1	Prevalence of Nosema microsporidians in commercial bumblebees (Bombus
2	terrestris) is not related to the intensity of their use at the landscape scale
3	Alejandro Trillo ¹ , Mark J. F. Brown ² and Montserrat Vilà ¹
4	Estación Biológica de Doñana (EBD-CSIC), Avda. Américo Vespucio 26, Isla de la
5	Cartuja, E-41092, Sevilla, Spain
6	² School of Biological Sciences, Royal Holloway University of London, Egham TW20
7	0EX, UK
8	
9	Corresponding author: A. Trillo
10	atrilloig@gmail.com
11	

12 Abstract – The use of commercial bumblebees to aid crop pollination may result in 13 overcrowding of agricultural landscapes by pollinators. Consequently, transmission of parasites between pollinators via shared flowers may be substantial. Here we assessed 14 15 the initial infection status of commercial Bombus terrestris colonies, and then explored 16 spatial and seasonal influences on changes in parasite prevalence across a landscape where bumblebee colonies are intensively used to pollinate berry crops in SW Spain. 17 Colonies were placed inside strawberry greenhouse crops and in woodlands adjacent 18 and distant to crops in winter and in spring, as representative periods of high and low 19 20 use of colonies, respectively. Worker bumblebees were collected from colonies upon arrival from a producer and 30 days after being placed in the field. The abdomen of 21 each bumblebee was morphologically inspected for a range of internal parasites. Upon 22 23 arrival 71% of the colonies were infected by spores of Nosema. Three bumblebees from two colonies harbored A. bombi spores at the end of their placement in woodlands 24 25 adjacent to crops. Nosema colony prevalence did not change significantly either among 26 sites or between seasons. We found no evidence for the density of commercial B. terrestris impacting Nosema epidemiology in those commercial colonies, but our results 27 highlight the potential risk for parasites to be transmitted from commercial bumblebees 28 to native pollinators. 29

30

agricultural landscape / Apicystis bombi / Fragaria × ananassa / parasite

1. INTRODUCTION

32	In the last half century there has been an increase in the expansion of pollinator-
33	dependent crops (Aizen et al., 2008) that has required a parallel demand for
34	commercially produced bees (Potts et al., 2016). Bumblebees (Bombus sp.) started to be
35	commercially produced in Europe in the late 1980s, to replace the costly mechanical-
36	pollination of tomatoes (Solanum lycopersicum) (Ravestijn and Sande, 1991; Velthuis
37	and van Doorn, 2006). Quickly, bumblebee breeding techniques advanced and colonies
38	were mass-produced and transported worldwide, where they currently pollinate over 20
39	different pollinator-dependent crops. Over two million bumblebee colonies are
40	produced annually (Graystock, Blane, et al., 2016).
41	The use of commercial pollinators such as bumblebees to aid crop pollination is not free
42	of environmental risks. For instance, queens of commercial bumblebees have become
43	established in many parts of the world (Matsumura et al., 2004; Morales et al., 2013),
44	and there is empirical evidence showing competition for nest sites with other native
45	bumblebee queens in the lab (Ono, 1997) and in the field (Inoue et al., 2008). In
46	addition, commercial bumblebees may compete for food with other native pollinators
47	(Matsumura et al., 2004; Morales et al., 2013), as well as promote the spread of
48	parasites via shared flowers (Colla et al., 2006; Meeus et al., 2011; Schmid-Hempel et
49	al., 2014).
50	Several bee parasite species have been found in commercial bumblebee colonies. In
51	1999, Goka et al. (2000) found for the first time the presence of a parasite, Locustacarus
52	buchneri, in commercially produced Bombus terrestris colonies upon arrival in Japan
53	from an overseas supplier. The presence of this parasite has been linked to shorter

54	lifespan (Otterstatter and Whidden, 2004) and changes in behavior of bumblebees
55	(Otterstatter et al., 2005). Further studies have reported that commercial bumblebee
56	colonies frequently have a range of bumblebee parasites (Graystock et al., 2013a;
57	Murray et al., 2013) and even honeybee parasites (Graystock et al., 2013a), with the
58	latter probably via the consumption of honeybee pollen by reared bumblebees (Goulson
59	and Hughes, 2015). Importantly, the use of commercial pollinators in crops produces
60	high densities of pollinators not only in the agricultural fields or greenhouses, but in
61	adjacent natural areas as well (Ishii et al., 2008; González-Varo and Vilà, 2017; Trillo et
62	al., 2018). Presumably, in those areas, the rate of parasite transmission among
63	pollinators will rise, because high densities of hosts provide ideal conditions for the
64	spread of parasites (Arneberg et al., 1998). In fact, several studies have shown, through
65	the collection of free-flying bumblebees, high prevalence of parasites in sites adjacent to
66	greenhouses where commercial bumblebees are used compared with sites distant to
67	those greenhouses (Colla et al., 2006; Murray et al., 2013) or in greenhouses absent of
68	such commercial bumblebees (Graystock et al., 2014), although there is also evidence
69	against this (Whitehorn et al., 2013).

70 To partially reduce the impact of commercial bumblebees on native pollinator populations and because healthy bumblebees may perform better, as is seen with 71 honeybees (Geslin et al., 2017), producers are under pressure to produce parasite-free 72 bumblebee colonies. In this study, we first examined whether commercially produced B. 73 terrestris colonies, used to pollinate berry crops in Huelva (SW Spain), carried parasites 74 upon arrival from a producer. We morphologically searched for five common internal 75 bee parasites: larvae of the family Conopidae and Braconidae, L. buchneri, Apicystis 76 77 bombi and parasites of the genus Nosema, which all potentially affect bumblebee health.

78	For instance, larvae of parasitic flies lead to bee death (Schmid-Hempel and Schmid-
79	Hempel, 1996), L. buchneri likely reduces lifespan of individual infected host
80	(Otterstatter and Whidden, 2004), A. bombi is linked to deterioration of the fat body
81	(Graystock, Meeus, et al., 2016; Macfarlane et al., 1995) and most Nosema species
82	reduce worker survival and colony size (Otti and Schmid-Hempel, 2007; Rutrecht and
83	Brown, 2009; Graystock et al., 2013a). We then experimentally tested spatial and
84	seasonal influences on changes in the prevalence of these parasites across a landscape
85	where bumblebee colonies are intensively used. Importantly, L. buchneri, A. bombi and
86	Nosema are likely to be transmitted among pollinators via shared flowers (Durrer and
87	Schmid-Hempel, 1994; Goka et al., 2006; Graystock et al., 2015). Colonies were placed
88	inside strawberry crops and in woodlands adjacent and distant to those crops in January
89	(winter) and again in April (spring), as representative periods of high and low use of
90	bumblebee colonies in berry crops, respectively. We expected parasite prevalence to be
91	highest with high densities of commercial bumblebees in the landscape, that is, 1)
92	higher levels of prevalence at sites inside and adjacent to greenhouse crops than distant,
93	and 2) higher levels in winter than in spring because of the greater use of colonies in
94	winter.

95 2. MATERIALS AND METHODS

96 2.1. Study system

The study was conducted in the Guadalquivir Valley in the province of Huelva (SW 97 Spain). In this region there are large intensively cultivated areas of berries (9,500 ha), 98 99 especially strawberries (~70% of the total area devoted to berry crops) (Freshuelva, 2015). Strawberries are cultivated in semi-open polytunnel greenhouses with open sides 100 from November to May. In order to aid crop pollination, farmers use commercial 101 102 bumblebees (Bombus terrestris). Notably, bumblebee colonies are especially used at the 103 beginning of the flowering period (i.e. in winter; personal observations) due to major revenues and worse weather conditions than in spring. The most common remaining 104 natural habitat patches across berry crops are woodlands composed of a rich flora of 105 entomophilous Mediterranean shrubs and herbs, which provide flowers throughout the 106 strawberry cultivation period (Herrera, 1988). 107

108 **2.2. Experimental design**

109 In 2015, we purchased 48 *B. t. terrestris* colonies from Koppert Biological Systems, one

of the main producers in Europe and specifically in this region. Each colony consisted

of a plastic box within a cardboard container, with syrup solution provided *ad libitum*.

112	Each c	olony	include	ed a o	queen	and /	~100	workers.
-----	--------	-------	---------	--------	-------	-------	------	----------

First, to quantify colony parasite prevalence, at the arrival of the colonies (period'before'), we collected 10 workers from each colony. Each worker was frozen in an

individual clean vial at -20 °C for later analyses.

116	Second, to investigate changes in colony parasite prevalence across the landscape, we
117	placed two colonies each in four strawberry crops ('inside') and in eight woodlands,
118	four adjacent to the selected strawberry crops (~50 m; 'adjacent') and four without
119	berry crops in the surrounding 2 km radius landscape ('distant') (Fig. 1). We chose a 2
120	km buffer radius because most bumblebee foraging flights do not exceed this distance
121	(Osborne et al., 2008). The surrounding landscape for inside and adjacent plots had a
122	high berry crop cover (overall mean \pm SE = 48 \pm 5.6%; see Table S1). Inside/adjacent
123	plots and distant plots are representative of contrasting landscapes in terms of
124	commercial bumblebee colony density. The density is high and absent in those
125	landscapes, respectively. In fact, commercial bumblebees are frequently observed in
126	landscapes with berry crop cover, rather than when berry crop cover is absent in the
127	landscapes (Trillo et al., 2019). The average (\pm SE) distance between adjacent and
128	distant woodland plots was 5903 ± 1038 m (range = $3.1-11.4$ km). This distance meets
129	independence criteria to avoid spatial pseudoreplication between non-paired plots.
130	Third, to investigate seasonal change effects, the experiment was conducted in January
131	('winter') and repeated in April ('spring'), as representative periods of high and low use
132	of bumblebee colonies in strawberry crops, respectively. Here, the climate is typically
133	Mediterranean with mild winters and warm springs (AEMET, 2015). These two seasons
134	also differ in wild floral resources. The flowering peak is in spring when the floral
135	richness and density are almost triple that in winter (Trillo et al., 2019). Wild pollinator
136	species occur as flowering plant species thrive (Herrera, 1988).
137	In each season, we placed two colonies of bumblebees in the center of each plot.
138	Bumblebees were allowed to forage for 30 days. In strawberry crops the two colonies

139 were hung between four separate greenhouses. The distance between the two colonies

within a plot was ~20 m. In woodland plots the two colonies were hidden in wooden
boxes to avoid predation. At the end of the experiment, we collected 10 bumblebee
workers per colony returning to it (period 'after') over two days using aerial nets.
Bumblebees were kept in individual clean vials with ice until arrival at the lab where
they were stored at -20 °C.

145 **2.3. Parasite screening**

The abdomen of each bumblebee was dissected and inspected under a magnifying lens 146 147 for larvae of parasitic conopid flies (Conopidae, Diptera) and braconid wasps of the genus Syntretus (Braconidae, Hymenoptera), and the air sacs were specifically inspected 148 for the tracheal mite *Locustacarus buchneri* (Podapolipidae) (Yoneda et al., 2008). 149 Then, a piece $(0.2 \text{ cm} \times 0.2 \text{ cm}, \text{ approx.})$ of the fat body was dissected out from each 150 bumblebee and mounted on a slide (note that the gut was not included for these 151 analyses). By screening only the fat body, we were able to confirm that we were 152 detecting true infections, not just passage through the gut by vectored spores. We 153 completely screened each slide at ×400 magnification for the presence of spores of the 154 155 neogregarine Apicystis bombi (Lipotrophidae) and microsporidians of the genus Nosema (Nosematidae). We estimated parasite prevalence (presence or absence) instead of 156 157 individual infection levels (abundance) because the latter is influenced by many confounding factors that drive infection intensity (Rutrecht and Brown, 2009). 158

159 **2.4. Statistical analyses**

Only *Nosema* infections (Table S2) were statistically analysed, because the remaining
parasites showed no or very low prevalence in the colonies (see results). *Nosema*

162 prevalence was calculated estimating the percentage of bumblebees infected taking into

163	account the 10 individuals collected per colony. A linear mixed model (LMM; Gaussian
164	error distribution based on homogeneity in the residuals) was used to analyse whether
165	changes in Nosema prevalence were related to our experimental setting. The difference
166	in Nosema prevalence in the colonies before and after being placed in the field was used
167	as the response variable. Season (winter/spring), plot type (inside, adjacent and distant),
168	and their interaction were included as fixed factors in the model, while study plot was
169	included as a random factor to account for the paired design between inside and
170	adjacent plots and the re-sampled plots in winter and in spring (see Table S3 for the R
171	code). All statistical analyses were conducted in R (v.3.1.3, R Core Team, 2014). We
172	used the package <i>lmerTest</i> (Kuznetsova et al., 2013) for the LMM and Satterthwaite's
173	approximations for F- and p- values.

175 **3. RESULTS**

In total, over the two seasons we screened 919 bumblebee workers. We missed one 176 177 colony and several individuals from other colonies due to low colony activity. On average (\pm SE) we collected 19.55 \pm 0.13 (range = 16–20) bumblebees per colony. 178 None of the bumblebees were infected by larvae of parasitic conopid flies (Conopidae, 179 Diptera), braconid wasps of the genus Syntretus (Braconidae, Hymenoptera), or the 180 tracheal mite, Locustacarus buchneri. The prevalence of Apicystis bombi was extremely 181 182 low; only three bumblebees harbored spores in their fat body, and these were collected from two colonies at the end of their placement in adjacent woodlands. 183 In contrast, spores of Nosema were found in 58.3% (14 out of 24 colonies) of colonies 184 in winter and in 83.3% (20 out of 24) in spring at the start of each experimental block, 185 that is, upon arrival from the producer prior to their placement in the field. The average 186 Nosema prevalence per colony in the before period was $14.0 \pm 3.4\%$ (mean \pm SE, 187 hereafter) in winter, and $19.7 \pm 3.2\%$ in spring. The average Nosema prevalence in the 188 after period was $10.2 \pm 2.3\%$ in winter and $26.4 \pm 6.6\%$ in spring. Neither the season (F₁) 189 $_{35} = 2.88$, p < 0.10) nor the distance (F_{2,19} = 0.25, p < 0.79) or their interaction (F_{2,35} = 0.50, 190 p < 0.61) had a significant effect on changes in *Nosema* colony prevalence between 191 192 periods (Fig. 2A and 2B).

194 **4. DISCUSSION**

The use of commercial bumblebees has been linked to the decline of several native 195 196 pollinator species (Cameron et al., 2011; Morales et al., 2013; Schmid-Hempel et al., 197 2014). Among the mechanisms behind this decline, parasite spillover from commercial to native pollinator populations may play a substantial role (Meeus et al., 2011). Mass 198 commercial breeding programs may facilitate the probability of parasite transmission 199 among hosts, as companies usually handle high densities of bumblebees in their 200 201 facilities. In parallel, the provision of ad libitum food may facilitate the reproduction of infected hosts (Brown et al., 2000). Furthermore, even in the case that commercial 202 bumblebees are parasite-free, they may act as reservoirs for parasites in the field, 203 through a spill-back mechanism, leading to an increase in parasite prevalence (Stout and 204 Morales, 2009; Meeus et al., 2011). 205 Upon arrival, we found no evidence for the presence of larvae of parasitic conopid flies 206 (Conopidae, Diptera) and braconid wasps of the genus Syntretus (Braconidae, 207 Hymenoptera), or the tracheal mite, Locustacarus buchneri, in the screened Bombus 208 209 *terrestris* colonies. Although the presence of larvae of parasitic insects has never been reported in commercial bumblebees, the tracheal mite, L. buchneri, was highly 210 211 prevalent at the end of the 20th century (Goka et al., 2000) spilling over to native bumblebees (Goka et al., 2006). However, it seems that producers have largely 212 eliminated this parasite from commercial bumblebee colonies (Goka et al., 2006; 213 Murray et al., 2013; although see Sachman-Ruiz et al., 2015). In addition, neither these 214 parasitoids nor the tracheal mite, L. buchneri, were observed in bumblebees from the 215 colonies after being placed in the field for a month. One explanation for this is that 216 217 parasitoids of bumblebees might be at low abundance in our study sites, because native

218	bumblebees (B. terrestris lusitanicus) are rare (Magrach et al., 2017; Trillo et al., 2019),
219	as they are at the limit of their distributional range (Goulson, 2010). In fact, in this
220	region, the density of commercial bumblebees is around four times greater than that of
221	native bumblebees (Trillo et al., 2019). Another possible and complementary
222	explanation for this low prevalence might be that when bumblebees are parasitized, they
223	desert their colony (Schmid-Hempel and Müller, 1991). In addition, even though L.
224	buchneri may be present in native bumblebees (although we note that there is no
225	information in Spain; Jabal-Uriel et al. 2017) it might be very difficult to detect parasite
226	spillover from native to managed bumblebees because native bumblebees are at very
227	low abundance, as described above.
228	Similarly, there was no evidence for the presence of the neogregarine Apicystis bombi
229	(Lipotrophidae) in the screened colonies upon arrival. However, three bumblebees were
230	found to be infected after having been placed in the field. In other regions, the parasite
231	A. bombi has been detected infecting commercial bumblebee colonies, although in a low
232	number of colonies (Graystock et al., 2013b; Murray et al., 2013; although again see
233	Sachman-Ruiz et al., 2015). Native bumblebees can host A. bombi (Jabal-Uriel et al.,
234	2017), but, as noted above, they are rare in our study region (Magrach et al., 2017;
235	Trillo et al., 2019). In contrast, thousands of commercial colonies from at least three
236	producers (Koppert, Biobest and Agrobio, personal observation) are used on an annual
237	basis. Therefore, it is more likely that other commercial bumblebees infected by A .
238	bombi transmitted the parasite to the bumblebee colonies we screened, rather than
239	native bumblebees, or, more parsimoniously, our initial screen failed to detect it in
240	arriving colonies.

In contrast, we found commercially produced bumblebee colonies to be heavily infected
with parasites of the genus *Nosema* upon arrival from the producer. Other studies have
also reported similar levels of prevalence with around three quarters of commercial
colonies infected (Graystock et al., 2013a; Murray et al., 2013). Unfortunately, our
methodology did not allow us to distinguish between the bumblebee parasite *N. bombi*and the honeybee parasite *N. ceranae*. Both can infect bumblebees (Graystock et al.,
2013a; Fürst et al., 2014).

248 Unexpectedly, our results showed no significant variation in Nosema infection rate at a colony level over time, as in a previous study that monitored wild bumblebees (Goulson 249 et al., 2018), even in landscapes where commercial bumblebees were intensively used to 250 pollinate crops. Even in parasite-free landscapes, one would expect that if commercial 251 colonies are infected by a parasite, it spreads within the colony across time due to the 252 253 high density of hosts and low genetic variability (Schmid-Hempel, 1998). We propose two potential explanations. On the one hand, bumblebees, in line with other social 254 insects, have evolved social immune systems that combine prophylactic and activated 255 responses to avoid, control or eliminate parasite infections (reviewed by Cremer et al., 256 2007). Both colony and individual (i.e. immunocompetence, reviewed by Schmid-257 258 Hempel 2005) defense mechanisms might be involved in maintaining roughly constant *Nosema* prevalence over time. On the other hand, it has been experimentally 259 260 demonstrated that *Nosema*, specifically *N*. *bombi*, relies more on transmission through the larval stage than through transmission among adults (Rutrecht et al., 2007). If we 261 consider that colonies were placed in the field for a month period and that the total 262 263 development of a bumblebee from larvae to adult is about 4-5 weeks (Alford, 1975), this could explain why we failed to detect an increase in prevalence. Imhoof and 264

Schmid-Hempel (1999) showed an average delay to *Nosema* infection in commercial
colonies placed in the field of ~30 days.

267	Our study showed, for the first time in Spain, that commercially produced bumblebee
268	colonies can be infected by Nosema parasites prior to their deployment in the field.
269	These parasites may reduce lifespan and have detrimental effects on bumblebee
270	behavior (Otti and Schmid-Hempel, 2007; Rutrecht and Brown, 2009; Graystock et al.,
271	2013a). Because commercial bumblebees placed in semi-open greenhouses frequently
272	forage in natural areas (Foulis and Goulson, 2014), they have the potential to spread the
273	parasites into native pollinator populations (Colla et al., 2006; Murray et al., 2013).
274	Despite the fact that there is some regulation about commercial bee colony health (e.g.
275	for Europe see 92/65/EEC in European Commission 1992), this regulation does not
276	cover all parasites. This implies that commercial colonies can be highly infected by
277	parasites such as Nosema, as our study show. Therefore, there is a need for the
278	enforcement of more stringent protocols to preserve the health of commercial and native
279	pollinators.

280 ACKNOWLEDGEMENTS

We thank J. Angelidou, C. Apostolidou, A. Montero-Castaño, D. Ragel and E. Tsiripli
for field assistance and the farmers for letting us work on their lands. We thank J. Bagi
and E.J. Bailes for lab support. We would also like to thank the editor and the
anonymous reviewers for comments that significantly improved the manuscript.
Funding was provided by the Spanish Ministry of Economy and Competitiveness
project FLORMAS ('Influence of mass flowering crops on pollinator biodiversity,
project no CGL2012-33801') and by the Biodiversa-FACCE project ECODEAL

288 ('Enhancing biodiversity-based ecosystem services to crops through optimised densities

of green infrastructure in agricultural landscapes, project no PCIN-2014-048'). AT was

supported by a Severo-Ochoa predoctoral fellowship (SVP-2013-067592) and by a

291 Short Term Scientific Mission from the COST Action (FA1307:35075) for international

292 mobility.

293 AUTHOR CONTRIBUTIONS

AT and MV conceived this research and designed experiments; MJFB participated in

the design and interpretation of the data; AT performed experiments, analyses and wrote

the first draft of the manuscript; MJFB and MV edited and contributed to the writing of

the manuscript. All authors read and approved the final manuscript.

298 COMPLIANCE WITH ETHICAL STANDARDS

299 Conflict of interest. The authors declare that they have no potential conflict of interest300 in relation to the study in this paper.

301

302 REFERENCES

AEMET (2015). Valores climatológicos normales. Huelva, Ronda Este.

304 http://www.aemet.es/es/ (Accessed 01 September 2015).

Aizen, M. A., Garibaldi, L. A., Cunningham, S. A., Klein, A. M. (2008). Long-term

- 306 global trends in crop yield and production reveal no current pollination shortage
- but increasing pollinator dependency. Curr. Biol. **18** (20), 1572–1575.
- Alford, D. V. (1975). Bumblebees. Davis-Poynter, London.

309	Arneberg, P., Skorping, A., Grenfell, B., Read, A. F. (1998). Host densities as
310	determinants of abundance in parasite communities. Proc. R. Soc. B Biol. Sci. 265
311	(1403), 1283–1289.
312	Brown, M. J. F., Loosli, R., Schmid-Hempel, P. (2000). Condition-dependent
313	expression of virulence in a trypanosome infecting bumblebees. Oikos 91 (3), 421–
314	427.
315	Cameron, S. A., Lozier, J. D., Strange, J. P., Koch, J. B., Cordes, N., Solter, L. F.,
316	Griswold, T. L. (2011). Patterns of widespread decline in North American bumble
317	bees. Proc. Natl. Acad. Sci. U. S. A. 108 (2), 662–667.
318	Colla, S. R., Otterstatter, M. C., Gegear, R. J., Thomson, J. D. (2006). Plight of the
319	bumble bee: pathogen spillover from commercial to wild populations. Biol.
320	Conserv. 129 (4), 461–467.
321	Cremer, S., Armitage, S. A. O., Schmid-Hempel, P. (2007). Social immunity. Curr.
322	Biol. 17 (16), 693–702.
323	Durrer, S., Schmid-Hempel, P. (1994). Shared use of flowers leads to horizontal
324	pathogen transmission. Proc. R. Soc. B Biol. Sci. 258 (1353), 299–302.
325	European Commission (1992). Council Directive 92/65/EEC. No. L 268/54.
326	Foulis, E. S. J., Goulson, D. (2014). Commercial bumble bees on soft fruit farms collect
327	pollen mainly from wildflowers rather than the target crops. J. Apic. Res. 53 (3),
328	404–407.

329 Freshuelva (2015). http://www.freshuelva.es/ (Accessed 13 November 2015).

330	Fürst, M. A., McMahon, D. P., Osborne, J. L., Paxton, R. J., Brown, M. J. F. (2014).
331	Disease associations between honeybees and bumblebees as a threat to wild
332	pollinators. Nature 506 (7488), 364–366.
333	Geslin, B., Aizen, M. A., Garcia, N., Pereira, AJ., Vaissière, B. E., Garibaldi, L. A.
334	(2017). The impact of honey bee colony quality on crop yield and farmers' profit
335	in apples and pears. Agric. Ecosyst. Environ. 248, 153–161.
336	Goka, K., Okabe, K., Yoneda, M. (2006). Worldwide migration of parasitic mites as a
337	result of bumblebee commercialization. Popul. Ecol. 48 (4), 285–291.
338	Goka, K., Okabe, K., Niwa, S., Yoneda, M. (2000). Parasitic mite infestation in
339	introduced colonies of European bumblebees, Bombus terrestris. Japanese J. Appl.
340	Entomol. Zool. 44 (1), 47–50.
341	González-Varo, J. P., Vilà, M. (2017). Spillover of managed honeybees from mass-
342	flowering crops into natural habitats. Biol. Conserv. 212, 376–382.
343	Goulson, D. (2010). Bumblebees: behaviour, ecology, and conservation. Second ed.
344	Oxford University Press, Oxford, UK.
345	Goulson, D., Hughes, W. O. H. (2015). Mitigating the anthropogenic spread of bee
346	parasites to protect wild pollinators. Biol. Conserv. 191, 10-19.
347	Goulson, D., O'Connor, S., Park, K. J. (2018). The impacts of predators and parasites
348	on wild bumblebee colonies. Ecol. Entomol. 43 (2), 168–181.
349	Graystock, P., Goulson, D., Hughes, W. O. H. (2014). The relationship between
350	managed bees and the prevalence of parasites in bumblebees. PeerJ 2, e522.

351	Graystock, P., Goulson, D., Hughes, W. O. H. (2015). Parasites in bloom: flowers aid
352	dispersal and transmission of pollinator parasites within and between bee species.
353	Proc. R. Soc. B Biol. Sci. 282 (1813), 20151371.
354	Graystock, P., Yates, K., Darvill, B., Goulson, D., Hughes, W. O. H. (2013a). Emerging
355	dangers: deadly effects of an emergent parasite in a new pollinator host. J.
356	Invertebr. Pathol. 114 (2), 114–119.
357	Graystock, P., Blane, E. J., McFrederick, Q. S., Goulson, D., Hughes, W. O. H. (2016).
358	Do managed bees drive parasite spread and emergence in wild bees? Int. J.
359	Parasitol. Parasites Wildl. 5 (1), 64–75.
360	Graystock, P., Meeus, I., Smagghes, G., Goulson, D., Hughes, W. O. H. (2016). The
361	effects of single and mixed infections of Apicystis bombi and deformed wing virus
362	in Bombus terrestris. Parasitology, 143 (3), 358–365.
363	Graystock, P., Yates, K., Evison, S. E. F., Darvill, B., Goulson, D., Hughes, W. O. H.
364	(2013b). The Trojan hives: pollinator pathogens, imported and distributed in
365	bumblebee colonies. J. Appl. Ecol. 50 (5), 1207–1215.
366	Herrera, J. (1988). Pollination relationships in southern Spanish Mediterranean
367	shrublands. J. Ecol. 76 (1), 274–287.
368	Imhoof, B., Schmid-Hempel, P. (1999). Colony success of the bumble bee, Bombus
369	terrestris, in relation to infections by two protozoan parasites, Crithidia bombi and
370	Nosema bombi. Insectes Soc. 46 (3), 233–238.
371	Inoue, M. N., Yokoyama, J., Washitani, I. (2008). Displacement of Japanese native
372	bumblebees by the recently introduced Bombus terrestris (L.) (Hymenoptera:

Apidae). J. Insect Conserv. 12 (2), 135–146.

374	Ishii, H. S., Kadoya, T., Kikuchi, R., Suda, S. I., Washitani, I. (2008). Habitat and
375	flower resource partitioning by an exotic and three native bumble bees in central
376	Hokkaido, Japan. Biol. Conserv. 141 (10), 2597–2607.
377	Jabal-Uriel, C., Martín-Hernández, R., Ornosa, C., Higes, M., Berriatúa, E., De la Rúa,
378	P. (2017). First data on the prevalence and distribution of pathogens in bumblebees
379	(Bombus terrestris and Bombus pascuorum) from Spain. Spanish J. Agric. Res. 15
380	(1), 1–6.
381	Kuznetsova, A., Brockhoff, P. B., Christensen, R. H. B. (2013). ImerTest: Test for
382	random and fixed effects for linear mixed effect models (lmer objects of lme4
383	package). R package version 2.0-30.
384	Macfarlane, R. P., Lipa, J. J., Liu, H. J. (1995). Bumble bee pathogens and internal
385	enemies. Bee World, 76 (3), 130–148.
386	Magrach, A., González-Varo, J. P., Boiffier, M., Vilà, M., Bartomeus, I. (2017).
387	Honeybee spillover reshuffles pollinator diets and affects plant reproductive
388	success. Nat. Ecol. Evol. 1 (9), 1299–1307.
389	Matsumura, C., Yokoyama, J., Washitani, I. (2004). Invasion status and potential
390	ecological impacts of an invasive alien bumblebee, Bombus terrestris L.
391	(Hymenoptera: Apidae) naturalized in Southern Hokkaido, Japan. Glob. Environ.
392	Res. 8 (1), 51–66.
393	Meeus, I., Brown, M. J. F., De Graaf, D. C., Smagghe, G. (2011). Effects of invasive
394	parasites on bumble bee declines. Conserv. Biol. 25 (4), 662–671.

395	Morales, C. L., Arbetman, M. P., Cameron, S. A., Aizen, M. A. (2013). Rapid
396	ecological replacement of a native bumble bee by invasive species. Front. Ecol.
397	Environ. 11 (10), 529–534.
398	Murray, T. E., Coffey, M. F., Kehoe, E., Horgan, F. G. (2013). Pathogen prevalence in
399	commercially reared bumble bees and evidence of spillover in conspecific
400	populations. Biol. Conserv. 159 , 269–276.
401	Ono, M. (1997). Ecological implications of introduced Bombus terrestris, and
402	significance of domestication of Japanese native bumblebees (Bombus spp.). Proc.
403	Int. Work. Biol. Invasions Ecosyst. by Pests Benef. Org. NIAES, Minist. Agric.
404	For. Fish. Japan, Tsukuba, pp. 244–252.
405	Osborne, J. L., Martin, A. P., Carreck, N. L., Swain, J. L., Knight, M. E., Goulson, D.,
406	Hale, R. J., Sanderson, R. A. (2008). Bumblebee flight distances in relation to the
407	forage landscape. J. Anim. Ecol. 77 (2), 406–415.
408	Otterstatter, M. C., Whidden, T. L. (2004). Patterns of parasitism by tracheal mites
409	(Locustacarus buchneri) in natural bumble bee populations. Apidologie 35 (4),
410	351–357.
411	Otterstatter, M. C., Gegear, R. J., Colla, S. R., Thomson, J. D. (2005). Effects of
412	parasitic mites and protozoa on the flower constancy and foraging rate of bumble
413	bees. Behav. Ecol. Sociobiol. 58 (4), 383-389.
414	Otti, O., Schmid-Hempel, P. (2007). Nosema bombi: a pollinator parasite with
415	detrimental fitness effects. J. Invertebr. Pathol. 96 (2), 118-124.
416	Potts, S. G., Imperatriz-Fonseca, V., Ngo, H. T., Aizen, M. A., Biesmeijer, J. C., et al.

417	(2016). Safeguarding pollinators and their values to human well-being. Nature, 540
418	(7632), 220–229.

419	R Core Team. (2014). R: A language and environment for statistical computing.
420	Vienna, Austria: R Foundation for Statistical Computing.
421	van Ravestijn, W., van der Sande, J. (1991). Use of bumblebees for the pollination of
422	glasshouse tomatoes. Acta Hortic. 288, 204–212.
423	Rutrecht, S. T., Brown, M. J. F. (2009). Differential virulence in a multiple-host parasite

- 424 of bumble bees: resolving the paradox of parasite survival? Oikos 118 (6), 941–
 425 949.
- Rutrecht, S. T., Klee, J., Brown, M. J. F. (2007). Horizontal transmission success of *Nosema bombi* to its adult bumble bee hosts: effects of dosage, spore source and
 host age. Parasitology 134 (12), 1719–1726.
- 429 Sachman-Ruiz, B., Narváez-Padilla, V., Reynaud, E. (2015). Commercial *Bombus*430 *impatiens* as reservoirs of emerging infectious diseases in central México. Biol.
 431 Invasions 17 (7), 2043–2053.
- 432 Schmid-Hempel, P. (1998). Parasites in social insects. Princeton University Press.
- 433 Schmid-Hempel, P. (2005). Evolutionary ecology of insect immune defenses. Annu.
 434 Rev. Entomol. 50, 529–551.
- 435 Schmid-Hempel, R., Müller, C. B. (1991). Do parasitized bumblebees forage for their
 436 colony? Anim. Behav. 41 (5), 910–912.
- 437 Schmid-Hempel, R., Schmid-Hempel, P. (1996). Larval development of two parasitic

438	flies (Conopidae) in the common host <i>Bombus pascuorum</i> . Ecol. Entomol. 21 (1),
439	63–70.
440	Schmid-Hempel, R., Eckhardt, M., Goulson, D., Heinzmann, D., Lange, C., Plischuk,
441	S., Escudero, L. R., Salathé, R., Scriven, J. J., Schmid-Hempel, P. (2014). The
442	invasion of southern South America by imported bumblebees and associated
443	parasites. J. Anim. Ecol. 83 (4), 823–837.
444	Stout, J. C., Morales, C. L. (2009). Ecological impacts of invasive alien species on bees.
445	Apidologie 40 (3), 388–409.
446	Trillo, A., Herrera, J. M., Vilà, M. (2018). Managed bumble bees increase flower
447	visitation but not fruit weight in polytunnel strawberry crops. Basic Appl. Ecol.,
448	30 , 32–40.
449	Trillo, A., Montero-Castaño, A., González-Varo, J. P., González-Moreno, P., Ortiz-
450	Sánchez, F. J., Vilà, M. (2019). Contrasting occurrence patterns of managed and
451	native bumblebees in natural habitats across a greenhouse landscape gradient.
452	Agric. Ecosyst. Environ., 272, 230–236.
453	Velthuis, H. H. W., van Doorn, A. (2006). A century of advances in bumblebee
454	domestication and the economic and environmental aspects of its
455	commercialization for pollination. Apidologie, 37 (4), 421–451.
456	Whitehorn, P. R., Tinsley, M. C., Brown, M. J. F., Goulson, D. (2013). Investigating the
457	impact of deploying commercial Bombus terrestris for crop pollination on
458	pathogen dynamics in wild bumble bees. J. Apic. Res. 52 (3), 149–157.
459	Yoneda, M., Furuta, H., Kanbe, Y., Tsuchida, K., Okabe, K., Goka, K. (2008).

460 Commercial colonies of *Bombus terrestris* (Hymenoptera: Apidae) are reservoirs
461 of the tracheal mite *Locustacarus buchneri* (Acari: Podapolipidae). Appl. Entomol.
462 Zool. 43 (1), 73–76.

464 FIGURES CAPTIONS

465	Fig. 1 Geographical distribution of plots inside, adjacent and distant to berry crops
466	located in the province of Huelva (SW Spain). Names denote towns.
467	Fig. 2 Mean (+SE) change in <i>Nosema</i> prevalence in commercially produced bumblebee
468	colonies before and after being placed in plots inside, adjacent (~50 m) and distant (>2
469	km) to berry crops in winter (A) and in spring (B). Differences were not significant
470	

Fig. 1

Fig. 1 Geographical distribution of plots inside, adjacent and distant to berry crops

- 474 located in the province of Huelva (SW Spain). In total, 12 plots were selected and two
- 475 commercial bumblebee colonies were used per plot in winter and again in spring.

478 Fig. 2

480 Fig. 2 Mean (+SE) change in *Nosema* prevalence in commercially produced bumblebee
481 colonies before and after being placed in plots inside, adjacent (~50 m) and distant (>2
482 km) to berry crops in winter (A) and in spring (B). Differences were not significant