
Too Little Too Late: Can We Control Browser

Fingerprinting?

Nasser Mohammed Al-Fannah
Information Security Group

Royal Holloway, University of London
nasser@alfannah.com

Chris J Mitchell
Information Security Group

Royal Holloway, University of London
me@chrismitchell.net

Abstract

Browser fingerprinting is increasingly being used for online track-
ing of users, and, unlike the use of cookies, is almost impossible for
users to control. This has a major negative impact on online privacy.
Despite the availability of a range of fingerprinting countermeasures
as well as some limited attempts by browser vendors to curb its effec-
tiveness, it remains largely uncontrolled. Third-party countermeasures
have inherit limitations and many browser vendors do not appear to
have made significant efforts to control it. This paper provides the
first comprehensive and structured discussion of measures to limit or
control browser fingerprinting, covering both user-based and browser-
based techniques. It also discusses the limitations of these measures
and the need for browser vendor support in controlling fingerprinting.
Further, a somewhat counterintuitive possible new browser identifier
is proposed which could make cookies and fingerprint-based tracking
redundant; the need for, and possible effect of, this feature is discussed.

1 Introduction

Browser fingerprinting appears to have become a somewhat commonly used
technique for online tracking [3], i.e. linking multiple visits by a single
browser to the same website, and/or linking individual visits by a browser
to multiple sites. For many years, both types of tracking have been made
possible through the use of cookies, where third party tracking sites can link
multiple site visits through inclusion of their content on cooperating sites.
However, fingerprinting is far more persistent than cookie-based tracking,
virtually uncontrollable by users and non-trivial to detect. Moreover, fin-
gerprinting can be used to create supercookies, where if a tracking cookie is

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Royal Holloway - Pure

https://core.ac.uk/display/294771724?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:nasser@alfannah.com
mailto: me@chrismitchell.net 


deleted from a user platform, it can be regenerated if the same browser is
detected via fingerprinting [7].

The fact that tracking can so readily be performed using browser fin-
gerprinting is potentially a major threat to the privacy of web users, and
as noted above it is one over which users currently have no control. Whilst
there are uses of browser fingerprinting not directly relating to tracking, the
lack of user control combined with the serious privacy threat suggests that
means of limiting its effectiveness, i.e. what we refer to here as fingerprinting
countermeasures, are of potentially huge importance, motivating this paper.

Fingerprinting countermeasures can be divided into two categories, de-
pending on whether they are directly implementable by the user regardless
of the browser or whether they require support from the browser vendor.
In the remainder of this paper we provide a comprehensive and systematic
review of possible fingerprinting countermeasures. This is significant for a
number of reasons. First, some of these techniques, whilst apparently known,
have not previously been described in the academic literature. Second, this
review enables us to compare their effectiveness (and their limitations) and
also consider how best such countermeasures could be implemented, from
the perspectives of both the user and the browser vendor. Third, it enables
us to identify areas where further research is urgently needed.

Finally, given that fingerprint-based tracking is so privacy intrusive (and
uncontrollable), we also consider a way in which the major fingerprinters
might be encouraged to abandon the practice. We, possibly controversially,
propose that browsers should support a new type of website-accessible identi-
fier, referred to as a Unique Browser Identifier, which would enable a level of
user-controllable tracking without involving the collection of other user and
browser data. This could make browser vendors willing to change behaviour
to make fingerprinting difficult, leading to its use becoming redundant and
(potentially) prevented. The possible operation of this identifier, and its
advantages and disadvantages, are discussed.

The remainder of the paper is organized as follows. Section 2 provides a
brief introduction to browser fingerprinting. In Section 3, a general overview
of approaches to limiting fingerprinting is provided. Sections 4 and 5 pro-
vide detailed descriptions of all known user-based and browser-based anti-
fingerprinting measures, respectively. In Section 6, we discuss a browser
identifier-based proposal that aims at making browser fingerprinting redun-
dant. Building on the previous sections, in Section 7 we review the degree
to which browser fingerprinting can be controlled using current technology
and consider ways in which greater control can be exercised in the future.

Acknowledgements the authors would like to thank the anonymous
referees for their helpful comments and suggestions.

2



2 Browser Fingerprinting

Browser fingerprinting, as first described by Eckersley [7], is a technique that
allows web servers to uniquely identify user devices by examining informa-
tion retrievable from a browser, where this collection of information is unique
for most instances. There are various possible uses for fingerprinting, but
one of the most widely discussed (and controversial) is online tracking (i.e.
enabling web servers to link multiple interactions with the same platform).
Since Eckersley first described it, the range and richness of information re-
trievable from a browser that is usable for fingerprinting has substantially
increased, as has real-world deployment of fingerprinting by websites [3, 20].

Browser fingerprinting can be performed by active or passive means [6].
Passive fingerprinting depends entirely on information retrievable through
regular HTTP requests such as the HTTP header field user agent1, whereas
active fingerprinting involves the use of scripts to retrieve further informa-
tion about the browser and its configuration, such as the set of installed
fonts.

As has been widely discussed, for example by Eckersley [7], Narayanan
and Reisman [23], and Perry [30], there are a number of reasons why browser
fingerprinting represents a more significant threat to user privacy than cook-
ies.

• Typically there is no simple way to determine for certain whether a
website is deploying any of the various browser fingerprinting tech-
niques.

• A user can limit the tracking power of cookies in a number of ways, e.g.
by regularly deleting cookies or blocking them altogether (as supported
by most browsers), but there are no comparable, easily configured,
means of limiting fingerprinting.

• Unlike cookies, browser fingerprinting is not dependent on a single
explicit feature of HTTP. Fingerprinting rather relies on many tech-
niques to collect various information about the properties and config-
uration of the browser and its host platform. Any of this information
has the potential to be used for fingerprinting.

3 Limiting Browser Fingerprinting

3.1 General Approaches

Most techniques aimed at limiting the effectiveness of fingerprinting either
involve user-enabled options such as installing extensions, or operate via

1This header field contains information related to the browser and its host, such as
the browser version, operating system version and screen resolution [12].

3



browsers that incorporate anti-fingerprinting features. We discuss these two
general classes of countermeasures in greater detail in Sections 4 and 5 below.

A number of authors have proposed extensions that could help counter
fingerprinting. Examples include FP-Block [36], Blink [19] and Fingerprint-
Alert [3]. There are also widely discussed extensions of this type that do not
seem to have any corresponding published research, such as CanvasBlocker2

and Stop Fingerprinting3. Luangmaneerote et al. [21] surveyed several of
the more widely discussed fingerprinting countermeasures. They concluded
that no single countermeasure can protect against all known fingerprinting
methods, such countermeasures tend to negatively affect the user experi-
ence, and are likely to fail to block newly deployed fingerprinting methods.
In this paper, we do not attempt to evaluate or enumerate individual anti-
fingerprinting extensions; instead our goal is to consider the possible general
approaches and in each case examine its effectiveness.

As far as browser-incorporated anti-fingerprinting techniques are con-
cerned, a number of documents provide recommendations and guidelines to
browser vendors aimed at limiting the effectiveness of fingerprinting, includ-
ing RFC 6973 [11], a W3C Note [6], Eckersley [7], and Nikiforakis et al.
[26]. However, the detailed technical aspects of such recommendations are
outside the scope of this paper, which is intended to provide a roadmap for
policymakers, developers, browser vendors and interested general web users
who wish to help control browser fingerprinting.

3.2 Challenges

A number of proposed browser fingerprinting countermeasures involve adding
features to the browser, typically in the form of a browser extension. How-
ever, approaches of this type have serious limitations [21] and might even
lead to effects opposite to those intended (see 4.3). By contrast, and as
discussed in greater detail in Section 5, browser vendors could potentially
control fingerprinting very effectively by making modifications to the way
browsers operate. To help substantiate these claims, we next consider some
of the main challenges in controlling browser fingerprinting.

3.2.1 Misuse of Browser Features

One major challenge in controlling fingerprinting is that information useful
for fingerprinting can be obtained from “regular” web interactions, including
website-originated browser scripts that access standardized APIs4. That
is, preventing fingerprinting might necessitate stopping, or restricting, such

2https://addons.mozilla.org/en/firefox/addon/canvasblocker/
3https://addons.mozilla.org/en/firefox/addon/stop-fingerprinting
4A web API, i.e. a web Application Programming Interface, is a set of functions or

methods that can be used to access certain functionality of web browsers.

4

https://addons.mozilla.org/en/firefox/addon/canvasblocker/
https://addons.mozilla.org/en/firefox/addon/stop-fingerprinting


interactions, scripts and the APIs they access, which will almost certainly
damage the user’s browsing experience. For example, canvas fingerprinting5

makes use of the Canvas API [5], and simply blocking this API would result
in browsers being unable to render images that could be critical to use of a
web page.

3.2.2 Detection

Unlike tracking via cookies, that can be detected by the presence of cook-
ies stored on user device, there are no unambiguous methods of detecting
browser fingerprinting [26]. Moreover, it can be performed passively and is
thus virtually undetectable (except, perhaps, by second order effects, such
as receipt of targeted advertising). As described by Narayanan et al. [23]
and Perry et al. [31], active fingerprinting can also be very hard to detect, as
it can take advantage of almost any existing web API and almost certainly
any future new APIs6.

4 User-based Countermeasures

We now describe and analyse a variety of ways in which users can reduce
the effectiveness of browser fingerprinting. We also consider the main chal-
lenges to user-based approaches, in particular observing that none of these
techniques prevent fingerprinting — indeed, some may even make it more
effective.

4.1 Browser Choice and Configuration

Browsers vary in their susceptibility to fingerprinting [2]. These variations
arise for a variety of reasons, including that some browsers, such as Fire-
fox, have (possibly user-selectable) features that are designed to help resist
fingerprinting. Moreover, as described by Boda et al. [4], some browser con-
figuration options, such as disabling JavaScript, can affect fingerprinting.
That is, a user’s choice of browser and configuration options can change the
effectiveness of fingerprinting. Finally, selecting a browser and version that
is used by many users is also likely to help in making the browser a little
less fingerprintable7.

Before proceeding it is important to mention the Tor browser8, which
is specifically designed to be privacy-protecting; hence selecting Tor could
be seen as a potentially effective user-based countermeasure. Unlike several

5A browser fingerprinting technique that depends on exploiting the Canvas API [22].
6Unless new APIs are developed with built-in resistance to fingerprinting.
7https://panopticlick.eff.org/self-defense
8The Tor browser is a modified version of Firefox browser that has enhanced security

and privacy features, https://www.torproject.org/projects/torbrowser

5

https://panopticlick.eff.org/self-defense
https://www.torproject.org/projects/torbrowser


widely-used browsers, the Tor browser includes by default a range of fea-
tures intended to counter fingerprinting. These include using a fixed set of
system colours, disabling plugins by default, limiting the number of fonts a
document is allowed to load, and disallowing read access to canvas-rendered
images unless express permission is granted by the user9.

However, use of the Tor browser has a number of serious practical draw-
backs including a seriously compromised browsing experience [16], one as-
pect of which is a slow browsing speed; there are also relatively few users
(less than 1% of web users employ the Tor browser10) which might itself
make fingerprinting possible because of the fingerprintability paradox (see
4.3). Tor also possesses other serious usability issues: it breaks some web-
sites, some websites opt to block Tor clients, and changes in IP address
negatively affect the localized web browsing experience. Another example
of a usability issue arises when Tor advises a user against maximizing the
browser window via an in-browser notification. This is intended to keep the
window at the default size and thereby the same size as other Tor users,
hence preventing websites from learning the device’s display size. Whilst
this reduces browser fingerprintability, it will clearly have a negative effect
on the user experience.

More generally, making attributes the same across multiple browser in-
stances and hence reducing their uniqueness would make fingerprinting more
difficult. However, it is also likely to damage the user experience by pre-
venting the website tailoring its site to match the characteristics of the user
device [31]. These serious disadvantages mean that the Tor browser is un-
likely ever to be widely adopted, and hence cannot be seen as generally
applicable a means of controlling fingerprinting.

4.2 Browser Extensions

Apart from the fundamental choice of browser, the main option for users
wishing to limit the effectiveness of browser fingerprinting is to install one
or more special-purpose browser extensions. As noted in Section 3.1, a
number of such extensions exist, and we now consider these extensions in
greater detail.

We were unable to find any detailed and generally applicable evidence
regarding the relative effectiveness of the existing extensions; however they
all seem to share common weaknesses. The limited effectiveness of some in-
dividual extensions has been evaluated in controlled environments, including
by Nikiforakis et al. [27] and Luangmaneerote et al. [21]. It seems unlikely

9https://www.torproject.org/projects/torbrowser/design [accessed
13/02/2019].

10Estimated by comparing the number of Tor browser clients during January 2019
as reported on https://metrics.torproject.org with the total number of web users
reported on http://www.internetlivestats.com/internet-users.

6

https://www.torproject.org/projects/torbrowser/design
https://metrics.torproject.org
http://www.internetlivestats.com/internet-users


that a single extension is able to completely prevent fingerprinting, given the
multiplicity of fingerprinting approaches, potentially including methods not
in the public domain. Furthermore, there is no known method of learning
whether extensions that counter certain fingerprinting techniques are in fact
able to prevent real-world fingerprinting. This is especially apparent given
that it is not always possible to detect when fingerprinting is occurring in
the first place [1].

We also observe that some extensions not specifically designed for the
purpose can nonetheless reduce the effectiveness of fingerprinting, as a by-
product of their intended functionality. One such example is NoScript11,
that controls which scripts deployed by a visited website are allowed to run
on the browser; depending on its configuration it might prevent execution
of scripts used for browser fingerprinting. However, in this study we only
consider purpose-built anti-fingerprinting extensions.

We next briefly review the three main techniques employed by the anti-
fingerprinting browser extensions of which we are aware. We consider the
limitations they all share in Section 4.3 below.

• Script Blocking: this works by blocking suspected fingerprinting
scripts. One example of an extension adopting this approach is Pri-
vacyBadger12, developed by the Electronic Frontier Foundation. It
detects canvas fingerprinting and prevents third-party scripts that de-
ploy it from executing.

• Attribute Spoofing: extensions that use this technique attempt
to prevent fingerprinting by constantly spoofing browser/platform at-
tributes. Examples of extensions using this approach include: PriVar-
icator (due to Nikiforakis et al. [25]), FPRrandom (due to Laperdrix
et al. [18]), FPGuard (due to FaizKhademi et al. [9]) and an unnamed
extension due to Fiore et al. [13]. FP-Block, due to Torres et al. [36],
also fabricates some browser attributes, but it also blocks some scripts.
That is, it employs both script blocking and attribute spoofing.

• Data Blocking: this involves blocking the retrieval of attributes that
might be used for fingerprinting from the browser. This approach is
used by FingerprintAlert13.

4.3 Limitations

The main disadvantage of user-based countermeasures is that they all de-
pend, to a limited extent, on manipulating or blocking data sent by the

11https://noscript.net
12https://www.eff.org/privacybadger
13https://addons.mozilla.org/en/firefox/addon/fingerprintalert/

7

https://noscript.net
https://www.eff.org/privacybadger
https://addons.mozilla.org/en/firefox/addon/fingerprintalert/


browser to remote web servers. This gives rise to several limitations, which
we now discuss.

• Limitation of Browser Choice: although browsers vary in their
fingerprintability, they still exhibit a large number of fingerprintable
attributes. Perhaps this is less true for privacy-hardened browsers such
the Tor browser but it comes at the cost of a compromised browsing
experience.

• Limitation of Extensions: browser extensions can customize the at-
tributes and behaviour of a browser. However, their ability to modify
behaviour is by definition limited to what browser vendors allow. This
means that browser extensions cannot replace vendor-implemented
measures that enhance the privacy properties of their browsers.

• Compromised Browsing Experience: many browser-based coun-
termeasures compromise the browsing experience in some way [21].
This is especially true when such countermeasures block certain scripts
or spoof properties that may be important for the functionality of a
visited website. There is also the possibility of a false positive, i.e. an
incorrectly detected fingerprinting attempt, breaking some “innocent”
websites.

• Fingerprintability Paradox: this a phenomenon that has been
widely discussed — see, for example, Eckersley [7] and Torres et al.
[36]. The term captures the fact that measures taken to reduce browser
fingerprintability can unintentionally create a new source of finger-
printing. A simple example arises where an anti-fingerprinting browser
extension that is only installed in a small number of devices can be de-
tected by a web server. That is, the presence of the extension is itself
an attribute that can contribute to fingerprinting. This is a special
case of what to refer to as detection of defence, where the deployment
of a countermeasure can be detected and can be used to contribute
to fingerprinting [26, 35]. This problem is especially significant if the
number of users of the countermeasure is relatively small.

A related but distinct issue arises from the deployment of a browser ex-
tension that spoofs browser attributes for anonymization purposes but
as a result exhibits a set of browser characteristics that is unrealistic
or rare. This behaviour can be used to make a browser more iden-
tifiable. Further, Vastel et al. [37] argue that some countermeasures
potentially make browsers more fingerprintable since both spoofed and
correct browser attributes can be discovered, e.g. using two different
APIs. Finally, it has also been observed by Perry [30] that privacy-
cautious users who opt to enable the Do Not Track (DNT)14 option in

14DNT is a standard browser feature that sends a request to websites that the browser

8



their browsers increase their fingerprintability surface by doing so. In
fact, the DNT option is no longer officially endorsed by the W3C [33];
while it is still supported by some browsers, Apple has announced15

that version 12.1 of its Safari browser will drop support.

5 Browser-based Countermeasures

We next discuss the various countermeasures that could be implemented by
browser vendors, as well as the associated challenges.

5.1 Reducing the Fingerprinting Surface

Having browsers exhibit similar information wherever possible would help
limit fingerprinting [6, 11]. For example, the HTTP user agent header field
is an important source of information for fingerprinting [14, 38] since as
currently implemented it contains many browser and platform details, in-
cluding full details of the browser version and, in some mobile browsers, the
mobile phone model [2]. Restricting the information included to only what
is vital for the functioning of websites would clearly help reduce its util-
ity for fingerprinting, whilst not affecting its usefulness for tailoring website
content.

Currently, the specifics of API implementation are typically left to browser
vendors, which increases their usefulness for fingerprinting by enabling one
browser to be distinguished from another through minor implementation
differences [23]. However, if the standards included enough details to ensure
these APIs are implemented in a way that would make browsers indistin-
guishable, then this would in turn limit fingerprinting effectiveness.

One of the methods used by some browsers (e.g. Firefox) to limit fin-
gerprinting is attribute spoofing (as used in anti-fingerprinting extensions,
cf. 4.2). However, as discussed in Section 4, attribute spoofing can seri-
ously damage the user experience, and may also have a computational cost.
Thus, whilst attribute spoofing may be necessary as a short-term expedient,
in the longer term arranging for as much cross-browser attribute uniformity
as possible is clearly a preferable approach [31]. As a result, it is likely that
browsers that resort to spoofing are doing so as a temporary measure, as
achieving behavioural uniformity would require, a currently absent, consen-
sus amongst browser vendors.

In conclusion, and as recommended by RFC 6973 [11], it would be
highly desirable for browsers to minimize the information content of browser-
retrievable attributes to that needed to deliver the user experience, whilst

user does not wish to be tracked [33].
15https://developer.apple.com/documentation/safari_release_notes/safari_

12_1_release_notes [accessed 13/02/2019]

9

https://developer.apple.com/documentation/safari_release_notes/safari_12_1_release_notes
https://developer.apple.com/documentation/safari_release_notes/safari_12_1_release_notes


also working to remove unnecessary differences in browser behaviour, in-
cluding the order and presence of HTTP fields. Such changes could make a
significant difference to the effectiveness of fingerprinting, with no obvious
disadvantages in terms of the delivery of web content.

5.2 Context-based API access control

If browsers could be designed to control access to certain APIs based on the
context, this would be very useful in controlling fingerprinting. For example,
and as demonstrated by the Fingerprintability test web page16, the client
platform private IP address can be exposed via the WebRTC API. The
specific feature of WebRTC that reveals the IP address is intended for video
chat purposes. Currently, again as shown by Fingerprintability, this API can
be accessed in many widely-used browsers regardless of whether or not video
conferencing is taking place (or even without prompting the user). Hence
(by some means) restricting access to the WebRTC API to video chat sites
would clearly be beneficial in limiting fingerprinting.

There are many other examples of APIs whose use could be limited
with similar benefits, such as access to processing and graphics hardware
information through the WebGL API17 in cases where it is not used to
render any graphics. Analogously, since tracking is mostly performed by
third parties, it would be very helpful if third-party scripts were prevented
from accessing any API unless there is a clear reason for its use by a party
other than the visited website [31].

5.3 Deprecate/Limit Unnecessary APIs

There is a need for the set of standardized APIs to be revisited and pruned
where possible, since some APIs are apparently almost exclusively used by
fingerprinters [31]. Of course, such APIs were not developed for fingerprint-
ing purposes. Supporting this, Snyder et al. [34] have shown that many APIs
are not utilized by any of top 100,000 visited websites. Such lightly used
APIs create avoidable fingerprinting opportunities. Removing such APIs,
or at least limiting their functionality, would therefore limit fingerprinting
with minimal impact on the user experience. Two examples of such APIs
are as follows.

• As noted by Olejnik et al. [29], the battery API is almost solely used for
fingerprinting purposes. This API allows websites to detect the battery
level of the client’s device and optionally adjust website content to
reduce battery-draining features if low battery levels are detected [17].
Safari never supported this API while Firefox did support it for a

16https://fingerprintable.org/webrtcleaks
17A web API that renders 2D and 3D graphics on supported browsers.

10

 https://fingerprintable.org/webrtcleaks


while but deprecated it in 2017 (possibly because of privacy issues).
This move was followed by several other browser vendors. At the time
of writing, Chrome is the only one of the top five browsers that still
supports this API.

• An example of an API with features which seem primarily useful for
fingerprinting is provided by the Canvas API, that enables a website to
specify an image in code form (reducing data transfer requirements).
Mowery and Shacham [22] showed that browsers and platforms vary
in how they render canvas images. This is made valuable for fin-
gerprinting by an API feature that allows a website to retrieve the
canvas-rendered image18. Disabling this latter feature would remove
the fingerprinting function without preventing use of the API for its
intended purpose.

5.4 Alerts and Prompts

As noted by Doty [6] and Fette and Melnikov [11], it would enhance user
control if users were made aware whenever a browser detects behaviour
which suggests fingerprinting is being performed. In addition, it would also
be helpful if users could be given the means to control such behaviour.
Of course, as we have discussed above, reliably detecting fingerprinting is
a hard problem. However, it might be possible to detect when a website
is collecting information which is apparently unrelated to the information
being served to the user. This could, perhaps, involve the use of machine
learning techniques.

Examples of possible controls that could be given to users when a website
is detected collecting fingerprintable data include:

• blocking the data collection;

• anonymizing the collectable data by spoofing or removing unique
values;

• allowing users to select what data can be collected by a visited web-
site.

Even if it is not possible to control the potential fingerprinting, it would
help if users could be notified when such activity, e.g. involving the Canvas
API, is detected. To a limited, and varying, extent this is implemented in
both the Safari and Tor browsers. However, browser vendors need to be
wary of warning fatigue [31], as over-frequent alerts might cause users to
pay less attention to prompts and click on them without considering their
content. Usefully, the number of times a user is prompted could be reduced if

18The API allows the retrieval of the binary pixel data of the rendered image by the
visited website [22]

11



appropriate options were made available to users, such as enabling/disabling
prompts, blacklisting, and automatically blocking certain third-party inter-
actions. Moreover, prompts could be reduced if users were prompted only
when suspicious behaviour is detected. An example of such suspicious be-
haviour would be a website that attempts to retrieve the canvas-rendered
image while the image itself cannot be seen by the user because it is invisible
or too small.

In a small investigation we found that none of the top four desktop
browsers19 (i.e. Chrome, Firefox, Internet Explorer and Edge) alert users
when a visited website performs actions typical of fingerprinters, nor do
they appear to incorporate any specific measures to prevent fingerprinting20.
By contrast, as discussed in 4.1, the Tor browser protects against canvas
fingerprinting by default as it prompts users before allowing the retrieval of
canvas-rendered images by a visited website.

5.5 Reduction in API accuracy

Several studies (e.g. by Eckersley [7] and Olejnik at al. [28]) have suggested
using a reduction in the accuracy and level of detail provided by a browser in
order to help counter fingerprinting. As discussed in 5.1, reducing the level
of detail in the HTTP header would significantly help in limiting fingerprint-
ing. The reporting of constantly varying values, such as time, location and
battery level could also be made less accurate to help prevent fingerprinting.

A further example of this type is provided by location information. Cur-
rently, all widely-used browsers prompt users to give permission if a website
tries to access the location of the user. However, while the currently high
level of accuracy obtainable (e.g. up to 4–5 metres) is likely to be necessary
for applications such as satellite navigation, the need for such accuracy for
most cases is arguable at best. Reducing the level of accuracy of the data
provided, e.g. by enhancing the API to allow two or more levels of accuracy,
could help limit fingerprinting. In addition to the prompt for user permission
to access location information implemented by many browsers, the browser
could also warn the user if a website is requesting highly-accurate location
information.

5.6 Secure Data Handling

As reported in a previous study [3], potentially privacy-sensitive fingerprint-
ing data is often retrieved from a browser in plaintext via HTTP. Browsers
could usefully enforce the use of HTTPS for such information transfers,

19The list of the most widely-used browsers was retrieved from https://www.

netmarketshare.com/browser-market-share.aspx [accessed 01/10/2019].
20Firefox has a small set of configurable anti-fingerprinting settings; however, these are

only likely to be employed by technically aware users.

12

https://www.netmarketshare.com/browser-market-share.aspx
https://www.netmarketshare.com/browser-market-share.aspx


as advised in RFC 6973 [11]. Currently, Chrome is the only browser that
forces websites to use HTTPS in order to access the user location through
the Geolocation API21. However, this restriction is not extended to other
APIs.

Currently, several browsers, e.g. Firefox, warn users if they are visiting
a website not using HTTPS, and prompt users to deny transmission if they
are about to submit information that does not use it. However, no warn-
ings and almost no restrictions are in place if a script from a third-party
website retrieves information via HTTP. This shortcoming clearly merits
consideration by browser vendors.

5.7 Challenges

Perhaps the main challenge for implementing browser-based countermea-
sures is to make browsers, wherever possible, behave indistinguishably to
websites while keeping retrievable information to a minimum. Achieving
the necessary agreement amongst competing vendor providers is likely to be
difficult without enforcement by regulatory or standard bodies.

Another obvious challenge is ensuring changes implemented by browser
vendors have minimal negative impact on the browsing experience of users.
Achieving this is non-trivial given that, as discussed earlier, changes could
include restricting APIs as well as occasionally prompting users.

Finally, some browser vendors might not wish to limit fingerprinting
given that their parent companies apparently depend on it for their own
services, such as providing web analytics and personalized online advertising
[3].

6 Making Browser Fingerprinting Unnecessary?

6.1 A Different Approach

As noted briefly above, whilst browser vendors are in a strong position to
decide how effective browser fingerprinting is, some of the key players in this
space, notably Google, may be unlikely to take steps to limit it since they
also appear to play a major role in browser fingerprinting [3]. That is, there
is clearly a desire by key browser vendors to be able to track user behaviour.
Indeed, to some extent this is necessary to enable these vendors to continue
to support “free” (and highly valued) services, such as web search.

In this respect, it might be argued that trying to restrict cookies has
been counter-productive for user privacy; at least cookies are, to a high de-
gree, user-controllable, i.e. users can delete all cookies from time to time
and thereby refresh their online identity. Exerting usage control is much
more difficult when browser fingerprinting is employed for tracking, since as

21https://www.w3schools.com/html/html5_geolocation.asp [accessed 18/02/2019]

13

https://www.w3schools.com/html/html5_geolocation.asp


we have argued it is far less controllable and far more privacy-damaging in
that it retrieves a wide variety of information about a user’s platform and
browser configuration. That is, pressure to limit cookies may have encour-
aged trackers to adopt browser fingerprinting, with an associated worsening
of end-user privacy protection.

Apparently, five years ago Google intended to replace the use of cook-
ies with some form of browser-generated ID (confirmed by a Google official
[15]). However, no further information was ever made available. This ap-
parently abandoned proposal suggests a possible new, and apparently para-
doxical, approach to limiting browser fingerprinting. That is, if trackers
can be offered a means of tracking browsers that is less privacy-damaging
than browser fingerprinting, then browser vendors might be more willing to
countenance adopting measures to reduce the effectiveness of fingerprinting.

Currently, operating systems such as Windows and Android support an
advertising ID [32]. This serves as a unique identifier for the device/user
for locally installed programs/apps to serve personalized ads. This ID can
be reset, meaning that all previous associations are removed. This sug-
gests a similar scheme in which a novel user-controllable ID is accessible
by websites through browsers. This ID (which we call the Unique Browser
Identifier (UBI)) would be managed by the browser itself, rather than the
host operating system, since it is intended for use solely by the browser.

The main reason to introduce a browser-managed UBI is to provide a
replacement for both cookies and browser fingerprinting for the purposes of
tracking, e.g. for the support of personalized advertising. That is, by provid-
ing a legitimate, simple and user-controllable method of enabling tracking,
the use of cookies and browser fingerprinting could be made redundant. Si-
multaneously with the introduction of the UBI, measures also need to be put
in place to prevent trackers using both the UBI and browser fingerprinting
(hence damaging privacy even further). This could be achieved by regulation
and/or standardization, as well as by implementing the recommendations
given in Section 5. Apart from making fingerprinting for tracking redundant,
the UBI could also replace other existing uses of browser fingerprinting. In
particular it could serve as an additional layer of authentication.

6.2 Configuring Identifiers

To ensure that the introduction of the UBI gives the user the control that is
currently lacking with browser fingerprinting, browsers will need to enable
users to limit access to the UBI (and reset it). It could be advantageous for a
browser to support more than one UBI, for example one for personalization
(e.g. for personalized advertising) and another for authentication purposes
(e.g. as a factor in multi-factor authentication). This would allow the access
settings for the various UBIs to be separately configurable. For example, a
user might choose to allow third parties to have access to a personalization

14



UBI, e.g. as used for personalized advertising, and might also choose to
automatically reset this UBI at fixed intervals (e.g. monthly). In parallel,
an authentication UBI might be configured to only be available under very
restricted circumstances, e.g. only to the site visited by the user and/or
to a “login” web page and/or if the user gives explicit permission. UBIs,
depending on their type, might also be unique per website, as opposed to
being the same regardless of the retrieving party.

6.3 UBI and Cookies

It could be argued that the functionality of a UBI could just as easily be
implemented through the use of a special cookie. However, as we discuss
below, there are a number of reasons why the UBI offers desirable features
not accessible through the simple use of cookies. Of course the UBI would
not replace cookies, as they serve as a means of adding state to HTTP, an
otherwise stateless protocol.

One major difference between cookies and the proposed UBI is that the
user has no means of controlling how cookies are used; all a user can do is
have them deleted. By contrast, the UBI has a well-defined role and its use
could be configured to meet user privacy requirements. That is, by providing
explicit browser support for the UBI, its use can be controlled much more
precisely than would be the case for cookies.

To help enable transparency of use and make websites accountable for
their actions, browsers could usefully maintain a log of accesses to each type
of UBI, e.g. including access date/time and accessing URL, just as is the case
for cookies. However, unlike the case for cookies, it would also be helpful
to log details of whether the requesting site is a third-party site, while also
identifying the first-party site whose website contained the third-party link.
Recording this additional information is made possible by implementing the
UBI as a distinct browser feature.

Browsers should also enforce the use of HTTPS for UBI transfers, i.e.
preventing access via HTTP. Currently, unless the appropriate flag is set,
cookies can be transferred via HTTP, and transferring the UBI unencrypted
would clearly be a privacy risk. It is interesting to observe that browser
fingerprinting information is currently often transferred using HTTP (see
5.6).

Currently the expiry date of cookies is controlled by the server that
created them, whereas UBI expiry would ideally be user-controllable. More-
over, if a multi-UBI system was implemented, UBIs would serve a range of
purposes, and their behaviour and handling could be managed individually.

15



6.4 Privacy Considerations

Ideally, the use and functioning of a UBI should be standardized by an
official body rather than being left to an initiative by a browser vendor.
As mentioned in 6.1, Google considered replacing the use of cookies with
a browser generated ID. Had such functionality been unilaterally added,
perhaps with minimal user controls, it would potentially have given Google
even greater control over online personalized advertising, to the detriment of
user privacy, given that Google currently [8, 24] also owns the largest shares
of both online advertising and browser users.

It might be argued that potential sharing of a UBI amongst trackers
might increase privacy concerns. Analogously, concerns about sharing of
browser fingerprinting IDs have recently been expressed [10]. However, in
the case of UBIs, this might be avoided if the recommendations below and
those in 6.1 and 6.3 are followed.

To help minimize the threat posed to user privacy, we propose that the
following rules governing UBIs should be enforced by the browser.

• UBI Access Control: users should have full control over the use of
all UBIs. This can be through prompts as well as enabling blacklist-
ing/whitelisting of websites. Usage control should include providing
means to enable/disable UBI access to third party websites. Denied
websites could be provided with a dummy ID to prevent them learning
that the user has denied them access.

• UBI Reset: like the existing advertising IDs, UBIs should be reset-
table, allowing users to opt to be forgotten by all websites that possess
any of the previous UBI(s).

• UBI Opacity: UBIs should be generated in a way that reveals no
information about its platform/client, nor linking with previously gen-
erated values.

6.5 Possible Issues

One possible criticism of the proposed UBI is that it could act as a sort of
supercookie posing a significant threat to user privacy. The dangers can be
seen by considering real-world use of advertising IDs (see 6.1). Google has
stated that an “advertising identifier must not be connected to personally-
identifiable information or associated with any persistent device identifier
(for example: SSAID, MAC address, IMEI, etc.) without explicit consent
of the user”22. However, recent research suggests that there is significant
abuse of IDs of various types to create a very persistent ID that defeats

22https://play.google.com/about/monetization-ads/ads/ad-id/ [accessed
12/10/2019]

16

https://play.google.com/about/monetization-ads/ads/ad-id/


the purpose of the advertising ID23. This suggests that third parties cannot
be trusted to obey limitations on ID use unless restrictions are enforced by
the browser itself. There are also potential issues with “popup fatigue”, if
a user is continually being asked about the use of IDs. These issues will
certainly need to be properly addressed before browser support for UBIs is
introduced.

Moreover, as noted in 5.7, browser fingerprinting plays an important role
in the difficult balance between user privacy and the need for websites to sell
advertising to pay for otherwise “free” services. Advertisers wish to track
users to enable them to provide better-targeted advertising, whilst at the
same time users want greater privacy protection. Browser vendors have the
power to limit fingerprinting, but the economic justification for dedicating
resources to fix the privacy problems is lacking. Of course, the whole idea
of the UBI is to help achieve a better balance; other possible attempts to
improve the situation include solutions such as the basic attention token
(BAT)24. However, BAT aims to harmonize a currently dysfunctional ad-
vertising ecosystem24, while the main objective of UBI is to enable users to
assert some control over online tracking, and that regardless of whether or
not it is being used for advertising purposes.

7 Conclusions

7.1 Browsers with Fingerprinting-Resisting Features

Some initial steps have been taken by certain browser vendors to tackle
browser fingerprinting. However, these steps remain small and many browser
vendors have not added any such features to their browsers. Firefox calls its
techniques of this type resistFingerprinting. Using the term “resist” seems
appropriate given that the measures certainly do not prevent it altogether.
Firefox version 62 incorporates four options that can be enabled to resist
fingerprinting, although some are disabled by default.

It seems that Firefox’s fingerprinting features are not all listed or fully ex-
plained on its website25. One of these features prompts users if it detects po-
tential canvas fingerprinting and another apparently reduces time-reporting
precision. It is stated on Firefox’s official website that the fingerprinting
protection is still experimental and may negatively affect the browsing ex-
perience. Therefore, Firefox has opted not to make these options available
in the main Options menu; instead, access is via the somewhat obscure
advanced options, that are only accessible by typing about:config in the

23https://blog.appcensus.io/2019/02/14/ad-ids-behaving-badly/ [accessed
12/10/2019]

24https://basicattentiontoken.org [accessed 18/10/2019]
25https://support.mozilla.org/en/kb/firefox-protection-against-fingerprinting

[accessed 12/10/2019]

17

https://blog.appcensus.io/2019/02/14/ad-ids-behaving-badly/
https://basicattentiontoken.org
https://support.mozilla.org/en/kb/firefox-protection-against-fingerprinting


address bar (see Figure 1).

Figure 1: Firefox anti-fingerprinting options

Apart from these limited measures in Firefox, only Safari and the Tor
browser appear to contain significant anti-fingerprinting features. Even in
this case, only the latest Safari version (i.e. Safari 12) possesses such fea-
tures. This leaves around more than 90%26 of web users without any default
anti-fingerprinting protection. The Safari and Tor browser implementations
of anti-fingerprinting measures differ, although both Safari and Tor are de-
signed to make all versions indistinguishable.

7.2 A Possible Role for Regulation

As discussed in 5, a number of steps could be taken by browser vendors
to make fingerprinting significantly less effective, including removing (or
limiting) uncommonly used APIs and reducing API accuracy. The main
question is how to persuade browser vendors to implement such steps. One
possible route might involve some kind of regulation.

More than 92%26 of users use one of the five most widely used browsers,
but trackers and the domains they use are very numerous. It therefore seems
reasonable to focus more on controlling browser fingerprinting by regulating
browsers rather than by regulating websites. Moreover, browsers act as a
kind of middle man between websites and users, and can thus act as a type
of privacy regulator [23]. However, it is important to note that some browser
vendors also make extensive use of browser fingerprinting, and are thus likely
to be reluctant to restrict it. Finally, despite the primary focus on browsers,
the regulation of websites remains an important possibility, especially given
that it appears that most tracking is performed by a limited number of
third-parties [3].

7.3 Final Remarks

It is unlikely that browser fingerprinting (or variants of it) will disappear any
time soon. Studies have shown that its deployment is increasing. Moreover,

26https://netmarketshare.com/browser-market-share.aspx [accessed 15/10/2019]

18

https://netmarketshare.com/browser-market-share.aspx


the methods used to perform it are continually changing as browsers them-
selves evolve, making controlling it very difficult. Also, fingerprinting does
have uses other than for tracking and so eradicating it without providing an
alternative (e.g. as provided by UBIs) is likely to be infeasible in practice. In
summary, it seems that unless effective alternatives are provided, preventing
browser fingerprinting is likely to be impossible. Given the threat it poses
to user privacy, this is clearly an important topic for future research.

References

[1] Gunes Acar, Christian Eubank, Steven Englehardt, Marc Juárez,
Arvind Narayanan, and Claudia Dı́az. The web never forgets: Per-
sistent tracking mechanisms in the wild. In Gail-Joon Ahn, Moti Yung,
and Ninghui Li, editors, Proceedings of the 2014 ACM SIGSAC Con-
ference on Computer and Communications Security, Scottsdale, AZ,
USA, November 3–7, 2014, pages 674–689. ACM, 2014.

[2] Nasser Mohammed Al-Fannah and Wanpeng Li. Not all browsers are
created equal: Comparing web browser fingerprintability. In Satoshi
Obana and Koji Chida, editors, Advances in Information and Computer
Security — 12th International Workshop on Security, IWSEC 2017,
Hiroshima, Japan, August 30 – September 1, 2017, Proceedings, volume
10418 of Lecture Notes in Computer Science, pages 105–120. Springer,
2017.

[3] Nasser Mohammed Al-Fannah, Wanpeng Li, and Chris J. Mitchell. Be-
yond cookie monster amnesia: Real world persistent online tracking. In
Liqun Chen, Mark Manulis, and Steve Schneider, editors, Information
Security — 21st International Conference, ISC 2018, Guildford, UK,
September 9–12, 2018, Proceedings, volume 11060 of Lecture Notes in
Computer Science, pages 481–501. Springer, 2018.

[4] Károly Boda, Ádám Máté Földes, Gábor György Gulyás, and Sándor
Imre. User tracking on the web via cross-browser fingerprinting. In
Peeter Laud, editor, Information Security Technology for Applica-
tions — 16th Nordic Conference on Secure IT Systems, NordSec 2011,
Tallinn, Estonia, October 26-28, 2011, Revised Selected Papers, vol-
ume 7161 of Lecture Notes in Computer Science, pages 31–46. Springer,
2011.

[5] Rik Cabanier, Ian Hickson, Tom Wiltzius, Jatinder Mann, and
Jay Munro. HTML canvas 2D context. W3C recommen-
dation, W3C, November 2015. http://www.w3.org/TR/2015/

REC-2dcontext-20151119/.

19

http://www.w3.org/TR/2015/REC-2dcontext-20151119/
http://www.w3.org/TR/2015/REC-2dcontext-20151119/


[6] Nick Doty. Fingerprinting guidance for web specification authors
(draft). W3C note, W3C, November 2015. https://www.w3.org/TR/

fingerprinting-guidance/.

[7] Peter Eckersley. How unique is your web browser? In Privacy Enhanc-
ing Technologies, 10th International Symposium, PETS 2010, Berlin,
Germany, July 21-23, 2010. Proceedings, pages 1–18, 2010.

[8] eMarketer Inc. Global ad spending update. https://www.emarketer.
com/content/global-ad-spending-update, 2019. Online; accessed
25/02/2019.

[9] Amin FaizKhademi, Mohammad Zulkernine, and Komminist Welde-
mariam. FPGuard: Detection and prevention of browser fingerprinting.
In Pierangela Samarati, editor, 29th Annual IFIP WG 11.3 Working
Conference, DBSec 2015, Fairfax, VA, USA, July 13–15, 2015, volume
9149 of Lecture Notes in Computer Science, pages 293–308. Springer,
2015.

[10] Marjan Falahrastegar, Hamed Haddadi, Steve Uhlig, and Richard
Mortier. Tracking personal identifiers across the web. In Thomas Kara-
giannis and Xenofontas A. Dimitropoulos, editors, Passive and Active
Measurement - 17th International Conference, PAM 2016, Heraklion,
Greece, March 31 – April 1, 2016. Proceedings, volume 9631 of Lecture
Notes in Computer Science, pages 30–41. Springer, 2016.

[11] I. Fette and A. Melnikov. Privacy considerations for internet protocols.
RFC 6973, RFC Editor, July 2013. https://tools.ietf.org/rfc/

rfc6973.txt.

[12] Roy T. Fielding and Julian F. Reschke. Hypertext transfer protocol
(HTTP/1.1): semantics and content. RFC 7231, RFC Editor, June
2014. https://tools.ietf.org/rfc/rfc7231.txt.

[13] Ugo Fiore, Aniello Castiglione, Alfredo De Santis, and Francesco
Palmieri. Countering browser fingerprinting techniques: Constructing
a fake profile with google chrome. In 17th International Conference
on Network-Based Information Systems, NBiS 2014, Salerno, Italy,
September 10–12, 2014, pages 355–360. IEEE Computer Society, 2014.

[14] Alejandro Gómez-Boix, Pierre Laperdrix, and Benoit Baudry. Hiding
in the crowd: an analysis of the effectiveness of browser fingerprinting
at large scale. In Pierre-Antoine Champin, Fabien L. Gandon, Mounia
Lalmas, and Panagiotis G. Ipeirotis, editors, Proceedings of the 2018
World Wide Web Conference on World Wide Web, WWW 2018, Lyon,
France, April 23–27, 2018, pages 309–318. ACM, 2018.

20

https://www.w3.org/TR/fingerprinting-guidance/
https://www.w3.org/TR/fingerprinting-guidance/
https://www.emarketer.com/content/global-ad-spending-update
https://www.emarketer.com/content/global-ad-spending-update
https://tools.ietf.org/rfc/rfc6973.txt
https://tools.ietf.org/rfc/rfc6973.txt
https://tools.ietf.org/rfc/rfc7231.txt


[15] Business Insider. Google and facebook to replace
cookies, 2014. https://www.businessinsider.com/

google-and-facebook-to-replace-cookies-2014-2?r=US&IR=T

accessed 19/12/2018.

[16] Sheharbano Khattak, David Fifield, Sadia Afroz, Mobin Javed,
Srikanth Sundaresan, Damon McCoy, Vern Paxson, and Steven J. Mur-
doch. Do you see what I see? differential treatment of anonymous users.
In 23rd Annual Network and Distributed System Security Symposium,
NDSS 2016, San Diego, California, USA, February 21-24, 2016. The
Internet Society, 2016.

[17] Mounir Lamouri and Anssi Kostiainen. Battery status API. Can-
didate recommendation, W3C, July 2016. http://www.w3.org/TR/

2016/CR-battery-status-20160707/.

[18] Pierre Laperdrix, Benoit Baudry, and Vikas Mishra. FPRandom: Ran-
domizing core browser objects to break advanced device fingerprinting
techniques. In Eric Bodden, Mathias Payer, and Elias Athanasopoulos,
editors, Engineering Secure Software and Systems — 9th International
Symposium, ESSoS 2017, Bonn, Germany, July 3-5, 2017, Proceedings,
volume 10379 of Lecture Notes in Computer Science, pages 97–114.
Springer, 2017.

[19] Pierre Laperdrix, Walter Rudametkin, and Benoit Baudry. Mitigating
browser fingerprint tracking: Multi-level reconfiguration and diversi-
fication. In 10th IEEE/ACM International Symposium on Software
Engineering for Adaptive and Self-Managing Systems, SEAMS 2015,
Florence, Italy, May 18–19, 2015, pages 98–108, 2015.

[20] Pierre Laperdrix, Walter Rudametkin, and Benoit Baudry. Beauty and
the beast: Diverting modern web browsers to build unique browser
fingerprints. In IEEE Symposium on Security and Privacy, S&P 2016,
San Jose, CA, USA, May 22–26, 2016, pages 878–894. IEEE Computer
Society, 2016.

[21] S. Luangmaneerote, E. Zaluska, and L. Carr. Survey of existing fin-
gerprint countermeasures. In 2016 International Conference on In-
formation Society (i-Society), pages 137–141. IEEE Computer Society,
October 2016.

[22] Keaton Mowery and Hovav Shacham. Pixel perfect: Fingerprinting
canvas in HTML5. In Matt Fredrikson, editor, W2SP 2012, San Fran-
cisco, CA, USA. IEEE Computer Society, May 2012. http://www.

ieee-security.org/TC/W2SP/2012/papers/w2sp12-final4.pdf.

21

https://www.businessinsider.com/google-and-facebook-to-replace-cookies-2014-2?r=US&IR=T
https://www.businessinsider.com/google-and-facebook-to-replace-cookies-2014-2?r=US&IR=T
http://www.w3.org/TR/2016/CR-battery-status-20160707/
http://www.w3.org/TR/2016/CR-battery-status-20160707/
http://www.ieee-security.org/TC/W2SP/2012/papers/w2sp12-final4.pdf
http://www.ieee-security.org/TC/W2SP/2012/papers/w2sp12-final4.pdf


[23] Arvind Narayanan and Dillon Reisman. The princeton web trans-
parency and accountability project. In Tania Cerquitelli, Daniele Quer-
cia, and Frank Pasquale, editors, Transparent Data Mining for Big and
Small Data, pages 45–67. Springer International Publishing, 2017.

[24] NetMarketShare. Browser market share. https://netmarketshare.

com/browser-market-share.aspx, 2019. Online; accessed
25/02/2019.

[25] Nick Nikiforakis, Wouter Joosen, and Benjamin Livshits. Privaricator:
Deceiving fingerprinters with little white lies. In Aldo Gangemi, Stefano
Leonardi, and Alessandro Panconesi, editors, Proceedings of the 24th
International Conference on World Wide Web, WWW 2015, Florence,
Italy, May 18–22, 2015, pages 820–830. ACM, 2015.

[26] Nick Nikiforakis, Alexandros Kapravelos, Wouter Joosen, Christopher
Kruegel, Frank Piessens, and Giovanni Vigna. Cookieless monster: Ex-
ploring the ecosystem of web-based device fingerprinting. In 2013 IEEE
Symposium on Security and Privacy, SP 2013, Berkeley, CA, USA,
May 19–22, 2013, pages 541–555. IEEE Computer Society, 2013.

[27] Nick Nikiforakis, Alexandros Kapravelos, Wouter Joosen, Christopher
Kruegel, Frank Piessens, and Giovanni Vigna. On the workings and
current practices of web-based device fingerprinting. IEEE Security &
Privacy, 12(3):28–36, June 2014.

[28] Lukasz Olejnik, Gunes Acar, Claude Castelluccia, and Claudia Dı́az.
The leaking battery — A privacy analysis of the HTML5 battery status
API. In Data Privacy Management, and Security Assurance — 10th
International Workshop, DPM 2015, and 4th International Workshop,
QASA 2015, Vienna, Austria, September 21–22, 2015. Revised Selected
Papers, volume 9481 of Lecture Notes in Computer Science, pages 254–
263. Springer, 2015.

[29] Lukasz Olejnik, Steven Englehardt, and Arvind Narayanan. Battery
status not included: Assessing privacy in web standards. In 3rd In-
ternational Workshop on Privacy Engineering (IWPE’17), San Jose,
USA, March 2017.

[30] Mike Perry. Do not beg: Moving beyond DNT through privacy by
design. W3C DNT, Tor Project, November 2012. https://www.w3.

org/2012/dnt-ws/position-papers/21.pdf.

[31] Mike Perry, Erinn Clark, and Steven Murdoch. The design and im-
plementation of the tor browser. Draft, The Tor Project, June 2013.
https://www.torproject.org/projects/torbrowser/design/.

22

https://netmarketshare.com/browser-market-share.aspx
https://netmarketshare.com/browser-market-share.aspx
https://www.w3.org/2012/dnt-ws/position-papers/21.pdf
https://www.w3.org/2012/dnt-ws/position-papers/21.pdf
https://www.torproject.org/projects/torbrowser/design/


[32] Lindsay Simpkins, Xiaohong Yuan, Jwalit Modi, Justin Zhan, and
Li Yang. A course module on web tracking and privacy. In Michael E.
Whitman and Humayun Zafar, editors, Proceedings of the 2015 In-
formation Security Curriculum Development Conference, InfoSecCD
2015, Kennesaw, GA, USA, October 10, 2015, pages 10:1–10:7. ACM,
2015.

[33] David Singer and Roy Fielding. Tracking preference expression
(DNT). WD not longer in development, W3C, January 2019.
https://www.w3.org/TR/2019/NOTE-tracking-dnt-20190117/.

[34] Peter Snyder, Lara Ansari, Cynthia Taylor, and Chris Kanich. Browser
feature usage on the modern web. In Proceedings of the 2016 ACM
on Internet Measurement Conference, IMC 2016, Santa Monica, CA,
USA, November 14–16, 2016, pages 97–110. ACM, 2016.

[35] Oleksii Starov and Nick Nikiforakis. XHOUND: quantifying the fin-
gerprintability of browser extensions. In 2017 IEEE Symposium on
Security and Privacy, SP 2017, San Jose, CA, USA, May 22–26, 2017,
pages 941–956. IEEE Computer Society, 2017.

[36] Christof Ferreira Torres, Hugo L. Jonker, and Sjouke Mauw. FP-Block:
Usable web privacy by controlling browser fingerprinting. In Günther
Pernul, Peter Y. A. Ryan, and Edgar R. Weippl, editors, Computer
Security — ESORICS 2015 — 20th European Symposium on Research
in Computer Security, Vienna, Austria, September 21–25, 2015, Pro-
ceedings, Part II, volume 9327 of Lecture Notes in Computer Science,
pages 3–19. Springer, 2015.

[37] Antoine Vastel, Pierre Laperdrix, Walter Rudametkin, and Romain
Rouvoy. Fp-scanner: The privacy implications of browser fingerprint
inconsistencies. In William Enck and Adrienne Porter Felt, editors,
27th USENIX Security Symposium, USENIX Security 2018, Baltimore,
MD, USA, August 15–17, 2018., pages 135–150. USENIX Association,
August 2018.

[38] Ting-Fang Yen, Yinglian Xie, Fang Yu, Roger Peng Yu, and Mart́ın
Abadi. Host fingerprinting and tracking on the web: Privacy and se-
curity implications. In 19th Annual Network and Distributed System
Security Symposium, NDSS 2012, San Diego, California, USA, Febru-
ary 5-8, 2012, February 2012.

23


	Introduction
	Browser Fingerprinting
	Limiting Browser Fingerprinting
	General Approaches
	Challenges
	Misuse of Browser Features
	Detection


	User-based Countermeasures
	Browser Choice and Configuration
	Browser Extensions
	Limitations

	Browser-based Countermeasures
	Reducing the Fingerprinting Surface
	Context-based API access control 
	Deprecate/Limit Unnecessary APIs
	Alerts and Prompts
	Reduction in API accuracy
	Secure Data Handling
	Challenges

	Making Browser Fingerprinting Unnecessary?
	A Different Approach
	Configuring Identifiers
	UBI and Cookies
	Privacy Considerations
	Possible Issues

	Conclusions
	Browsers with Fingerprinting-Resisting Features
	A Possible Role for Regulation
	Final Remarks


