

Named Entity Recognition can be posited as a standard sequence classification problem

where the dataset D = {(Xi,yi)}ki=1 consists of example label pairs where both the
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examples and the labels are themselves sequences of word vectors and entity types,

respectively.

Specifically, an input example Xi = (xi,1, . . . ,xi,|Xi|) is a variable-length sequence

of word vectors xi,j ∈ Rd; the example’s corresponding label yi = (yi,1, ..., yi,|Xi|) is a

equal-length sequence of entity-type labels yi,j ∈ Y where Y is the set of all entity type

labels and includes a special other ‘O’-label with which all words that are not entities

are labeled.

The goal is then to learn a parametrized mapping fθ : X→ y from input words to

output entity labels. One of the most commonly used class of models that handle this

mapping are recurrent neural networks.

5.2.1 LSTM complexity
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Figure 5.1: A chart showing how multi-LSTM parameter com-
plexity decreases as we shrink n and increase K.

Long short term memory (LSTM) models belong to the family of recurrent neural

network (RNN) models. They are often used as a component of much larger models,

particularly in many NLP tasks including NER.

Classically, an LSTM cell is defined as follows (biases excluded for brevity):
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biLSTM1 biLSTM2 biLSTMK...

xt

h1,t h2,t hK,t

ht

FFNN

Figure 5.2: An example of a parallel LSTM. FFNN is a feed-
forward neural network.

it = σ(Wiht−1 +Uixt)

ft = σ(Wfht−1 +Ufxt)

ot = σ(Woht−1 +Uoxt)

c̃t = tanh(Wcht−1 +Ucxt)

ct = ft � ct−1 + it � c̃t

ht = ot � tanh(ct)

(5.1)

One way of measuring the complexity of a model is through its total number of

parameters. Looking at the above, we note there are two parameter matrices, W and

U, for each of the three input gates and during cell update. If we let W ∈ Rn×n

and U ∈ Rn×m then the total number of parameters in the model (excluding the bias

terms) is 4(nm+ n2) which grows quadratically as n grows. Thus, increases in LSTM

size can substantially increase the number of parameters.

5.3 Parallel RNNs

To reduce the total number of parameters we split a single LSTM into multiple equally-

sized smaller ones:

hk,t = LSTMk(hk,t−1,x) (5.2)
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where k ∈ {1, ...,K}. This has the effect of dividing the total number of parameters

by a constant factor. The final hidden state ht is then a concatenation of the hidden

states of the smaller LSTMS:

ht = [h1,t;h2,t; ...;hK,t] (5.3)

5.3.1 Promoting Diversity

To promote diversity amongst the constituent smaller LSTMs we add a orthogonality

penalty across the smaller LSTMs. Recent research has used similar methods but

applied to single LSTMs [140].

We take the cell update recurrence parameters Wi across LSTMs (we omit the c

in the subscript for brevity; the index i runs across the smaller LSTMs) and for any

pair we wish the following to be true:

〈vec(W (i)
c ), vec(W (j)

c )〉 ≈ 0 (5.4)

To achieve this we pack the vectorized parameters into a matrix:

Φ =


vec(W

(1)
c )

vec(W
(2)
c )

...

vec(W
(N)
c )

 (5.5)

and apply the following regularization term to our final loss:

λ
∑
i

‖ΦΦ> − I‖2F (5.6)

5.3.2 Output and Loss

The concatenated output ht is passed through a fully connected layer with bias before

being passed through a final softmax layer:

ot = softmax(Woutĥt + bout) (5.7)

To extract a predicted entity type ŷt at time t, we select the entity type correspond-

ing to the most probable output:

ŷt = argmax(ot) (5.8)
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The loss is defined as the sum of the softmax cross-entropy losses along the words in

the input sequence. More precisely, we denote by yjt ∈ 0, 1 a binary indicator variable

indicating whether word xt truly is an entity of type j. The loss at time t is then

defined to be Lt = −
∑

j y
j
t log(ojt ). Thus the overall loss is:

L = −
∑
t

∑
j

yjt log(ojt ) (5.9)

5.3.3 Relation to Ensemble Methods

Our model bears some resemblance to ensemble methods [31, 25], which combine mul-

tiple “weak learners” into a single “strong learner”; One may view each of the parallel

recurrent units of our model as a single “weak” neural network, and may consider our

architecture as a way of combining these into a single “strong” network.

Despite the similarities, our model is very different from ensemble methods. First,

as opposed to many boosting algorithms [31, 119, 25] we do not “reweight” training

instances based on the loss incurred on them by a previous iteration. Second, unlike

ensemble methods, our model is trained end-to-end, as a single large neural network.

All the subcomponents are co-trained, so different subparts of the network may focus

on different aspects of the input. This avoids redundant repeated computations across

the units (and indeed, we encourage diversity between the units using our inter-module

regularization). Finally, we note that our architecture does not simply combine the

prediction of multiple classifiers; rather, we take the final hidden layer of each of the

LSTM units (which contains more information than merely the entity class prediction),

and combine this information using a feedforward network. This allows our architecture

to examine inter-dependencies between pieces of information computed by the various

components.
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Model F1

[17] 88.31

[29] 88.76

[5] 89.31

[23]‡ 89.59

[56]‡ 90.10

[18]‡ 90.77

[109] 90.80

[79] 90.90

[98]‡∗ 90.90

[70]‡ 90.94

[81]‡ 91.20

[83]‡ 91.21

[118] 91.28

[18]‡∗ 91.62

[101]‡∗ 91.93

Our Model‡ 91.48 ±0.22

Table 5.1: English NER F1 score of our model on the test set
of CoNLL-2003 (English). During training we optimize for the
development set and report test set results for our best perform-
ing development set model. The bounded F1 results we report
(±0.22) are taken after 10 runs. For the purpose of compari-
son, we also list F1 scores of previous top-performance systems.
‡ marks the neural models. ∗ marks model which use external
resources.

# RNN units F1

1 90.53 ±0.31

2 90.79 ±0.18

4 90.64 ±0.24

8 91.09 ±0.28

16 91.48 ±0.22

32 90.68 ±0.18

Table 5.2: Performance as a function of the number of RNN units
with a fixed unit size of 64; averaged across 5 runs apart from the
16 unit model (averaged across 10 runs).
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# RNN units Unit size F1

1 1024 87.54

2 512 91.25

4 256 91.29

8 128 91.31

16 64 91.48 ±0.22

32 32 90.60

64 16 90.79

128 8 90.41

Table 5.3: Performance of our model with various unit sizes re-
sulting in a fixed final output size ht. Single runs apart from 16
unit.

Unit size F1

8 89.78

16 89.77

32 90.26

64 91.48 ±0.22

128 89.28

Table 5.4: Performance as a function of the unit size for our best
performing model (16 biLSTM units). Single runs apart from
with size 64.

Component F1

No character embeddings 90.39

No orthogonal regularization 90.79

No Xavier initialization 91.09

No variational dropout 91.03

Mean pool instead of concat 90.49

Table 5.5: Impact of various architectural decisions on our best
performing model (16 biLSTM units, 64 unit size). Single runs.
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5.4 Results

We achieve state-of-the-art results on the CoNNL 2003 English NER dataset (see Ta-

ble 5.1). Although we do not employ additional external resources (language specific

dictionaries or gazetteers), our model is competitive even with some of the models that

do. To gain a better understanding of the performance of our model including how its

various components affect performance we prepared four additional tables of runs.

Table 5.2 shows performance as a function of the number of RNN units with a fixed

single unit LSTM size of 64. The number of units is a hyperparameter which must

be tuned. We find good performance across the board and there is no catastrophic

collapse in results. This means the model is stable and not over-sensitive to changes

in this particular hyperparameter. We notice our top score is achieved when using 16

units.

In Table 5.3 the output size is fixed and the number of units and their size is changed

to match. Results are mostly stable but an interesting outlier is the single unit, large

(1024), LSTM which achieves a much poorer F1 score. This points to the benefit of

our architecture which mimics ensemble models but in an end-to-end fashion. Even by

increasing the number of RNN units to two, the result improves by more than 3.5 F1

points. Interestingly, even with 128 tiny 8-sized units, the performance remains stable.

Table 5.4 showcases what happens if we keep the number of LSTM units fixed. We

pick our best model (16 units) and then change the unit sizes. We see that performance

degrades more so than in the other tables when we deviate from the best model’s

combination. By looking at final output sizes across the tables (by multiplying the

number of units by unit size) we see that performance degrades at its extremes: 16-

units / 128-size (2048 output size) performs poorly as does 16/8 (128 output size).

However, somewhere between these output extremes, it seems results are mostly stable

and can be fine-tuned by adjusting the number of units and their size with the caveat

that here too we find a substantial degradation in performance if we choose to only use

a single LSTM unit.

Finally, Table 5.5 presents ablation results on our best performing model. We notice

that not using character level embeddings followed by no otrhogonal regularization has

the largest impact on results. Not using Xavier initialization or variational dropout

also degrades performance but not as much. Mean pooling the outputs of the units

into unit-sized output as opposed to concatenating them also achieves poorer results

- but not by much. It would be interesting to further explore why this is since with

an architecture such as ours, using a mean-pooled final layer would lead to efficiency

gains. Instead of having to concatenated sixteen 64-dimensional vectors as is the case
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in our best model, we could just mean pool them into a single 64-dimensional vector.

5.5 Implementation Details

We use bidirectional LSTMs as our base recurrent unit and use pretrained word em-

beddings of size 100. These are the same embeddings used in [70]. We concatenate

to our word embeddings character-level embeddings similar to [70] but with a max

pooling layer instead. Unlike with the parallel LSTMs, we only use a single character

embedding LSTM.

Parameters are initialized using the method described by [35] [35]. This approach

scales the variance of a uniform distribution with regard to the root of the number of

parameters in a layer. This approach has been found to speed up convergence compared

to using a unit normal distribution for initialization.

Our model uses variational dropout [32] between the hidden states of the parallel

LSTMs. Recent work has shown this to be very effective at training LSTMs for language

models [85]. In our experiments, we use p = 0.1 as our dropping probability.

We experiment with different values of the regularization term parameter but settled

on λ = 0.01.

Although vanilla stochastic gradient descent has been effective at training RNNs

on language problems [85], we found that using the ADAM optimizer [64] to be more

effective at training our model. We experimented with different values for the learning

rate α, increasing α from 10−3 to as high as 5× 10−3 and still obtained good results.

Similarly, we kept a constant size for the character-level embeddings, using a unit

bidirectional LSTM output size of 50. As previously discussed, we trained the network

parameters using the ADAM optimizer [64].

5.6 Related Work

Various approaches have been proposed to NER. Many of these approaches rely on

hand-crafted feature engineering or language-specific or domain-specific resources [154,

17, 29, 124, 94]. While such approaches can achieve high accuracy, they may fail to

generalize to new languages, new corpora or new types of entities to be identified.

Thus, applying such techniques in new domains requires making a heavy engineering

investment.

Over time neural methods such as [18, 83, 81, 70] emerged. More recently [101,

111, 118] have set the top benchmarks in the field.

Architecturally, our model is similar to those of [155, 48] with the most pronounced
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difference being that we (1) apply our parallel RNN units across the same input (2)

explore a new regularization term for promoting diversity across what features our

parallel RNNs extract and (3) explicitly motivate the architecture with a discussion

about parameter complexity.

The need for a wider discussion on parameter complexity in the deep learning

community is being pushed by the need to make complex neural models runnable in

constrained environment such as field-programmable gate arrays (FPGAs) - for a great

discussion relating to running LSTMs on FPGAs see [43]. Additionally, complex models

have proven difficult to use in certain domains such as embedded systems or finance

due to their slowness. Our architecture lends itself to parallelization and attempts to

tackle this problem.

5.7 Summary

We achieve state-of-the-art results on the CoNLL 2003 English dataset and introduce

a new model motivated primarily by its ability to be easily distributable and reduce

the total number of parameters. Further work should be done on evaluating it across

different classification and sequence classification tasks to study its performance. Ad-

ditionally, a run-time analysis should be conducted to compare speedups if the model

is parallelized across CPU cores.
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Chapter 6

A New Answer Selection Model

This chapter presents our third contribution.

6.1 Introduction

Question answering (QA) relates to the building of systems capable of automatically an-

swering questions posed by humans in natural language. Various frameworks have been

proposed for question answering, ranging from simple information-retrieval techniques

for finding relevant knowledge articles or webpages, through methods for identifying the

most relevant sentence in a text regarding a posed question, to methods for querying

structured knowledge-bases or databases to produce an answer [14, 139, 68, 50, 110]

A popular QA task is answer selection, where, given a question, the system must

pick correct answers from a pool of candidate answers [149, 59, 65, 71, 125].

Answer selection has many commercial applications. Virtual assistants such as

Amazon Alexa and Google Assistant are designed to respond to natural language ques-

tions posed by users. In some cases such systems simply use a search engine to find

relevant webpages; however, for many kinds of queries, such systems are capable of

providing a concise specific answer to the posed question.

Similarly, various AI companies are attempting to improve customer service by

automatically replying to customer queries. One way to design such a system is to

curate a dataset of historical questions posed by customers and the responses given to

these queries by human customer service agents. Given a previously unobserved query,

the system can then locate the best matching answer in the curated dataset.

Answer selection is a difficult task, as typically there is a large number of possible

answers which need to be examined. Furthermore, although in many cases the correct

answer is lexically similar to the question, in other cases semantic similarities between
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words must be learned in order to find the correct answer [66, 4]. Additionally, many

of the words in the answer may not be relevant to the question.

Consider, for example, the following question answer pair:

How do I freeze my account?

Hello, hope you are having a great day. You can freeze your account by logging into

our site and pressing the freeze account button. Let me know if you have any further

questions regarding the management of your account with us.

Intuitively, the key section which identifies the above answer as correct is “[...] you can

freeze your account by [...]”, which represents a small fraction of the entire answer.

Earlier work on answer selection used various techniques, ranging from informa-

tion retrieval methods [22] and machine learning methods relying on hand-crafted fea-

tures [142, 143]. Deep learning methods, which have recently shown great success

in many domains including image classification and annotation [67, 153, 76], multi-

annotator data fusion [3, 33], NLP and conversational models [37, 9, 77, 61, 127]

and speech recognition [37, 3], have also been successfully applied to question an-

swering [27]. Current state-of-the-art methods use recurrent neural network (RNN)

architectures which incorporate attention mechanisms [133]. These allow such models

to better focus on relevant sections of the input [9].

Our contribution: We propose a new architecture for question answering. Our

high-level approach is similar to recently proposed QA systems [27, 133], but we aug-

ment this design with a more sophisticated attention mechanism, combining the local

information in a specific part of the answer with a global representation of the entire

question and answer.

We evaluate the performance of our model using the recently released InsuranceQA

dataset [27], a large open dataset for answer selection comprised of insurance related

questions such as: “what can you claim on Medicare?”. 1

We beat state-of-the-art approaches [27, 133], and achieve good performance even

when using a relatively small network.

6.2 Preliminaries

Our approach is similar to the Answer Selection Framework of Tan et al. [133], but

we propose a different network architecture and a new attention mechanism. We first

provide a high level description of this framework (see the original paper for a more

detailed discussion), then discuss our proposed attention mechanism.

1As opposed to other QA tasks such as answers extraction or machine text comprehension and
reasoning [147, 105], the InsuranceQA dataset questions do not generally require logical reasoning.
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Figure 6.1: Model architecture using answer-localized attention
[133]. The left hand side used for the question. The right side of
the architecture is used for both the answer and distractor.

Figure 6.2: Our proposed architecture with augmented attention.
As in Figure 6.1, the right side of the model is used to embed
answers and distractors.
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The framework is based on a neural network with parameters θ which can embed

either a question q or a candidate answer a into low dimensional vectors r ∈Rk. The

network can embed a question with no attention, which we denote as fθ(q), and embed

a candidate answer with attention to the question, denoted as gθ(a, q). We denote

the similarity function used as s(x, y) (s may be the dot product function, the cosine

similarity function or some other similarity function).

Given a trained network, we compute the similarity between question and answer

embeddings:

si = s(fθ(q), gθ(Ai, q)) (6.1)

for any i ∈ 1, 2, . . . , k with Ai being the ith candidate answer in the pool. We then

select the answer yielding the highest similarity arg maxi si.

The embedding functions, fθ and gθ, depend on the architecture used and the

parameters θ. The network is trained by choosing a loss function L, and using stochastic

gradient descent to tune the parameters given the training data. Each training item

consists of a question q, the correct answer a∗ and a distractor d (an incorrect answer).

A prominent choice is using a shifted hinge loss, designating that the correct answer

must have a higher score than the distractor by at least a certain margin M , where the

score is based on the similarity to the question.

L = max
{

0,M − σa∗ + σd

}
(6.2)

where:

σa∗ = s
(
fθ(q), gθ(a

∗, q)
)

(6.3)

σd = s
(
fθ(q), gθ(d, q)

)
(6.4)

The above expression has a zero loss if the correct answer has a score higher than

the distractor by at least a margin M , and the loss linearly increases in the score

difference between the correct answer and the distractor.

Any reasonable neural network design for fθ can be used to build a working answer-

selection systems using the above approach; however, the network design can have a

big impact on the system’s accuracy.

6.2.1 Embedding Questions and Answers

Earlier work examined multiple approaches for embedding questions and answers, in-

cluding convolutional neural networks, recurrent neural networks (RNNs) (sometimes

augmented with an attention mechanism) and hybrid designs [27, 133].
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An RNN design “digests” the input sequence, one element at a time, changing its

internal state at every timestep. The RNN is based on a cell, a parametrized function

mapping a current state and an input element to the new state [146]. A popular choice

for the RNN’s cell is the Long Short Term Memory (LSTM) cell [52].

Given a question comprised of words q = (x1, x2, . . . , xm), we denote the i’th

output of an LSTM RNN digesting the question as qi; similarly given an answer

a = (y1, y2, . . . , yn) we denote the j’th output of an LSTM RNN digesting the question

as aj .

One simple approach is to have the embeddings of the question and answer be the

last LSTM output, i.e. fθ(q) = qm and fθ(a) = an. Note that qi, ai are vectors whose

dimensionality depends on the dimensionality of the LSTM cell; we denote by qi,j the

j’th coordinate of the LSTM output at timestep i.

Another alternative is to aggregate the LSTM outputs across the different timesteps

by taking their coordinate-wise mean (mean-pooling):

fθ(q)r =
1

m

m∑
i=1

qi,r (6.5)

Alternatively, one may aggregate by taking the or coordinate-wise max (max-pooling):

fθ(q)r = maxmi=1qi,r (6.6)

We use another simple way of embedding the question and answer, which is based

on term-frequency (TF) features. Given a vocabulary of words V = (w1, . . . , wv), and

a text p we denote the TF representation of p as ptf = (d1, . . . , dv) where dj = 1 if the

word wj occurs in p and otherwise dj = 0. 2

A simple overall embedding of a text p is p′ = Wt(p) where W is an v × d matrix,

and where d determines the final embedding’s dimensionality; the weights of W are

typically part of the neural network parameters, to be learned during the training of

the network. Instead of a single matrix multiplication, one may use the slightly more

elaborate alternative of applying a feedforward network, in order to allow for non-linear

embeddings.

We note that a TF representation loses information regarding the order of the words

in the text, but can provide a good global view of key topics discussed in the text.

Our main contribution is a new design for the neural network that ranks candi-

2Another alternative is setting dj to the number of times the word wj appears in p. A slightly
more complex option is using TF-IDF features [107] or an alternative hand-crafted feature scheme;
however we opt for the simpler TF representation, letting the neural network learn how to use the raw
information.
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date answers for a given question. Our design uses a TF-based representation of the

question and answer, and includes a new attention mechanism which uses this global

representation when computing the attention weights (in addition to the local infor-

mation used in existing approaches). We describe existing attention designs (based

on local information) in Section 6.2.2, before proceeding to describe our approach in

Section 6.3.

6.2.2 Local Attention

Early RNN designs were based on applying a deep feedforward network at every

timestep, but struggled to cope with longer sequences due to exploding and dimin-

ishing gradients [53]. Other recurrent cells such as the LSTM and GRU cells [53, 21]

have been proposed as they alleviate this issue; however, even with such cells, tackling

large sequences remains hard [87]. Consider using an LSTM to digest a sequence, and

taking the final LSTM state to represent the entire sequence; such a design forces the

system to represent the entire sequence using a single LSTM state, which is a very

narrow channel, making it difficult for the network to represent all the intricacies of a

long sequence [9].

Attention mechanisms allow placing varying amounts of emphasis across the entire

sequence [9], making it easier to process long sequences; in QA, we can give different

weights to different parts of the answer while aggregating the LSTM outputs along the

different timesteps:

fθ(a) =
m∑
i=1

αiai,r (6.7)

where αi denotes the weight (importance) placed on timestep i and ai,r is the rth value

of the ith embedding vector.

Tan et al. [133] proposed a very simple attention mechanism for QA, shown in

Figure 6.1:

ma,q(i) = Wadai +Wqdfθ(q) (6.8)

αi ∝ exp(wTms tanh(ma,q(i))) (6.9)

ĥa(i) = ha(i)αi (6.10)

â =

m∑
i=1

αiai (6.11)

where αia(i) is the weighted hidden layer, Wad and Wqd are matrix parameters to be

learned, and wms is a vector parameter to be learned.
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6.3 Global-Local Attention

A limitation of the attention mechanism of Tan et al. [133] is that it only looks at the

the embedded question vector and one candidate answer word embedding at a time.

Our proposed attention mechanism adds a global view of the candidate, incorporating

information from all words in the answer.

6.3.1 Creating Global Representations

One possibility for constructing a global embedding is an RNN design. However, RNN

cells tend to focus on the more recent parts of an examined sequence [87]. We thus

opted for using a term-frequency vector representing the entire answer, as shown in

Figure 6.2. We denote this representation as:

atf = (d1, d2, . . . , dv) (6.12)

where di relates to the i’th word in our chosen vocabulary, and di = 1 if this word

appears in the candidate answer, and di = 0 otherwise.

Consider a candidate answer a = (y1, . . . , yn), and let (a1, . . . , an) denote its se-

quence of RNN LSTM outputs, i.e. ai denotes the i’th output of a RNN LSTM pro-

cessing this sequence (so ai is a vector whose dimensionality is as the hidden size of

the LSTM cell). We refer to ai as the local-embedding at time i. 3

6.3.2 Combining Local and Global Representations to Determine At-

tention Weights

The goal of an attention mechanism is to construct an overall representation of the

candidate answer a, which is later compared to the question representation to determine

how well the candidate answers the question; this is achieved by obtaining a set of

weights w1, . . . , wn (where wi ∈ R+), and constructing the final answer representation

as a weighted average of the LSTM outputs, with these weights.

Given a candidate answer a, we compute the attention coefficient wi for timestep i

as follows.

First, we combine the local view (the LSTM output, more heavily influenced by the

words around timestep t) with the global view (based on TF features of all the words in

the answer). We begin by taking linear combinations of the TF features then passing

3Note that although we call ai a local embedding, the i’th LSTM state does of course take into
account other words in the sequence (and not only the i’th word). By referring to it as “local” we
simply mean to say that it is more heavily influenced by the i’th word or words close to it in the
sequence.
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them through a tanh nonlinearity (so that the range of each dimension is bounded in

[−1, 1]):

btf = tanh(W1a
tf) (6.13)

The weights of the matrix W1 are model parameters to be learned, and its dimensions

are set so as to map the sparse TF vector atf to a dense low dimensional vector (in our

implementation btf is a 50 dimensional vector).

Similarly, we take a linear combination of the different dimensions of the local

representation ai (in this case there is no need for the tanh operation, as the LSTM

output is already bounded):

bloci = W2ai (6.14)

where the weights of the W2 are model parameters to be learned (and with dimensions

set so that bloci would be a 140 dimensional vector).

Given a TF representation of a text xtf, whose dimensionality is the size of the

vocabulary, and an RNN representation of the text xrnn, with a certain dimentionality

h, we may wish construct a normalized representation of the text. As the norms of

these two parts may differ, simply concatenating these parts may result in a vector

dominated by one side. We thus define a joint representation h(xtf, xrnn) as follows.

We normalize each part so as to have a desired ratio of norms α
β between the RNN

and TF representations; this ratio reflects the relative importance of the RNN and TF

embeddings in the combined representation (for instance when settings both α, β to 1

both parts would have a unit norm, giving them equal importance):

ctf =
α

||xtf||
· xtf (6.15)

crnn =
β

||xrnn||
· xrnn (6.16)

We then concatenate the normalized TF and RNN representations to generate the joint

representation:

h(xtf, xrnn) = ctf‖crnn (6.17)

where ‖ represents vector concatenation.

We construct the local attention representation at the i’th word of the answer as:

aglob-loci = h(btf, bloci ) (6.18)

using values of α = 0.5, β = 1.
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The raw attention coefficient of the i’th word in the answer is computed by measur-

ing the similarity of a vector representing the question, and a local-global representation

of the answer at word i. We build these representations, of matching dimensions, by

taking the same number of linear combinations from aglob-loci (the raw global-local rep-

resentation of the answer at word i). Thus the attention weight for the i’th word

is:

α′i = sim
(
W3a

glob-loc
i ,W4fθ(q)

)
(6.19)

where W2, W3 are matrices whose weights are parameters to be learned (and whose

dimensions are set so that W3a
glob-loc
i and W4fθ(q) would be vectors of identical di-

mensionality, 140 in our implementation), and where sim denotes the cosine similarity

between vectors:

sim(u, v) =
u · v

||u|| · ||v||
(6.20)

with the · symbol in the nominator denoting the dot product between two vectors.

Finally, we normalize the attention coefficients with respect to their exponent to

obtain the final attention weights, by applying the softmax operator on the raw at-

tention coefficients. We take the raw attention coefficients, α′ = (α′1, α
′
2, . . . , α

′
m) and

define the final attention weights α = (α1, α2, . . . , αm) where αi ∝ exp(α′i) and α is the

result of the softmax operator applied on α:

αi =
exp (α′i)∑m
j=1 exp (α′j)

(6.21)

6.3.3 Building the Final Attention Based Representation

The role of the attention weights is building a final representation of a candidate answer;

different answers are ranked based on the similarity of their final representation and

a final question representation. Similarly to the TF representation of the answer, we

denote the TF representation of the question as: qtf = (r1, r2, . . . , rv), where ri relates to

the i’th word in our chosen vocabulary, and ri = 1 if this word appears in the question,

and ri = 0 otherwise. Our final representation of the question is a joining of the

TF representation of the question and the mean pooled RNN question representation

(somewhat similarly to how we join the TF and RNN representation when determining

the attention weights):

f ′θ(q) = h(qtf, fθ(q)) (6.22)

Our final representation of the answer is also a joining two parts, a TF part atf

(as defined earlier) and an attention weighted RNN part â. We construct â as the
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weighted average of the LSTM outputs, where the weights are the attention weights

defined above:

â =

m∑
i=1

αiai (6.23)

The final representation of the answer is thus:

f ′θ(a) = h(atf, â) (6.24)

Figure 6.2 describes the final architecture of our model, showing how we use a TF-

based global embedding both in determining the attention weights and in the overall

representation of the questions and answers. The dotted lines in the figures indicate

that our model’s attention weights depend not only on the local embedding but also

on the global embedding.

6.3.4 Tuning Parameters to Minimize the Loss

The loss function L we use is the shifted hinge loss defined in Section 6.2. We compute

the score of an answer candidate a as the similarity between its final representation

f ′θ(a) and the final representation of the question f ′θ(q)
4 :

sim(f ′θ(q), f
′
θ(a)) (6.25)

Given the score of the correct answer candidate σa∗ = sim(f ′θ(q), f
′
θ(a)) and the score of

a distractor (incorrect) candidate d, σd = sim(f ′θ(q), f
′
θ(d)), our loss is L = max

{
0,M−

σa∗ + σd

}
.

The above loss relates to a single training item (consisting of a single question, its

correct answer and an incorrect candidate answer). Training the neural network pa-

rameters involves iteratively examining items in a dataset consisting of many training

items (each containing a question, its correct answer and a distractor) and modify-

ing the current network parameters. We train our system using variant of stochastic

gradient descent (SGD) with the Adam optimization [64].

6.4 Results

We evaluate our proposed neural network design in a similar manner to earlier evalu-

ations of Siamese neural network designs [150, 126], where a neural network is trained

4We use the cosine similarity as our similarity function for the loss, though other similarity functions
can also be used.
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to embed both questions and candidate answers as low dimensional vectors.

Figure 6.3: A visualization of the attention weights for each word
in a correct answer to a question. These examples show how the
attention mechanism is focusing on relevant parts of the correct
answer (although the attention is still quite noisy).

Figure 6.4: Performance of our system on InsuranceQA for vari-
ous model sizes h (both the LSTM hidden layer size and embed-
ding size)

Table 6.1 presents the results of our model and the various baselines for Insur-

anceQA. The performance metric used here is P@1, the proportion of instances where

a correct answer was ranked higher than all other distractors in the pool. The table

shows that our model outperforms the previous baselines.

We have also examined the performance of our model as a function of its size (de-

termining the system’s runtime and memory consumption). We used different values

h ∈ {10, 20, 30, 40, 50} for both the size of the LSTM’s hidden layer size and embed-

ding size, and examined the performance of the resulting QA system on InsuranceQA.
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Model Test1 Test2

Bag-of-words 32.1 32.2
Metzler-Bendersky 55.1 50.8
Arch-II [27] 62.8 59.2
Arch-II GSED [27] 65.3 61.0
Attention LSTM [133] 69.0 64.8

TF-LSTM Concatenation 62.1 61.5
Local-Global Attention 70.1 67.4

Table 6.1: Performance of various models on InsuranceQA

Our results are given in Figure 6.4, which shows both the P@1 metric and the mean

reciprocal rank (MRR) [24, 16] 5

Figure 6.4 shows that performance improves as the model gets larger, but the

returns on extending the model size quickly diminish. Interestingly, even relatively

small models achieve a reasonable question answering performance.

To show our attention mechanism is necessary to achieve good performance, we

also construct a model that simply concatenates the output of the feedforward net-

work (on TF features) and the output of the bidirectional LSTM, called TF-LSTM

concatenation. While this model does make use of TF-based features in addition to

the LSTM state of the RNN, it does not use an attention mechanism to allow it to

focus on the more relevant parts of the text. As the table shows, the performance of

the TF-LSTM model is significantly lower than that of our model with the global-local

attention mechanism. This indicates that the improved performance stems from the

model’s improved ability to focus on the relevant parts of the answer (and not simply

from having a larger capacity and including TF-features).

Finally, we examine the the attention model’s weights to evaluate it qualitatively.

Figure 6.3 visualizes the weights for two question-answer pairs, where the color intensity

reflects the relative weight placed on the word (the αi coefficients discussed earlier).

The figure shows that our attention model can focus on the parts of the candidate

answer that are most relevant for the given question.

6.5 Implementation Details

We use the InsuranceQA dataset and its evaluation framework [27]. The InsuranceQA

dataset contains question and answer pairs from the insurance domain, with roughly

25,000 unique answers, and is already partitioned into a training set and two test sets,

5The MRR metric assigns the model partial credit even in cases where the highest ranking candidate
is an incorrect answer, with the score depending on the highest rank of a correct answer.
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called test 1 and test 2.

The InsuranceQA dataset has relatively short questions (mean length of 7). How-

ever, the answers are typically very long (mean length of 94).

At test time the system takes as input a question q and a pool of candidate answers

P = (a1, a2, . . . , ak) and is asked to select the best matching answer a∗ to the question

from the pool. The InsuranceQA comes with answer pools of size k = 500, consisting

of the correct answers and random distractors chosen from the set of answers to other

questions.

State-of-the-art results for InsuranceQA were achieved by Tan et al [133], which also

provide a comparison with several baselines: Bag-of-words (with IDF weighted sum of

word vectors and cosine similarity based ranking), the Metzler-Bendersky IR model [11],

and [27] - the CNN based Architecture-II and Architecture-II with Geometricmean of

Euclidean and Sigmoid Dot product (GESD).

We implemented our model in TensorFlow [2] and conducted experiments on NVIDIA

Tesla K80s.

We use the same hidden layer sizes and embedding size as Tan et al. [133]: h = 141

for the bidirectional LSTM size and an embedding size of e = 100; this allows us to

investigate the impact of our proposed attention mechanism. 6

6.6 Related Work

Answer selection systems can be evaluated using various datasets consisting of questions

and answers. Early answer selection models were commonly evaluated against the

QASent dataset [143]; however, this dataset is very small and thus less similar to real-

world applications. Further, its candidate answer pools are created by finding sentences

with at least one similar (non-stopword) word as compared to the question, which may

create a bias in the dataset.

Wiki-QA [150] is a dataset that contains several orders of magnitude more examples

than QASent, where the candidate answer pools were created from the sentences in the

relevant Wikipedia page for a question, reducing the amount of keyword bias in the

dataset compared to QASent.

Our analysis is based on the InsuranceQA [27] dataset, which is much larger, and

similar to real-world QA applications. The answers in InsuranceQA are relatively long

(see details in Section ??), so the candidate answers are likely to contain content that

6As is the case with many neural networks, increasing the hidden layer size or embedding size can
improve the performance on our InsuranceQA models; we compare our performance to the work of Tan
et al. [133] with the same hidden and embedding sizes; similarly to them we use embeddings pre-trained
using Word2Vec [88] and avoid overfitting by applying early stopping (we also apply Dropout [130, 152]).
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does not relate directly to the question; thus, a good QA model for InsuranceQA must

be capable of identifying the most important words in a candidate answer.

Early work on answer selection was based on finding the semantic similarity between

question and answer parse trees using hand-crafted features [142, 143]. Often, lexical

databases such as WordNet were used to augment such models [15]. Not only did these

models suffer from using hand-crafted features, those using lexical databases were also

often language-dependent.

Recent attempts at answer selection aim to map questions and candidate answers

into n-dimensional vectors, and use a vector similarity measure such as cosine similarity

to judge a candidate answer’s affinity to a question. In other words, the similarity

between a question and a candidate is high if the candidate answers the question well,

low if the candidate is not a good match for the question.

Such models are similar to Siamese models, a good review of which can be found in

Muller et al’s paper [93]. Feng et al. [27] propose using convolutional neural networks

to vectorize both questions and answers before comparing them using cosine similarity.

Similarly, Tan et al. [133] use a recurrent neural network to vectorize questions and

answers. Attention mechanisms have proven to greatly improve the performance of

recurrent networks in many tasks [9, 133, 115, 116, 82], and indeed Tan et al. [133]

incorporate a simple attention mechanism in their system.

6.7 Summary

We proposed a new neural design for answer selection, using an augmented attention

mechanism, which combines both local and global information when determining the

attention weight to place at a given timestep. Our analysis shows that our design out-

performs earlier designs based on a simpler attention mechanism which only considers

the local view.

Several questions remain open for future research. First, the TF-based global view

of our design was extremely simple; could a more elaborate design, possibly using

convolutional neural networks, achieve better performance?

Second, our attention mechanism joins the local and global information in a very

simple manner, by normalizing each vector and concatenating the normalized vectors.

Could a more sophisticated joining of this information, perhaps allowing for more

interaction between the parts, help further improve the performance of our mechanism?

Finally, can the underlying principles of our global-local attention design improve

the performance of other systems, such as machine translation or image processing

systems?
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A New Dataset
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Chapter 7

A New Dataset for Conflict

Incident Question Answering

This chapter presents our fourth contribution.

7.1 Introduction

Many reports about armed conflict related incidents are published every day. However,

these reports on the deaths and injuries of civilians and combatants often get forgotten

or go unnoticed for long periods of time. Automatically extracting casualty counts

from such reports would help better track ongoing conflicts and help us understand

past ones.

One popular approach of discovering incidents is to identify them from textual

reports and extract casualty, and other, information from them. This can either be

done by hand or automatically. The Iraq Body Count (IBC) project has been directly

recording casualties since 2003 for the ongoing conflict in Iraq [57, 47]. IBC staff

collect reports, link them to unique incidents, extract casualty information, and save

the information on a per incident basis as can be seen in Table 7.1.

Direct recording by hand is a slow and tedious process and notable efforts to do

so have tended to lag behind the present. Information extraction systems capable of

automating this process must explicitly or implicitly successfully solve three tasks: (1)

find and extract casualty information in reports (2) detect events mentioned in reports

(3) deduplicate detected events into unique events which we call incidents. The three

tasks correspond to named entity recognition, slot filling, and de-duplication. The

former two (NER and slot filling) can be posited as a question answering problem.

In this work we introduce the report based IBC-C dataset. Each report can contain
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Incident

Incident

Incident

Incident

SectionSection

Section

Report

Section

Report

Section

Section

Section

Report

Killed: 5
Injured: 2
Location: Baghdad

Killed: 22
Injured: 10
Location: Tikrit

Killed: 13
Injured: 5
Location: Baghdad
Date: March 12th

Killed: 1
Injured: 0
Location: Fallujah
Date: Last week

Figure 7.1: The IBC-C dataset visualised. A report is split into
one or more non overlapping sections. A section is comprised of
sentences which are comprised of words. Each section is linked to
exactly one incident which in turn can be linked to one or more
sections.

one or more sections; each section, one or more sentences; each sentence, one or more

words. Each word is tagged with one of nine entity tags in the inside-outside-beginning

(IOB) style. A visual representation of the dataset can be seen in Figure 7.1 and its

statistics in Table 7.9.

To the best of our knowledge apart from the significantly smaller MUC-3 and MUC-

4 datasets (which aren’t casualty-specific) there are no other publicly available datasets

made specifically for tasks (1), (2) or (3). The IBC-C dataset can be used to train

supervised models for all three tasks.

We provide baseline results for task (1) which we posit as a sequence-classification

problem and solve using a HMM, a CRF, and an RNN.

Since the 1990s the conflict analysis and NLP/IE communities have diverged. With

the IBC-C dataset we hope to bring the two communities closer again.

7.2 Creating the IBC-C Dataset

7.2.1 Preprocessing

The Iraq Body Count project (IBC) has been recording conflict-related incidents from

the Iraq war since 2003. An incident is a unique event related to war or other forms of
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Incident ID Start date End date
d3473 22 Mar 2003 22 Mar 2003

Min killed Max killed Min injured
2 2 8

Max injured Location Cause of death
9 Khurmal Suicide car bomb

Sources Town Province
BBC 23 Mar
DPA 23 Mar

Khurmal Sulaymaniyah

Alt. province District Alt district
/ Halabja /

Killed Subjects
Person 1, Person 2, ...
Injured Subjects

Person 3, Person 4, ...
Report Sections

BBC: “On Saturday Person 1 died in Khurmal ...”
DPA: “2 people died yesterday afternoon...”

Table 7.1: An example of an incident hand coded by IBC staff.
Min and max values represent the minimum and maximum figures
quoted in report sections linked to the incident.

violence which led to the death or injury of people. An example can be seen in Table

7.1.

The recording of incidents by the IBC works as follows: IBC staff first collect rele-

vant reports before highlighting sections of them which they deem relevant to individual

incidents. Parts of the report outside the highlighted sections are discarded. Sections

can be seen in Figure 7.1. Because of the way IBC staff highlight sections there are no

overlapping sections in the IBC-C dataset. Events are then recognised from the high-

lighted sections and de-duplicated into incidents. A final description of the incident

(e.g. death and injury counts, location and date) is agreed upon after multiple rounds

of human checking.

In the preprocessing step we gathered all incidents which occurred between March

20th, 2003 and December 31st, 2013. We removed spurious incidents (e.g. where the

minimum number killed is larger than the maximum number killed) and cleaned the

section text by removing all formatting and changing all written-out numbers into their

numeric form (e.g. ‘three’ to 3).

7.2.2 Annotation

Using the information extracted by the IBC (see Table 7.1) we annotated each section

word with one of ten tags: KNUM and INUM for numbers representing the number

killed and injured respectively; KSUB and ISUB for named individuals were killed or

injured; KOTHER and IOTHER for unnamed people who were killed or injured (for

example “The doctor was injured yesterday.”); LOCATION for the location in which
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Incident FiltrationPreprocessing + Annotation

IBC data

IBC-C dataset

Section FiltrationSentence Filtration

Figure 7.2: A visualisation of the different steps taken to create
the dataset.

an incident occurred; WEAPON for any weapons used in an attack; DATE for words

which identify when the incident happened; and, O for all other words.

Our data generation process can be thought of as a form of distant supervision [91]

where we use agreed upon knowledge about an incident to label words contained within

its sections instead of having hand-labeled individual words. This inevitably introduces

errors which we try to mitigate using a filtration step where we remove ambiguous data.

7.2.3 Filtration

Simply annotating words based on the information in Table 7.1 can lead to wrong

annotations. For example, if two people were recorded as having died in an incident,

then, if another number two appears in the same sentence, this might lead to a wrong

annotation. The sentence, “2 civilians were killed after 2 rockets hit the compound”

could lead to the second ‘2’ being annotated as a KNUM. Importantly, the actual

cardinality of a number makes little difference to a sequence classifier compared to the

difference a misannotated number would make. To minimise such misannotations we

remove sentences and reports which do not pass all filtration criteria. Our filtration

criteria consist of boolean functions over sentences, sections and incidents which return

false if a test isn’t passed.

The goal of filtration is to remove as much ambiguously labelled data as possible

without biasing against any particular set of linguistic forms. There is thus a tradeoff

which must be struck between linguistic richness and the quality of annotation. In our

case we found that simple combinations of pattern matching and semantic functions

worked well. No syntactic functions were used.

Incident Filtration

Incidents are filtered using a single criterion: if the minimum number of people killed or

injured does not equal the maximum number of people killed or injured, respectively,
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+ + + + 9774
+ + - - 7338
+ - + + 1527
+ - - - 1381
- + + - 21715
- + - + 34623
- - + + 138307
- - - + 169313

+ 353544
- 30434

Total 383978

Table 7.2: KSUB consideration rules

(Table 7.1) then the incident is removed. We do this so as to minimise any ambiguity in

our named entity tagging (the only task for which we provide baseline results). This has

the adverse effect of removing any incidents where reports mention different casualty

counts. To compile a dataset which disregards this criterion, or considers a permissible

window of casualties, a parameter in our dataset generating program may be changed.

Sentence Filtration

Filtering sentences is by far the hardest step. It is here where we must be careful to

not bias against any linguistic forms. A separate set of boolean functions are applied

to each sentence for each of the seven tags. These boolean functions or rules, as we

call them, can be seen in Tables 7.3 - 7.9. We describe them in turn.

Table 7.2 and Table 7.3 define the filtration rules for KSUBs and ISUBs, respec-

tively. Both rules eliminate sentences which contained named, killed or injured, subject

but which aren’t related to death or injury and instances where the sentence is related

to death or injury and has persons tagged but now the ones we expect.

Tables 7.4 and 7.5 define the filtration rules for KNUMs and INUMs, respectively.

These are the numbers mentioned in sentences which denote the number of people

killed. We convert all numbers to their numerical form: for example, every one turns

into a 1. We then apply the filtration rules. Most of the boolean combinations in

the case of KNUMs and INUMs are removed. The most decisive row for removing

sentences in both cases is the (− + − + −) row where 67,402 and 42,391 sentences are

removed, respectively. This is the case where no KNUMs/INUMs were found despite
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+ + - - 2341
+ - + + 216
+ - - - 372
- + + - 12300
- + - + 57424
- - + + 81597
- - - + 228342

+ 368965
- 15013

Total 383978

Table 7.3: ISUB consideration rules

the sentences being connected to killings/injuries and other numbers being present.

Since we only have incident-level annotations and reports tied to an incident often cite

different numbers we are stuck with only being able to consider cases where the two

match. In addition to this we take out any sentence which has a number and where no

KNUM/INUM numbers were found elsewhere in the report.

Finally, tables 7.6, 7.7 and 7.8 define filtration rules for locations, dates, and

weapons (usually the cause of death), respectively.

Report Filtration

Report filtering is simple and again done using only one rule. If any sentence a report

contains fails to pass a single sentence-level test, then the whole report is removed.

7.2.4 Tasks

The above annotation and incident-, sentence-, and report-level filtration rules can all

be used to construct different IBC-C datasets. We construct one such dataset to use

as a NER dataset and describe how the rules can be used to produce other types of

datasets.
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+ + + + + - 2445
+ + + + - + 7526
+ + + - + - 0
+ + + - - - 0
+ + - + + - 14624
+ + - + - + 30204
+ + - - + - 0
+ + - - - - 0
+ - + + + - 2119
+ - + + - - 1498
+ - + - + - 0
+ - + - - - 0
+ - - + + - 4282
+ - - + - - 4648
+ - - - + - 0
+ - - - - - 0
- + + + + - 0
- + + + - - 0
- + + - + - 0
- + + - - - 0
- + - + + + 2757
- + - + - - 67402
- + - - + + 3360
- + - - - + 43006
- - + + + - 0
- - + + - - 0
- - + - + - 0
- - + - - - 0
- - - + + + 7573
- - - + - - 47736
- - - - + + 19749
- - - - - + 125010

+ 239185
- 144754

Total 383939

Table 7.4: KNUM consideration rules. The hasOne-
TaggedAsKNUM column indicates whether the number ‘1’ is
tagged as a KNUM (it could also be a pronoun). The isKillSen-
tence is determined by searching for kill-related keywords in the
sentence. 97
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- + - + + + 954
- + - + - - 42381
- + - - + + 1561
- + - - - + 13220
- - + + + - 0
- - + + - - 0
- - + - + - 0
- - + - - - 0
- - - + + + 5400
- - - + - - 98645
- - - - + + 12347
- - - - - + 163960

+ 222961
- 160938

Total 383899

Table 7.5: INUM consideration rules
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Table 7.6: LOCATION consideration rules

ha
sN

ER
D
at

e

ha
sE

D
at

e

to
C
on

sid
er

#

+ + + 19970
+ - + 77032
- + - 25
- - + 286883

+ 383885
- 25

Total 383910

Table 7.7: DATE consideration rules
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Total 383987

Table 7.8: WEAPON (usually the cause of death) consideration
rules

Element Count

incidents 9,184
sections 18,379
reports 16,405
sentences 35,295
words 857,465

KNUM 13,597
INUM 6,689
KSUB 14,395
ISUB 1,036
LOCATION 25,251
DATE 4,765
WEAPON 35,617

Table 7.9: NER dataset statistics. Fully capitalized words indi-
cate named entity tags.
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Named Entity Recognition

Each word in the IBC-C dataset is tagged with one of nine (excluding O) entity tags

as can be seen in Table 7.9 and can be thought of as subsets of more common named

entity tags such as person or location. The dataset can be used to train a supervised

NER model for conflict-specific named entity recognition. Note that the reason why

there are fewer sentences in the NER dataset than in the filtration rules is because

we apply report filtering (as described in Section 7.2.3) which reduces the number of

considered sentences.

Slot Filling and Relationship Extraction

Each IBC-C event can be thought of as a 7-slot event template where each slot is

named after an entity tag. The important thing to keep in mind is that a report may

contain more than one section so just correctly recognising the entities isn’t enough to

solve the slot filling task. Instead, if a report mentions two events then two separate

templates must be created and their slots filled.

A common sub-problem of slot filling is relationship extraction. Because we know

which incident every section refers to, generating ground-truth relationships is trivial

because we may be sure that an entity which appears in one of the sections is re-

lated to every other entity in that same section. For example, finding a KSUB and a

LOCATION means that we can build a killed in(KSUB, LOCATION) relationship.

Event De-duplication

Since the IBC-C dataset preserves the links between sections and incidents it may be

used as a ground-truth training set for training event de-duplication models.

Question Answering

Just as in the case of CoNLL QA, the IBC-C dataset can be thought of as a QA

dataset. For example, to identify KSUBS, the question (or, rather, prompt) Identify

persons killed could be asked. More interestingly, because we have incident-level data,

we can ask questions such as Where was KSUB killed? where KSUB is a slot we pre-fill

with a KSUB from the instance.
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HMM CRF 13-window RNN 13-window

Tag Precision Recall F1 Precision Recall F1 Precision Recall F1

KNUM 0.63 0.86 0.73 0.91 0.94 0.92 0.90 0.85 0.88

INUM 0.50 0.39 0.44 0.95 0.93 0.94 0.87 0.91 0.89

KSUB 0.73 0.68 0.70 0.82 0.76 0.79 0.86 0.53 0.66

ISUB 0.00 0.00 0.00 0.89 0.24 0.38 0.80 0.06 0.12

LOCATION 0.75 0.70 0.73 0.85 0.77 0.80 0.86 0.70 0.77

DATE 0.75 0.64 0.69 0.75 0.64 0.69 0.41 0.30 0.35

WEAPON 0.98 0.89 0.93 0.98 0.90 0.94 0.97 0.87 0.92

Overall 0.57 0.53 0.55 0.88 0.73 0.78 0.74 0.57 0.61

Table 7.10: Results for various models on the IBC-C NER
dataset.

7.2.5 Results

The first thing which strikes us is how low the ISUB scores are. The CRF returns a

recall score of 0.24. At the same time, the precision is relatively high at 0.89. Low

recall indicates a lot of false negative classifications - i.e. there were many injured

people who were mistakenly tagged as uninjured. A high precision rate means a low

false positive rate - i.e. most uninjured people were correctly tagged as uninjured. In

short, the classifier was too generous with tagging irrelevant subjects as having been

injured. Looking at the dataset we realize that:

• In contrast to KSUBS, words which we associate with injury such as “wounded”

or “injured” are often further away from an ISUB such as in: The attack killed 12

and injured 3 including the commander of the unit <ISUB> who was airlifted to

the nearest hospital.. KSUBs on the other hand tend to be immediately followed

by a keyword such as killed.

• The language used to describe injuries, especially in the case of ISUBs, is much

richer. Examples such as: airlifted to hospital, are being taken care by medics,

the hospital accepted a further, was left disabled by the attack are all euphemisms

for injuries.

• None of the three models did well on extracting ISUBs and the HMM failed

completely. We were surprised to see the RNN perform relatively poorly and

expected it to be able to factor in long-distance dependencies. Overall the CRF

did the best out of the three.

102



7.3. Implementation Details 7. A New Dataset for Conflict Incident Question Answering

7.3 Implementation Details

Baseline results were computed for the named entity recognition task using an 80:20

tag split across sentences (we ignore report or section boundaries). We compare three

different sequence-classification models as seen in Table 7.10: a Hidden Markov Model

[154], a Conditional Random Field [84], and a Elman-style Recursive Neural Network

similar to the one used in [86].

For the HMM we use bigram features in combination with the current word and

the current base, named entity features1. We trained the HMM in CRF form using

LBFGS.

For the CRF we find that using bigram features and a 13-word window, across words

and base named entities, gives us the best result. We train the CRF using LBFGS. All

CRF training, including the HMM, was done using CRFSuite [96].

For the Elman-style recurrent network we use randomly initialized 100 dimensional

word vectors as input, the network has 100 hidden units, and we use a 13-word context

window again. The RNN was implemented using Theano [10]. We train the RNN using

stochastic gradient descent on a single GPU (NVIDIA K80).

7.4 Related Work

Extracting information from conflict related reports has been a topic of interest at var-

ious times for both the conflict analysis, information extraction, and natural language

processing communities.

The 1990s saw a series of message understanding conferences (MUCs) of which

MUC-3 and MUC-4 are closely related to our work and contain reports of terrorist

incidents in Central and South America. MUC data is most often used for slot filling

and although MUC-3 and MUC-4 contain more slots than IBC-C they are at the same

time much smaller (MUC4 contains 1,700 reports) and cannot be used for incident

de-duplication.

Although various ACE, CoNNL, and TAC-KBP tasks contain within them conflict-

related reports, none of them are specific to conflict and haven’t been studied for

conflict-related information extraction specifically.

Studies more directly related to our dataset include work by Tanev and Piskorski

[135] who use pattern matching to count casualties. They report a 93% accuracy on

counting the wounded. However, they have access to only 29 unique conflict events.

1Base named entities such as PERSON and LOCATION were found using Stanford’s named entity
recognizer [28].
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Other non-casualty conflict-related work in the domain also suffers from a lack of data,

for example, [63] only deal with 711 reports.

Despite work in the NLP and IE communities, the conflict analysis community is

still reliant on datasets created by hand. These include IBC [57], ACLED [106], EDACS

[19], UCDP [34], and GTD [42].

To the best of our knowledge there are no efforts to fully automate casualty counting.

However, efforts using NLP/IE tools to automate incident detection do exist but their

ability to de-deduplicate incidents has been called into question [145].

Three notable such efforts originating in the conflict analysis community are GDELT

[73], ICEWS [97], and OEDA [121]. All three use pattern matching software such as

TABARI [120] and to categorise reports using the CAMEO coding scheme [122].

7.5 Summary

We present IBC-C, a new dataset for armed conflict analysis which can be used for

entity recognition, slot filling, incident de-duplication and question answering. We plan

to make more information about the dataset available on http://andrejzg.github.

io/ibcc/.
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Chapter 8

Conclusion and Future Work

8.1 Conclusion

This thesis has explored question answering in its various guises. We started by describ-

ing a well known reading comprehension model (BiDAF) and conducted an ablation

study of it by analyzing its performance as we removed components or replaced them

with new ones. Through this we learn the importance of BiDAF’s attention mecha-

nisms and the nature of its reliance on the question representation. We re-posit the

CoNLL-2003 (English) NER task as a reading comprehension problem and (1) create

a new dataset called CoNLL QA and (2) extend BiDAF to this multi-span setting.

Next, we develop a new NER model which uses an ensemble-like architecture of

multiple LSTMs. Using this we achieve state-of-the-art results on the CoNLL-2003

(English) NER dataset.

We also turn to the problem of answer selection. We tackle the InsuranceQA

answer selection dataset using a new siamese architecture with attention to which we

also concatenate global representations of the context and answer candidates.

Finally, we present a new dataset called IBC-C which amenable to being posited as

a NER, relationship extraction, event deduplication and question answering dataset.

We provide baseline results on it using three standard NER models.

8.2 Future Work

During the course of research for this thesis it wasn’t at all clear that what I was

working towards were various forms of question answering. Question answering it now

seems to me is more of a format rather than necessarily a traditional NLP task. What

NLP research into QA is trying to do is to place most (all?) NLP tasks under a single
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umbrella. For example, if answers in a QA tasks depend greatly on other sections of

the text other than the their immediate context, then a QA model will have to learn to

reason across co-references in the text. Similarly, if the answers are often entities, then

a QA model will have to learn to reason across entities. Through QA we can relieve

the complexity one faces setting up and becoming familiar with individual NLP tasks,

and instead solve and benchmark on a single QA task.

To say that QA models reason across components of the text given a question is of

course a vague statement. Although we are not quite sure what true reasoning across

text means, we do know what it’s not. It definitely isn’t the ability to learn to match

simple patterns found both in the text and question. This unfortunately it seems, is

what current state-of-the-art models on SQuAD tend to do. It is well known that in

many NLP tasks such as paraphrase detection, natural language inference, and any

other task where two or more segments of texts must be compared, current models

tend to model the bias of the annotations to achieve good results instead of, in some

way, truly learning to understand the text at hand. Knowing this, it is no surprise that

QA datasets and models demonstrably suffer from similar biases.

Over the past months, a series of new QA datasets have been released which try to

remedy some of the deficiencies of past datasets. Unfortunately, these came too late to

have been included in this thesis. Notably, datasets such as SQuAD 2.0 include simple

tricks such as context-question pairs for which no answers exist. Whether these new

datasets will help nudge existing or future models into more appropriate patterns of

reasoning is yet to be seen.

Another way of nudging a model to “reason” better is to architect such that it

has a so-called inductive bias for. My hunch is that the various flavours of attention

mechanisms used by current QA models is the wrong way to go. They are simply too

powerful at extracting relationships between context and question words when there

are strong annotation biases, and too weak at handling some of the more complicated

datasets which have recently been released.

A few promising avenues of future work are:

• Explore sentence-level embedding for questions in the reading comprehension

task. The motivation for this is that this would prevent attention mechanisms

from being able to reason across question words but instead a single embeddings

of the question would have to be used. Until recently, this method would have

been impractical because good sentence-level embeddings were an open problem.

With the advent of new models over the past year, we now have sentence-level

embedding models which outperform other simpler embeddings such as tfidf on

classification tasks by a wide margin. It would be interesting to see whether this
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would hold in the reading comprehension setting. Conversely, perhaps encoding

the context and then attending across question words could also be explored.

• There has been a recent trend to learn word and sentence embeddings under some

form of supervision. For example, sentence level embeddings can be trained by

training on natural language inference datasets. It is believed that this is better

than fully unsupervised training because it forces the models to pickup linguistic

features it other wouldn’t have. It would be interesting to see (1) which pre-

trained sentence or word embeddings models perform best on SQuAD and other

reading comprehension datasets and (2) can reading comprehension itself be used

as a supervision signal?

• IBC-C is an interesting dataset but more work needs to be done on it. It would

be interesting to see whether a incident-detection system could be trained on it

and then applied on a stream of live news data.
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