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Abstract

In infrared images, the pixels representing the objects are hidden in a large number of background pixels with low contrast. Several
effective contrast enhancement techniques exist in the state of the art today, however they cause the noise level added to the
images to increase. The improvement of contrast is an indispensable procedure for the analysis of infrared images, due to the
scarce temperature difference between the objects and the background, captured by the surveillance systems using infrared sensors.
Therefore, a contrast enhancement algorithm for infrared imaging based on histogram equalization using clipping is presented in
this article. The proposed algorithm divides the histogram into 4 subhistograms, then each subhistogram is modified with a cut
limit based on the size of the subhistogram in order to limit the improvement of the contrast. The experimental results prove that
the algorithm improves the contrast of infrared images by 99%, especially the contrast between the objects and the background of
the infrared images preserving the mean brightness and decreasing the aggregate noise level of them. With the proposed algorithm,
the background of the infrared image is restricted while the objects are visually contrasted.
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1. Introduction

In general, the infrared images have a low contrast but a
highly blurred background, so the detail information of the ob-
jects is easily hidden in the background, making it difficult to
distinguish the object from the background [1–4]. This is be-
cause the infrared image sensor is sensitive to the variation of
the temperature of the image, affecting the quality of the im-
ages obtained and blurring the regions of interest in the infrared
image. The gray values of the regions of interest are bright or
dark, which do not differ from the regions around them. There-
fore, the improvement in the infrared image is very important
and necessary.

In order to improve the contrast of infrared images [5–11],
the dynamic range of gray levels of the image needs to be ex-
tended. Although contrast enhancement techniques efficiently
increase the contrast level of images, the common issue they
have is that they make the background noise of the image be
amplified while the details of the objects are restricted. In other
words, they mostly produce a high image distortion by adding
an important level of noise to the image, making it hard to watch
the objects details clearly, they also excessively alters the aver-
age brightness of the images and increases the index of fuzzi-
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ness causing the images to be more confusing and obtain an
unnatural aspect.

In the literature there are several contrast enhancement tech-
niques based on histogram equalization [12–18] designed to im-
prove the image contrast level, often at the cost of brightness
preservation or signal to noise ratio. Another group of tech-
niques use gamma-based correction to improve contrast [19–
21], and exhibit a trade-off similar to histogram equalization
methods.

This paper proposes an improved version of the method BP-
CLBHE [17] called Quadri-Histogram Equalization with Lim-
ited Contrast for Infrared Images (QHELC-IR), such that the
level of noise added can be minimized and the average bright-
ness is better preserved. The algorithm can be used in appli-
cations of surveillance camera systems and automobiles to im-
prove the contrast of infrared images effectively. Among con-
trast enhancement methods for infrared images there is a tech-
nique called IRHE2PL and proposed by Kun Liang et al. [4],
which is one of the techniques whose results we compare to the
proposed QHELC-IR results.

The article is organized as follows, in the Section 2 is pre-
sented and discussed about the QHELC-IR. The experimental
results are presented in the Section 3 and the Section 4 presents
the conclusion of the work.
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Figure 1: Global histogram of a random image.

2. Quadri-Histogram Equalization with Limited Contrast
for Infrared Images

BPCLBHE uses two techniques to improve contrast. The
first technique is the segmentation of the histogram using the
mean threshold, which leads to the preservation of the mean
brightness. The second technique is the histogram clipping,
which entails maximizing the entropy to control the contrast
enhancement rate. In the proposed method, the clipping and
equalization of the histogram are performed in 4 segments to
obtain a better preservation of average brightness while min-
imizing the contrast enhancement. This is achieved by first
dividing the global histogram into 2 subhistograms, the lower
subhistogram and the upper subhistogram. Then the lower and
upper subhistograms are again divided into two subhistograms,
thus segregating the histogram into 4 parts.

We think of the process of dividing the histogram into two
parts as a simple procedure to independently equalize the fore-
ground and the background of the image. Despite the fact that
histograms do not provide a topological mapping for the pixel
intensities, several approaches have used histogram threshold-
ing to segment images [31–33]. These methods focus on a sim-
ple idea: in order for the background and foreground images
to be distinguishable, one must be lighter and the other darker.
To illustrate, we can assume that both image sections, back-
ground and foreground, come from Gaussian distributions [32].
Naturally, this approach converts the histogram to a mixture of
Gaussians, where proper segmentation implies a fuzzy classi-
fication of the intensities [31]. However, the usage of a hard
threshold is sufficient to improve simultaneously the contrast
of the background and foreground of the image as shown by
several methods in the literature [22–25] that use bi-histogram
equalization to enhance the contrast of the image while preserv-
ing the brightness.

Our idea is that we can take this procedure one step fur-
ther: split the background into a background-background and a
background-foreground, and the foreground into a foreground-
background and foreground-foreground. The additional divi-
sion aims to allow a better preservation of brightness, while
maintaining the potential to improve the image contrast. Fol-
lowing this reasoning, the number of partitions are the different
powers of 2 and the next step would require eight windows,
which would only allow a minimal improvement in contrast.

Figure 2: Global histogram after the first division.

Using the histogram as the input space, each pixel is an ele-
ment which lives in a 1-D space. Therefore, following the in-
terpretation of the image as a mixture of Gaussians, we should
be able to identify clusters of pixel intensities, which represent
each Gaussian in the mixture. Pixels clustered around the mean
colors within the histogram will belong to each image section:
background and foreground. We perform the clustering with
the well known k-means algorithm [26] (for more details see
Section 3.2).

The first step of our proposal is to calculate the threshold
S P in the global image histogram by using the k-means algo-
rithm, where the centroids are initialized with the mean his-
togram value. Then, the histogram is separated into two sub-
histograms, the lower subhistogram HL, and the upper subhis-
togram HU . The subhistogram HL contains the values of in-
tensities that are found from the minimum level of gray in the
image lMIN up to S P, while the subhistogram HU contains the
intensities values that are from S P1 + 1 up to the maximum
level of gray in the image lMAX . In Figure 1 a graphic example
of a global histogram of an image is shown and in Figure 2 the
global histogram after the first segmentation is illustrated. The
lowest effective intensity within the image is lMIN , that is, the
lowest intensity within the histogram that appears at least once
in the image, so lMAX represents the maximum effective inten-
sity found in the image, that is, the greater intensity within the
histogram that appears at least once in the image.

Once the lower and upper subhistograms are obtained, the
thresholds of both subhistograms are calculated analogously
with k-means, where the centroids are initialized with the mean
subhistogram value. The lower and upper subhistograms are
again separated into two subhistograms using S PL and S PU
as cut points, respectively, following the same procedure with
which the global histogram was separated. These values serve
to separate both subhistograms HL and HU in two subhis-
tograms: HL1 and HL2 on intensity S PL, and HU1 and HU2 on
intensity S PU respectively. Formally, the four subhistograms
Hi, with i ∈ {L1, L2,U1,U2} are defined as:

Hi =
{
H(q)| q ∈ Ri

}
, (1)

where Ri is the range of intensities of each subinterval, in
particular RL1 = [0, S PL], RL2 = [S PL + 1, S P], RU1 =

[S P + 1, S PU], and RU2 = [S PU + 1, 255], as illustrated in
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Figure 3: Global histogram after the second division.

Figure 4: Global histogram with calculated cutting limits.

Figure 3.
To control the over improvement and obtain a natural appear-

ance, we use the trimming technique to modify the 4 subhis-
tograms. Following the ideas from BPCLBHE, we find cut-off

limits for each subhistogram, and then redistribute the excess
pixels among the other intensities in the subhistogram.

First, we calculate the cut-off limits CLi (illustrated in Figure
4) as:

CLi =

⌈
Ni

Ii

⌉
+ round

(
γ ×

(
Ni −

Ni

Ii

))
(2)

where d e is the ceil function which rounds up the number to the
closest integer, γ ∈ R with 0 ≤ γ ≤ 1 is a parameter to control
the contrast, Ii is the length of each interval Ri, and Ni is the
number of pixels within the subinterval Hi, calculated as:

Ni =
∑
q∈Ri

Hi(q). (3)

Then, we compute the total numbers of pixels that exceed the
cut-off limit for each level of gray in each subhistogram Ti, as:

Ti =
∑
q∈Ri

max(Hi(q) −CLi, 0), (4)

Next, the average increment AIi for each level of gray for the
subhistogram Hi is calculated as:

AIi =

⌊
Ti

Ii

⌋
, (5)

where b c is the floor function which rounds down the number
to the closest integer.

Finally, we use the cut-off limit CL and the average increase
AI to trim each subhistogram and redistribute the excess pixels
in each gray level. The trimmed subhistograms H′i are calcu-
lated as:

H′i (q) =

{
CLi if Hi(q) > CLi − AIi

Hi(q) + AIi otherwise ∀q ∈ Ri. (6)

Figure 5 illustrates how the histogram remains after being
trimmed.

Figure 5: Histogram after the modifications made by the calculated limits.

Once the process of modifying the histogram has finished, we
proceed to equalize each trimmed subhistogram independently
according to the equation of HE:

ei(q) = Xin f + (Xsup − Xin f ) × ci(q), q = [Xin f , Xsup], (7)

where ei is the equalization function that will be used to replace
the gray levels in Hi, ci is the accumulated density function,
given by:

ci(q) =

q∑
j=Xin f

pi( j), (8)

where pi is the probability of occurrence of the intensity of gray
q in H′i , calculated as:

pi(q) =
H′i (q)

Ni
, (9)

Xin f and Xsup are the upper and lower limits of the subhistogram
range, respectively, and q is the gray level.

Algorithm 1 describes in summary the procedure of the pro-
posed method. It receives the image to be improved and the
value for the parameter γ, which will be used as input data, and
returns an improved resulting image in contrast.

The following section presents the experimental results, car-
rying out a comparative analysis between the existing methods
in the state of the art and the proposed method.

3. Experimental Results

In this section, comparative analyzes are presented between
the proposed QHELC-IR method and the techniques: the his-
togram equalization (HE) [14], CLAHE [16], IRHE2PL [4],
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Algorithm 1 QHELC-IR

procedure
Step 0: The image f and the value of the γ parameter are

received as input data.
Step 1: The H histogram of the f image and the proba-

bility density function p(k) associated with H are obtained.
Step 2: We proceed to divide the histogram H using k-

means algorithm [26] to obtain the threshold S P, in this way
we obtain subhistograms HL and HU where the range for HL

goes from 0 to S P and the range for HU goes from S P1 + 1
to L − 1.

Step 3: We proceed to divide the subhistogram HL using
the k-means algorithm [26] to obtain the threshold S PL, in
this way we obtain the subhistograms HL1 and HL2 where the
range for HL1 goes from 0 to S PL and the range of HL2 goes
from S PL + 1 to S P.

Step 4: We proceed to divide the subhistogram HU using
the k-means algorithm [26] to obtain the threshold S PU, in
this way we obtain the subhistograms HU1 and HU2 where
the range for HU1 goes from S P + 1 to S PU and the range of
HU2 goes from S PU + 1 to L − 1.

Step 5: We proceed to calculate the values that are used
to modify the histogram. This is done for each subhistogram
as follows:

1. The cutoff values CLL1, CLL2, CLU1 and CLU2 are ob-
tained as indicated in Equation (2). For subhistograms
HL1 and HU1, cutoff limits CLL1 and CLU1 are used, re-
spectively. For the subhistograms HL2 and HU2 we use
CLL2 and CLU2, correspondingly.

2. The total numbers of pixels which exceed the cutoff

limit T is calculated as indicated in Equation (4). Note
that this is calculated for each level of gray in each sub-
histogram.

3. The average increments AI per subhistogram are calcu-
lated as indicated by Equation (5). The T values calcu-
lated above are used.

Step 6: The H histogram is modified as H′ using Equa-
tion (6) for all four subhistograms.

Step 7: Once the histogram is modified, we proceed to
equalize HL1, HL2, HU1 and HU2 with Equation (7). This
function will be used to replace the intensities of the original
image in order to obtain the equalized image f ′.

AGCWD [19], IEGAGC [20] and BPCLBHE [17]. Seven met-
rics were used to determine the validity of the proposed algo-
rithm. They are:

1. The contrast [27] is defined as:

C =

√√√L−1∑
q=0

(q − E( f ))2 × p(q), (10)

where E( f ) represents the mean brightness of the image.
When the value of the contrast of the result image E( f ′)

is greater than the value of the contrast of the input image,
then there is an improvement.

2. Absolute Mean Brightness Error (AMBE) [28], which
measures the alteration of the average brightness of the
image, is given by the equation:

AMBE = |E( f ) − E( f ′)|, (11)

where f and f ′ represent the input image and the result
image, respectively, E( f ) and E( f ′) represent the average
brightness of the input image and the result image, respec-
tively . The smaller the value of the AMBE, the better is
the preservation of the brightness of the image.

3. The Contrast/Original Contrast Ratio (CR): This metric
measures whether the initial contrast of an image is im-
proved. If the value is greater than 1, then the image ob-
tained an increase in contrast.

4. The AMBE to Contrast/Original Contrast Ratio (A/CR):
This metric quantifies the distortion of the average bright-
ness needed for a given improvement in contrast. The
lower the value, the better the preservation of the average
brightness.

5. The execution time of the method, it is given in millisec-
onds.

6. Peak Signal to Noise Ratio (PSNR) [29], given an input
image f (i, j) of M × N pixels and a reconstructed image
f ′(i, j), indicates the signal-to-noise ratio of f ′ compared
to f . The PSNR is given by:

PS NR = 10 log10

[
(L − 1)2

MS E

]
, (12)

where the Mean Squared Error (MSE) is given by:

MS E =

∑M
i=1

∑N
j=1[ f (i, j) − f ′(i, j)]2

M × N
(13)

The higher the value of the PSNR, the lower the noise in-
troduced in the image, and therefore the quality of the re-
sulting image is not affected.

7. The linear index of fuzziness is based on the analysis of
spatial domain, it has been widely used to quantitatively
compare the improvement performance of different algo-
rithms. The ambiguity in an image is measured with this
index denoted by γ and defined as:

δ( f ) =
2

M × N

M∑
i=1

N∑
j=1

min(r(i, j), (1 − r(i, j))), (14)

r(i, j) = sin(
π

2
× (1 −

f (i, j)
fmax

)), (15)

where f (i, j) and fmax represent the gray level of the pixel
(i, j) and the maximum gray level of an image f with size
M × N, respectively. The smaller the value of δ, the better
the performance of the image improvement.

The experiments that compose this section are:
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• In subsection 3.1, Experiment 1, which analyses the
AMBE, the Contrast/Original Contrast Ratio and the
AMBE to Contrast/Original Contrast Ratio for different
values of contrast that the proposed technique and BP-
CLBHE can produce, varying the value of γ. The objective
is to identify the behaviour of the mean brightness for each
level of contrast.

• In subsection 3.2, Experiment 2, which compares differ-
ent clustering methods to segment the histogram found in
the literature. We consider Contrast, AMBE and execution
time as evaluation metrics. The aim is to determine which
method has the best performance considering the metrics
mentioned above and the complexity of each method.

• In subsection 3.3, Experiment 3, which compares
QHELC-IR with other techniques of the literature, con-
sidering time, contrast, AMBE, PSNR and Fuzziness as
evaluation metrics. The aim is to determine the level of
competitiveness of the proposed method in each of these
metrics and the advantages it has over other techniques.

For these experiments we used the public database ICRA
2014 - Thermal Infrared Dataset [30]. The dataset contains 100
8-bit images, all equal in size (324 × 256 px). The algorithms
were implemented in ImageJ version 1.48 and were executed on
a personal computer with Intel Core i3-M350 processor of 2.27
GHz, 4 GB of RAM and Ubuntu 14.04 LTS 64 bits operating
system.

3.1. Experiment 1: Sensitivity analysis of the contrast

In this experiment, we produce a comparative analysis of
AMBE, Contrast/Original Contrast Ratio, and the AMBE to
Contrast/Original Contrast Ratio for a range of contrast en-
hancements given by varying the γ parameter from 0 to 1 in
both techniques: QHELC-IR and BPCLBHE.

Table 1 shows different contrast levels that can be reached by
QHELC-IR and BPCLBHE. Both methods tends to increment
the CR value by increasing the γ parameter from 0 to 1. There
is an overlap between the ranges of the produced contrast lev-
els where we could compare and analyze the other metrics for
both methods. We can see that QHELC-IR has a better per-
formance than BPCLBHE in terms of A/CR, which means that
QHELC-IR adds less distortion to the images than BPCLBHE
by producing virtually the same contrast levels. Also, while the
QHELC-IR technique reaches smaller contrast levels and thus
it gets better AMBE values, the BPCLBHE technique obtains
higher contrast improvements and makes the images lose more
natural brightness.

QHELC-IR BPCLBHE
γ C A CR A/CR γ C A CR A/CR
0 43.24 0.74 1.04 0.71 - - - - -

0.001 44.05 1.07 1.06 1.01 - - - - -
0.0024 45.17 1.54 1.09 1.41 - - - - -
0.0038 46.28 2.01 1.11 1.80 - - - - -
0.0048 47.06 2.34 1.13 2.07 - - - - -
0.006 47.99 2.73 1.16 2.36 0 47.53 2.87 1.14 2.51
0.008 49.49 3.37 1.19 2.82 0.0005 49.05 3.71 1.18 3.14
0.009 50.21 3.68 1.21 3.04 0.0008 49.94 4.20 1.20 3.49
0.01 50.88 3.96 1.23 3.23 0.001 50.51 4.52 1.22 3.71

0.012 52.15 4.48 1.26 3.57 0.0015 51.88 5.28 1.25 4.22
0.014 53.28 4.95 1.28 3.86 0.002 53.19 5.99 1.28 4.68
0.015 53.77 5.16 1.29 3.98 0.0024 54.19 6.54 1.31 5.01
0.018 55.12 5.71 1.33 4.30 0.0027 54.91 6.95 1.32 5.25
0.02 55.88 6.02 1.35 4.47 0.003 55.59 7.32 1.34 5.47

0.024 57.12 6.51 1.38 4.73 0.0038 57.30 8.25 1.38 5.98
0.026 57.64 6.72 1.39 4.84 0.004 57.70 8.47 1.39 6.09
0.03 58.53 7.09 1.41 5.03 0.0048 59.16 9.30 1.42 6.52
0.04 60.11 7.75 1.45 5.35 0.005 59.52 9.50 1.43 6.63

1 61.13 8.63 1.47 5.86 0.006 61.13 10.43 1.47 7.08
- - - - - 0.0068 62.29 11.11 1.50 7.40
- - - - - 0.007 62.55 11.25 1.51 7.47
- - - - - 1 73.38 19.53 1.77 11.05

Table 1: Averages of Contrast (C), AMBE (A), CR and A/CR

(a)

(b) (c)

(d) (e)

Figure 6: Image 63 from the public database and its respective equaliza-
tions. (a) Original, (b) QHELC-IR with γ=0.006, (c) BPCLBHE with γ=0,
(d) QHELC-IR with γ=1, (e) BPCLBHE with γ=1.

Figure 6 shows an image from the database equalized with
QHELC-IR and BPCLBHE. Subfigures (b) and (c) are the im-
age equalized by QHELC-IR with γ=0.006 and the compara-
ble image equalized by BPCLBHE with γ=0, respectively. It
can be seen that the grass on the right side of the image equal-
ized with BPCLBHE blends into the background more than the
grass in the image equalized with QHELC-IR. This blending
gets more evident in the images equalized with γ=1, which
produces a higher contrast level for both methods. QHELC-
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IR method keeps the natural appearance in a better way even
when the alteration is the highest.

3.2. Experiment 2: Histogram partitioning methods

Previous authors have used statistic measures to divide the
histogram into two regions (in particular the average intensity
[22, 23]). Our approach adds in this step the versatility of a
clustering technique to separate the histogram into naturally oc-
curring groups of intensities. This allows a better segmentation
of the histogram in case of an imbalance of light-dark pixels.

The following experiment aims to analyze the benefits and
drawbacks of several well-known clustering methods. We com-
pare the usage of k-means [26], Expectation Maximization [35],
Hierarchical Clustering [36], and finally an extension of the
classic k-means known as k-means++ [34]. The k-means al-
gorithm is iterative: in each iteration, elements are assigned
to the cluster from closest centroid (which are points from the
same space as the elements), and then new centroids are calcu-
lated with the average position of each element of the cluster.
The algorithm iterates until convergence or a limited amount
of steps. The k-means++ algorithm intends to produce well
distributed centroids, by selecting centroids iteratively and pri-
oritizes points farther from the already selected centroids. Ex-
pectation Maximization is an iterative method that estimates the
latent variables of a mixture of Gaussians model using the max-
imum likelihood estimates. And finally, we use an agglomera-
tive Hierarchical Clustering with a simple Euclidean distance
that iteratively combines the clusters with the smallest average
pairwise distances, until reaching the desired amount of clus-
ters.

k-means k-means++ EM Hierarchical
C A C A C A C A

41.38 0.77 41.16 1.10 - - - -
42.22 1.13 41.70 1.36 42.03 1.52 41.78 1.08
43.36 1.63 42.76 1.89 43.05 2.04 42.93 1.60
50.99 4.86 51.03 5.87 50.76 5.79 51.24 5.25
54.17 6.21 54.28 7.70 54.03 7.28 53.92 6.33
59.45 9.05 - - 59.76 10.15 59.18 8.38

- - - - - - 60.70 9.51

Table 2: Contrast (C) and AMBE (A) results averaged for the 84 images of the
public database, which were successfully clustered by all methods.

Table 2 shows the average AMBE and Contrast obtained for
the different methods, and the range in which they operate. We
can see that the AMBE for the k-means method is generally
lower than for the other clustering methods, which is the main
concern of our proposal (only the Hierarchical Clustering ap-
pears directly comparable, k-means++ performs slightly worse,
and EM has the lowest performance). Additionally all methods
produced comparable fuzziness values, ranging from 0.244 to
0.264 (not shown in the table to avoid clutter). Furthermore, we
notice that EM fails to properly divide all histograms into four
clusters, thus reducing the size of the experimental setup.

Methods Time Images AMBE Contrast
(ms) (%) min max min max

k-means 6.098 100 0.77 9.05 41.38 59.45
k-means++ 6.090 100 1.10 7.70 41.16 54.28
EM 18811.57 84 1.52 10.15 42.03 59.76
Hierarchical 92496.30 100 1.08 9.51 41.78 60.70

Table 3: Averaged results for the 100 images of the public database

Table 3 shows a summary of Table 2 and additional de-
tails about the performance of the clustering algorithms. This
shows that k-means not only produces the best results regard-
ing AMBE, but is also a fast classification method in particular
when compared to EM or Hierarchical clustering.

Following these results, we consider k-means similar in
speed and slightly superior in performance compared to k-
means++, similar in performance and very superior in speed
when compared to the Hierarchical Clustering, and superior
in both measures when compared to EM (which also suffers
problems in classification for our purposes). Additionally, we
also consider convenient to set k-means as the default cluster-
ing method of our proposal to allow easy implementations of
our algorithm.

3.3. Experiment 3: Comparison of QHELC-IR with other
methods of literature

In this experiment the proposed method was compared with
other techniques, in addition to BPCLBHE, existing in the lit-
erature: HE, CLAHE, IRHE2PL, AGCWD and IEGAGC.

Methods T(ms) AMBE PSNR Fuzziness Contrast
Original 0.258 41.52
HE 0.633 54.226 12.581 0.403 73.136
AGCWD 3.16 38.501 14.789 0.350 63.375
CLAHE 954.614 23.18 17.082 0.35 56.94
IRHE2PL 0.787 29.343 25.584 0.342 59.153
IEGAGC 23.246 1.401 34.544 0.263 42.142

BPCLBHE 1.281 2.869 31.336 0.251 47.528
19.53 16.171 0.278 73.38

QHELC-IR 6.151 0.736 40.069 0.257 43.236
8.63 20.596 0.257 61.13

Table 4: Averaged results for the 100 images of the public database. The high-
lighted numbers represent the top 2 performing algorithms on each measure.

Table 4 shows the average of the metrics of the literature
techniques: HE, CLAHE, IRHE2PL, AGCWD, IEGAGC and
BPCLBHE, and of the proposed QHELC-IR technique. For the
QHELC-IR and BPCLBHE methods, the results of γ = 0 (top
row) and γ = 1 (bottom row) were taken to illustrate the range
of their performance. Furthermore, Tables 5, 6, 7 and 8 con-
tain individual results of five images, of the public database,
equalized with the proposal and the literature techniques men-
tioned above. Contrast, AMBE, PSNR and Fuzziness results
are shown in these tables, respectively.
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Methods Image 15 Image 21 Image 73 Image 78 Image 94
Original 56.87 33.13 28.40 28.87 64.19
HE 73.56 72.85 73.51 73.01 73.36
AGCWD 70.10 75.61 61.68 61.30 63.34
CLAHE 58.34 56.68 55.55 49.67 64.68
IRHE2PL 62.28 66.50 46.51 44.02 82.50
IEGAGC 57.03 34.70 29.74 29.33 64.29
BPCLBHE 66.37 40.42 34.16 34.20 69.95
QHELC-IR 59.17 35.19 30.27 30.85 65.60

Table 5: Contrast for particular images of the public database. The highlighted
numbers represent the top 2 performing algorithms.

Methods Image 15 Image 21 Image 73 Image 78 Image 94
HE 4.80 79.38 66.68 87.65 18.28
AGCWD 37.69 49.22 53.28 38.69 22.18
CLAHE 4.27 36.66 39.59 40.49 20.11
IRHE2PL 12.48 54.40 32.62 24.38 33.19
IEGAGC 3.06 1.20 1.55 1.36 2.65
BPCLBHE 2.18 3.08 1.57 2.82 9.03
QHELC-IR 0.46 0.25 0.57 0.92 0.89

Table 6: AMBE for particular images of the public database. The highlighted
numbers represent the top 2 performing algorithms.

Methods Image 15 Image 21 Image 73 Image 78 Image 94
HE 20.65 9.08 9.99 8.19 18.44
AGCWD 15.96 11.87 12.15 14.03 19.80
CLAHE 21.27 15.10 14.00 14.48 19.12
IRHE2PL 25.45 12.01 16.69 18.94 16.53
IEGAGC 30.05 33.13 32.30 36.19 29.38
BPCLBHE 28.22 30.13 32.44 32.38 26.98
QHELC-IR 37.83 40.65 40.99 40.11 37.15

Table 7: PSNR for particular images of the public database. The highlighted
numbers represent the top 2 performing algorithms.

Methods Image 15 Image 21 Image 73 Image 78 Image 94
HE 0.40 0.41 0.40 0.41 0.40
AGCWD 0.33 0.28 0.43 0.28 0.40
CLAHE 0.48 0.34 0.39 0.28 0.38
IRHE2PL 0.44 0.34 0.39 0.22 0.23
IEGAGC 0.51 0.141 0.183 0.100 0.37
BPCLBHE 0.45 0.16 0.19 0.11 0.33
QHELC-IR 0.50 0.139 0.179 0.101 0.36

Table 8: Fuzziness for particular images of the public database. The highlighted
numbers represent the top 2 performing algorithms.

The HE and AGCWD methods achieve contrast enhance-
ments higher than the maximum attainable for our method, but
they do so by making images much brighter (notice the realy
high AMBE values). The HE also adds a significant amount of
noise (low PSNR value). CLAHE and IRHE2PL produce a con-
trast improvements already within the range of our method but

add more brightness and noise to the images (see Figure 7). On
the other hand, IEGAGC is able to produce a moderate amount
of contrast enhancement (less than the minimum produced by
our method) for a high preservation in mean brightness (sec-
ond best after our method). Finally, the techniques BPCLBHE
and QHELC-IR, based on histogram clipping, produce a range
of results and are able to achieve a moderate improvement in
contrast and high preservation of brightness and blur, to higher
improvements in contrast at a significant lower cost of bright-
ness and blur compared to the other methods. However, our
proposal, QHELC-IR, preserves the mean brightness in a better
way because it adds a minimal amount of noise to the images,
thus obtaining that the images maintain their naturalness having
been improved in terms of contrast.

Figure 7: Comparison between AMBE vs Contrast. The points show the aver-
age AMBE and Contrast values for the database. The QHELC and BPCLBHE
methods are parametric and show several possible combinations.

Figure 7 uses data from Tables 1 and 4, and shows the trade-
off between AMBE and Contrast for all the methods. The fig-
ure shows the expected increase in brightness alteration (and
a decrease in image quality) for a higher improvement in con-
trast. The best performances are located to the lower right (bet-
ter AMBE is lower, better contrast is to the right). Thus, each
point dominates (is better than) all points located above and to
the left in the figure. We can see that QHELC-IR (red) domi-
nates all the other methods throughout its domain. That means
that the proposed method obtains the best AMBE to Contrast
ratio.

Figures 8 to 12 show excerpts of equalized images from the
database to illustrate visual differences between the analyzed
methods. We can see that the HE (b) and AGCWD (e) methods
overexpose the light details introducing high brightness noise
to the image. In particular Figure 12 shows how the HE (b),
CLAHE (c) and IRHE2PL (d) give the shadows an unnatu-
ral shading. The IEGAGC method (f) adds a frame-like effect
around many images which is noticeable in Figure 12 – i.e. the
shadow becomes lighter at the bottom and left edges, while no
such effect is present in the original (a). We can also notice that
BPCLBHE (g) is the most comparable to our method (h), as
they both enhance borders and details with minimal distortion
to the original image (see Figures 9, 10 and 11). In Figure 8, the
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effects of BPCLBHE and our method on the window frame are
pretty similar, however BPCLBHE darkens both the plant and
the background, while our method keeps the plant with its orig-
inal color and darkens the background to increase the contrast.
We believe that these visual characteristics match the expecta-
tions given by our design principles and the numerical results
from the previous experiments.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 8: Excerpt from image 15 of the public database and its respective equal-
izations. (a) Original, (b) HE, (c) CLAHE, (d) IRHE2PL, (e) AGCWD, (f)
IEGAGC, (g) BPCLBHE, (h) QHELC-IR.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 9: Excerpt from image 21 of the public database and its respective equal-
izations. (a) Original, (b) HE, (c) CLAHE, (d) IRHE2PL, (e) AGCWD, (f)
IEGAGC, (g) BPCLBHE, (h) QHELC-IR.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 10: Excerpt from image 73 of the public database and its respective
equalizations. (a) Original, (b) HE, (c) CLAHE, (d) IRHE2PL, (e) AGCWD,
(f) IEGAGC, (g) BPCLBHE, (h) QHELC-IR.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 11: Excerpt from image 78 of the public database and its respective
equalizations. (a) Original, (b) HE, (c) CLAHE, (d) IRHE2PL, (e) AGCWD,
(f) IEGAGC, (g) BPCLBHE, (h) QHELC-IR.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 12: Excerpt from image 94 of the public database and its respective
equalizations. (a) Original, (b) HE, (c) CLAHE, (d) IRHE2PL, (e) AGCWD,
(f) IEGAGC, (g) BPCLBHE, (h) QHELC-IR.

4. Conclusion

In this work we propose an algorithm of contrast improve-
ment based on the segmentation and clipping of an histogram.
The histogram segmentation is efficiently produced by clus-
tering techniques, which allow for natural agglomeration of
pixel intensities. The cut-off limits follow a well established
paradigm to limit the enhancement on each subhistogram. This
algorithm is efficient to improve the contrast and at the same
time preserves the average brightness of infrared images.

The experiments based on aerial thermal images show that
the AMBE is strongly linked to the improvement of contrast
– i.e. the greater the improvement of contrast, the greater the
alteration of the mean brightness of the image. In particular,
the experiments show that our method obtains a better preser-
vation of mean brightness throughout its operative range when
compared to its closest competitor BPCLBHE. We observe that
the segmentation and clipping algorithm is able to restrict the
background noise while improving the contrast of the image,
and we suggest this is the main feature that differentiates our
method from others.

In general, the proposed algorithm has a significant contrast
enhancement range, and outperforms state-of-the-art methods
at preserving the average brightness and reducing the amount
of aggregate noise of the infrared images throughout all its con-
trast range.
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