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Highlights

• Introduces BSR sets, an alternative to the SPPF representation of all derivations of a string.
• General BSR combinator parsers and Earley-style parsers are presented.
• A new BSR GLL-style parser (CNP) is presented which has a more efficient combined call. stack
• Data structure size comparisons for GLL and CNP are given for C, C++ and Java grammars.



Derivation representation using binary subtree sets

Elizabeth Scott, Adrian Johnstone and L. Thomas van Binsbergen
Royal Holloway, University of London

Abstract

This paper introduces sets of binary subtree representations as an alternative to
shared packed parse forests as the output of a generalised parser, and shows how these
may be generated by Earley’s algorithm, by a new GLL-style parser and by Johnson’s
continuation passing combinator style parsers. The set based output removes the
clerical overhead associated with graph constructions, making the parsers simpler.

A recogniser for a language, L(Γ), specified by a grammar, Γ, is an algorithm that
takes as input a string, u say, and returns success if u ∈ L(Γ) and failure otherwise. A
parser for L(Γ) returns a representation of the structure of u with respect to Γ. It is not
always easy to extend a recogniser to a parser [29]. The primary purpose of this paper
is to introduce BSR sets and to advocate BSR set generation as a simple approach for
extending language recognisers to parsers. The concept of a BSR set is not radical; BSR
sets are closely related both to shared packed parse forests [33], which are commonly used
to represent derivations, and to the sets of items constructed by an Earley recogniser [8].
However, our BSR set definition is deliberately independent of any particular parsing
technique, allowing BSR set generation to be easily added to various different recogniser
techniques. We support the latter claim by demonstrating it for three quite different
techniques: Earley recognisers, continuation passing style combinator parsers, and GLL
style parsers.

It is perhaps not immediately clear that recognition and derivation construction is still
a problem for computer languages. For cases where the sentence structure is uniquely
defined, well known derivation generation techniques exist; but they impose constraints
even on non-ambiguous grammars. Generalised techniques can be applied to all gram-
mars, both those that are nondeterministic in the Knuth sense [16] and those for which
the structure of some u ∈ L(Γ) is ambiguous (not uniquely defined). Generalised lan-
guage analysis techniques free language designers from algorithm specific constraints, and
facilitate semantic specification. The desirability of generalised parsers is reflected in the
development of general extensions to the classical, restricted, LR and LL techniques, and
the incorporation of these extensions in tools such as ASF+SDF [36], Elkhound [20], Strat-
ego/Spoofax [37], Rascal [15] and the K-tool [25]. Most of these tools use a generalised
LR technique, but the attraction of the simpler and easier to understand LL technique is
evidenced by the continued use of extended, but not fully general, versions for example in
the combinator approach [22] and tools such as ANTLR [23]. A practical, fully general,
LL technique was given in [30] and a general combinator parser which deploys an ‘oracle’
was given in [24].

Generalised parsers need to produce representations of all the possible structurings
(derivations) of an input string (subject, potentially, to specified disambiguation rules).
However, there are infinitely many derivations in the case of grammars with cycles, and
even for cycle-free grammars there can be an unbounded polynomial number of derivations.
In 1985 Tomita [33] introduced an efficient derivation representation, a shared packed parse
forest (SPPF).
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SPPFs were studied in detail in [5], and Johnson [13] pointed out that in the worst case
an SPPF can be of unbounded polynomial size. However, it is reasonably straightforward
to modify the structure into a binarised form which is worst case cubic size [30]. One
problem, however, is that the machinery needed to construct SPPFs adds considerably to
the complexity of a parser over a corresponding recogniser. This is not simply because of
the specific nature of the SPPFs. As we will discuss further below, it turned out to be
surprisingly difficult to turn Earley’s classic general recogniser into a parser, and Tomita’s
original generalised LR parser also contains an error.

In this paper we introduce an alternative derivation representation which is a set rather
than a graph. This allows the specification of the parsers to be simplified because there
is no need for graph construction machinery, and the information required to build the
graph does not need to be carried around. No edges are computed or stored. The elements
of the set represent fragments of an SPPF, and we refer to the set as a binary subtree
representation (BSR) of the input string. It is straightforward to reconstruct the SPPF,
if required, via a separate function which is reusable with any BSR set generating parser.
In fact, BSR sets are as convenient as SPPFs for post-parse analysis, in particular for
ambiguity resolution, derivation selection, abstract syntax tree construction, and post-
parse semantic action evaluation, so it is likely that the SPPF extraction can be dispensed
with entirely in many applications. In summary we contend that:

• Parsers that generate BSR sets are simpler to construct and require less runtime
space than those that generate SPPFs, because there is no need for the additional
graph construction machinery or to ‘carry around’ the left child which will be re-
quired when its parent is built.

• Disambiguation rules can be applied directly to a BSR set.

• A BSR set can be used as an oracle in the sense of Lee [18] during semantic evaluation,
see Section 6.

• If an SPPF is required then a general ‘library’ SPPF extraction algorithm can be
applied to the BSR set post-parse, see Section 3.2.

We begin with some initial definitions; a detailed, accessible introduction to generalised
parsing can be found in [10]. Then to motivate the work we review Earley’s recogniser
and show that a minor addition is all that is required to turn it into a BSR set generating
parser. We then discuss the extraction of derivation trees from BSR sets, before developing
the combinator parser and CNP BSR set generators. We conclude with a brief discussion
of the relationship between BSR sets and parser oracles.

1 Binary subtree sets

A grammar, Γ, has a set N of nonterminals, a set T of terminals, a start symbol S ∈ N
and a set of production rules, X ::= α where X ∈ N and α ∈ (N ∪ T)∗. We use the
standard Kleene notation A∗ to denote the set of all strings over a set A; the empty string
is denoted by ε. Conventionally, we use uppercase letters for nonterminals, lower case
for terminals, and Greek letters for strings in (N ∪ T)∗. We define a derivation step as
γXδ⇒γαδ, where X ::= α, and denote by ∗⇒ the reflexive transitive closure of ⇒. We say
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that γ is nullable if γ
∗⇒ε. We define a grammar slot to be an item of the form X ::= α ·β,

where X ::= αβ is a production rule. Grammar slots will be used as labels in GLL-style
parsers and in GLL descriptors and Earley items.

The language, L(Γ) defined by Γ is the set of all u ∈ T∗ such that S
∗⇒u. A sequence

S⇒β1⇒ . . .⇒βn⇒u is a derivation of u. The parsing problem for a grammar, Γ, is to
find, for any input u, the set of all derivations of u.

Derivations are classically represented as rooted ordered trees, whose root node is
labelled S, whose leaf nodes are labelled with a terminal or ε, and whose interior nodes are
labelled with nonterminals such that X has children corresponding to some rule X ::= α.
This is a derivation tree for the string obtained when the leaf node labels are read in left
to right order.

1.1 Indexed BDTs

In general, there can be infinitely many derivation trees for a string u. Tomita [34]
described the notion of an SPPF, a finite graph structure which embeds precisely the
derivation trees, and a generalised LR-style parser that builds SPPFs. We shall describe
a worst case cubic size version of the SPPF based on that described in [30]. However our
SPPFs do differ slightly from [30], for example the labels of the intermediate nodes are
different which can allow more sharing in certain cases.

An indexed binary derivation tree (BDT) is constructed from a derivation tree by first
introducing intermediate nodes in the standard way so the tree is binarised from the left.
The intermediate nodes are labelled with the concatenation of the labels of their children.

For example, for the grammar, Γ1,

S ::= a A B | a A b A ::= a | c | ε B ::= b | B c | ε

a binary derivation tree for aab is on the left below and the corresponding indexed BDT
is on the right, intermediate nodes are rectangular.
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As noted above, the yield of the root node of the derivation tree is the input string
u. In order to combine BDTs, their nodes are indexed with two integer extents, i and
j, which are the left and right positions, in u, of the substring at their leaves. In detail,
the leftmost leaf node has left extent 0. Any other leaf node has left extent equal to the
right extent of the leaf node immediately to its left. For any leaf node (y, i, j), if y = ε
then j = i otherwise j = i + 1. For an internal node with exactly one child (x, i, j) the
extents are (i, j). For an internal node with two children (γ, i, l) and (x, k, h) the extents
are (i, h). Note, it is easy to show that in the latter case we will always have l = k. We
refer to i and j as the left and right extents, respectively, of (x, i, j).

A BDT with offset d is the tree obtained from an indexed BDT by adding d to all the
extents in all the node labels. For any indexed BDT for a1 . . . an, the subtree rooted at
(δ, i, j) is an offset i indexed BDT for a derivation δ

∗⇒ai+1 . . . aj .
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A grammar is ambiguous if there is a string which has two or more different indexed
BDTs. A parsing technique is deterministic for a grammar Γ if at every step of the parser
execution there is at most one grammar production that can be used. No parsing technique
which constructs all derivations is deterministic with respect to an ambiguous grammar,
and for any practical general parsing technique there are nonambiguous grammars for
which initial parts of derivations that ultimately fail are constructed. For example, for the
unambiguous grammar, Γ2,

S ::= A C a B | A B a a A ::= a A | a B ::= b B | b C ::= b C | b

and input string aabbaa, a left to right, one symbol lookahead parser will construct a
representation of the partial derivation (which ultimately fails)

S ⇒ ACaB ⇒ aACaB ⇒ aaCaB ⇒ aabCaB ⇒ aabbaB

as well as the full derivation of aabbaa. Thus, even for nonambiguous grammars, we need
an efficient representation of the derivation structure being constructed by a parser.

A binarised SPPF is obtained from a set of indexed BDTs by merging (sharing) nodes
with the same label and putting separate families of children under packed nodes. A
packed node child, w, of a node (X, i, j) has label (X ::= βx, k), a right child labelled
(x, k, j) and either k = i and β = ε, or w also has a left child labelled (β, i, k). If w is the
child of an intermediate node then it has label (βx, k). For example, the SPPF constructed
from both derivations of aab in Γ1 is

S ::= aAb, 2S ::= aAB, 2
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We note that there are various forms of SPPF which are produced by different gener-
alised parsers. The SPPF produced by many generalised LL and LR parsers have interme-
diate and packed nodes labelled with grammar slots rather than right hand side prefixes,
and BRNGLR SPPFs are binarised to the right [31]. In the case of a rule of the form
X ::= BBβ where B is nullable, it is possible that the SPPF is a multigraph because the
intermediate node (BB, i, i) has left and right child (B, i, i). To avoid this, an additional
intermediate node is often used, see [30]. In this paper we are mostly concerned with BSR
sets which do not have any graph structure, so these subtle issues are not important.

1.2 Binary subtree representations

If a packed node, w, has children (β, i, k) and (x, k, j) then w has label (βx, k) or (X ::=
βx, k), so we can compute the children, and the parent, of w if the label of w is modified
to be (βx, i, k, j) or (X ::= βx, i, k, j), respectively.
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We call a 4-tuple a binary subtree representation (BSR) over Γ if it is of the form
(i) (X ::= α, i, k, j), where 0 ≤ i ≤ k ≤ j, and X ::= α is a production in Γ, or
(ii) (β, i, k, j), where 0 ≤ i ≤ k ≤ j, |β| > 1 and for some X and δ, X ::= βδ is a
production in Γ.

The BSR set of an SPPF is the set of elements (Ω, i, k, j), i ≤ k ≤ j, such that there
is a packed node w = (Ω, k) and either w has two children with extents i, k and k, j or
i = k and w has just one child with extents k, j. We refer to such elements as extended
packed nodes.

It is clear that we can reconstruct an SPPF from the BSR set of its extended packed
nodes. The BSR set corresponding to the SPPF above is

{(S ::= aAB, 0, 2, 3), (S ::= aAb, 0, 2, 3), (aA, 0, 1, 2), (B ::= b, 2, 2, 3), (A ::= a, 1, 1, 2)}
However, as we have already mentioned, it is usually not necessary to have the SPPF at
all. For example the standard priority and longest match strategies can be applied by
selecting (X ::= α, i, k, j) rather than (X ::= γ, i, l, j) if α has higer priority than γ or if
α = γ and k > l.

In Section 3 we shall formally define what it means for a tree to be embedded in a BSR
set and give an algorithm for extracting an SPPF if required. In Section 4 we show how to
extend Johnson’s memoised combinator parsers to generate BSR sets and in Section 5 we
give a new, BSR set generating, generalised LL parser. But first we defend our claim that
BSR generating parsers are easier to construct by revisiting a narrative that surrounds
Earley’s algorithm.

2 A BSR set generating Earley parser

Earley presented his algorithm as a recogniser, with a proposed method for turning it into
a parser sketched at the end of the paper [8]. It is an indication of the subtlety of turning
recognisers into parsers that this sketched method turns out to be incorrect for certain
types of grammar. The error lies in the complexity of combining graphs of sub-derivations
together in a way that does not create additional incorrect derivations.

This error was noted by Tomita [33] and motivated his creation of the generalised
LR approach. However, Tomita’s algorithm also contained a subtle error. In the case of
grammars with hidden left recursion, that is derivations of the form X

∗⇒βXα where β
∗⇒ε

and β �= ε, the derivation structure specified by Tomita’s algorithm was infinite, and thus
the parser never terminated. A faster Earley-style recogniser was described in [3], and a
corresponding parser was outlined in [4]. As presented, that parser has the same derivation
tree combination error as Earley’s sketched parser. A correct SPPF-constructing version
of Earley’s algorithm was given in [27], where the issues that need to be addressed in order
to ensure correctness are highlighted.

We give a simple BSR-constructing version of Earley’s algorithm which just adds BSR
elements as the algorithm proceeds. The algorithm inherits guaranteed termination and
worst case cubic order from the original recogniser. Our purpose is to demonstrate that
BSR set construction can be trivially added with no algorithm modification and for this
reason we use the original predictor/completer version given in [8], with only minor modi-
fication to the predictor as described below. For further simplicity we will use the version
with no lookahead; extension to the lookahead k version is identical, it is only the under-
lying Earley recogniser itself whose description is a little more complicated.
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The core of Earley’s algorithm is the construction of sets of states, the ‘Earley sets’. In
the original presentation the grammar productions are numbered and a state is a quadruple
(p, j, f, α) where p is a production number, j is a integer position in the string on right
hand side of production p, Sf is an Earley set and α is a lookahead string. We omit α
and, to make the algorithm easy to read, we shall write the states as Earley items of the
form (X ::= α · β, f).

The Earley sets are constructed using three procedures: the predictor, the completer
and the scanner. The implementation discussion in [8] specifies that the elements of Sj

are stored in a list for processing (we denote this list by Rj) and comments that the
completer must be applied to any subsequently added states, we make these applications
via a slight modification to the second part of the predictor. The only other change we
make to turn the recogniser into a parser is to call the bsrAdd() function at the end of each
of the three procedures which adds the BSR element arising from the action performed by
that procedure. (This is the same function as is used in Section 5 below, illustrating the
general reusability of BSR related functions.)

Predictor((X ::= α · Y β, i), j):
for all productions Y ::= γ {

if(Y ::= ·γ, j) �∈ Sj {
add (Y ::= ·γ, j) to Sj and to Rj }

for all (Y ::= δ·, j) ∈ Sj {
if(X ::= αY · β, j) �∈ Sj {
add (X ::= αY · β, j) to Sj and to Rj

bsrAdd(X ::= αY · β, i, j, j) } } }
Completer((X ::= α·, i), j):

for all (Y ::= δ · Xμ, k) ∈ Si {
if(Y ::= δX · μ, k) �∈ Sj {
add (Y ::= δX · μ, k) to Sj and to Rj

bsrAdd(X ::= α·, i, k, j) } }
Scanner((X ::= α · bβ, i), j):

if(X ::= αb · β, i) �∈ Sj+1 {
add (X ::= αb · β, i) to Sj+1 and to Rj+1

bsrAdd(X ::= αb · β, i, j, j + 1) }
bsrAdd((X ::= α · β, i, k, j) {

if(β = ε){ insert (X ::= α, i, k, j) into Υ }
else if(|α| > 1){ insert (α, i, k, j) into Υ }}

Given an input string a1 . . . an the functions are called on the elements of each Rj , 0 ≤
j ≤ n, starting with Predictor((S′ ::= ·S, 0), 0) where S′ ::= S is an augmented start
rule. Initialising the global BSR set Υ to be the empty set and calling the above modified
versions of the procedures turns the original Earley recogniser directly into a BSR set
constructing parser.
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3 Embedded trees and SPPF extraction

For BSR parsers we need to know how an indexed binary derivation tree relates/belongs
to the BSR set constructed, and we want the definition to be independent of the notion
of an SPPF.

In this section we give a formal definition of what it means for a tree to be embedded
in a BSR set. Because parsers typically construct partial derivations which apply only
to a prefix of the input, the BSR sets constructed can embed partial trees which do not
extend to full derivation trees. We shall say that an embedded tree is core in a BSR set Υ
if its root node is labelled (S, 0, n), where n is the largest right extent of all the elements
in Υ. We require BSR parsers to generate sets whose core embedded trees are precisely
the BDTs of the input string, subject to any given disambiguation specification, and we
give an SPPF extraction function which builds the SPPF of all the core trees embedded
in a given BSR set.

3.1 Embedded trees

Let W = N ∪ T denote the union of the nonterminal and terminal sets of a grammar Γ.
We say that a BSR set over Γ, Υ, embeds an indexed rooted tree as follows:
1. If (X ::= ε, j, j, j) ∈ Υ then Υ embeds the tree with a single node (ε, j, j).
2. For (X ::= βx, i, k, j) ∈ Υ or (βx, i, k, j) ∈ Υ, where x ∈ W, if x ∈ T then Υ embeds
the tree with a single node (x, k, j), and if β ∈ T then Υ embeds the tree with a single
node (β, i, k).
3. If (X ::= x, i, i, j) ∈ Υ, x ∈ W, and if Υ embeds a tree with root q labelled (x, i, j) then
Υ embeds the tree obtained by adding a new root node (X, i, j) as the parent of q.
4. If (X ::= βx, i, k, j) ∈ Υ, where β �= ε and x ∈ W, and if Υ embeds a tree with root q
labelled (β, i, k) and a tree with root q′ labelled (x, k, j) then Υ embeds the tree obtained
by adding a new root node labelled (X, i, j) as the parent of q and q′.
5. If (βx, i, k, j) ∈ Υ, where β �= ε and x ∈ W, and if Υ embeds a tree with root q labelled
(β, i, k) and a tree with root q′ labelled (x, k, j) then Υ embeds the tree obtained by adding
a new root node labelled (βx, i, j) as the parent of q and q′.

We call the largest integer, h, such that Υ contains an element of the form (Ω, l, k, h)
the (right) extent of Υ. We say that a tree embedded in a BSR set, Υ, over Γ is Γ -core if
its root node is labelled (S, 0, n), where S is the start symbol of Γ and n is the extent of
Υ. We define the Γ-core of Υ to be the smallest subset of Υ which embeds all the Γ-core
trees embedded in Υ.

A general BSR parsing algorithm is defined to be an algorithm that constructs, for
input u, a BSR set whose Γ-core trees are precisely the binarised derivation trees of u. An
Earley BSR parser was given in Section 2 and below we shall describe a GLL-style BSR
algorithm and a continuation passing combinator BSR algorithm.

One measure of the efficiency of a BSR parser is the number of elements in an output
BSR set which do not belong to any core embedded tree, i.e the extent to which the BSR
set is larger than its Γ-core. Such elements arise as a result of local nondeterminism. For
example, for the grammar, Γ2, above and input string abaa an Earley BSR parser with
one symbol lookahead will generate the BSR set

{(A ::= a, 0, 0, 1), (C ::= b, 1, 1, 2), (AC, 0, 1, 2), (ACa, 0, 2, 3),
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(B ::= b, 1, 1, 2), (AB, 0, 1, 2), (ABa, 0, 2, 3), (S ::= ABaa, 0, 3, 4)}
three elements of which, those containing an instance of C, do not belong to its Γ-core.

3.2 Extracting an SPPF

Although BSR sets are amenable to derivation extraction, disambiguation application
and, as oracles see Section 6, to semantic action application, during the language design
phase it may be helpful to have an SPPF output for visualisation and correctness checking
purposes. It is also the case that SPPFs may be required anyway, for comparison with
other existing general parsers or for post-parse use.

It is straightforward to extract an SPPF representation of all the Γ-core trees embedded
in a given BSR set over Γ, and once implemented the extraction algorithm can be used with
any BSR generating parser. The following algorithm generates the same style of SPPF as
constructed by the parsers described in [30] and [26], so intermediate nodes have labels of
the form (X ::= α ·β, i, j) rather than (α, i, j). But, for simplicity of presentation, we have
not added the treatment of the special case for rules of the form X ::= BBβ where B is
nullable. In such cases our extraction algorithm will thus produce a multigraph, although
the additional clerical detail needed to avoid this is easy to add if required.

The algorithm takes as input a grammar Γ and a BSR set Υ over Γ, and produces as
output an SPPF, G, containing the Γ-core trees embedded in Υ.

We call a node (μ, i, j) in G extendable if μ is not ε or a terminal. Then G is constructed
from the top down with child nodes being added, at each step, to an extendable leaf, w.
The set Υ is searched to find all possible sets of children, and each set of children is added
to G under a packed node child of w. The function mkPN() makes the packed node and
identifies its children, the function mkN() makes the child nodes if necessary, and attaches
them to the packed node.

If the input Υ has the property that its elements are BSR elements over a grammar
Γ and its Γ-core embedded trees are precisely the BDTs for a string u, then G will be an
SPPF for u with respect to Γ.

extractSPPF (Υ,Γ) {
G := empty graph
let S be the start symbol of Γ
let n be the extent of Υ
if Υ has an element of the form (S ::= α, 0, k, n) {
create a node labelled (S, 0, n) in G
while G has an extendable leaf node {
let w = (μ, i, j) be an extendable leaf node of G
if (μ is a nonterminal X in Γ) {

for each (X ::= γ, i, k, j) ∈ Υ { mkPN(X ::= γ·, i, k, j, G) } }
else {
suppose μ is X ::= α · δ
if (|α| = 1) mkPN(X ::= α · δ, i, i, j, G)
else for each (α, i, k, j) ∈ Υ { mkPN(X ::= α · δ, i, k, j, G) } } } }

return G }
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mkPN(X ::= α · δ, i, k, j, G) {
make a node y in G labelled (X ::= α · δ, k)
if (α = ε) mkN(ε, i, i, y, G)
if ( α = βx, where |x| = 1) {

mkN(x, k, j, y, G)
if (|β| = 1) mkN(β, i, k, y, G)
if (|β| > 1) mkN(X ::= β · xδ, i, k, y, G) } }

mkN(Ω, i, j, y, G) {
if there is not a node labelled (Ω, i, j) in G make one
add an edge from y to the node (Ω, i, j) } }

4 Combinator parsing

Conceptually, combinator parsing takes classical recursive descent and replaces the explicit
grammar-corresponding lines of code with calls to generic functions. When deployed in
a (higher-order) functional programming environment, it is easy to write such parsers
using simple character matching functions which are combined using higher order function
composition and union operations. Informally, a parser combinator is a function whose
input includes zero or more parser functions and whose output is a parser function. For
the purposes of this paper, a parser function takes as input an integer j ≥ 0 and references
a global $-terminated input string held in an array I = [a1, . . . , an, $]. (If pure functions
are required I can be included as a parameter of the parser functions.) The output is a
set, F , of integers such that i ∈ F if and only if the parser has matched aj+1 . . . ai.

We can think of a recogniser RΓ for a grammar Γ as a parser function which, on input
0, outputs a set F which contains n if and only if a1 . . . an is a string in the language of Γ.
We can build a recogniser from a grammar using functions defined for each terminal and
nonterminal together with generic function composition and union combinators.

In this section we shall give an overview of combinator parsing, and show how general
continuation-passing style parser combinators can be easily expanded to produce BSR sets.
We will adopt an algorithm style rather than functional programming style presentation
and avoid some of the clerical overhead that would be required to replace the use of global
variables.

4.1 Simple combinators

We define Ifn to be the set of functions which take an integer and return a set of integers,
Ifn = {f | f : N→ P(N)}. Simple recognisers are then elements of Ifn.

We could define a combinator term which takes a terminal symbol, b and an array I,
and returns a terminal recogniser, term(b, I).

term(b, I)(j) =

{
{j + 1} if I[j] = b

∅ otherwise

However, the ‘cases’ approach to specifying a function in terms of its input and output can
be cumbersome so where appropriate we shall adopt the more procedural programming
style of having an algorithmic specification enclosed in braces. We will use the syntax p ; q
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to mean carry out the procedure or function call p and then the procedure or function call
q. We prefer to focus on non-functional implementations and treat I as a global variable
as it is only read by the recognisers. So we specify tr(b), the term recogniser for b, by

(tr(b))(j) { if (I[j] = b) return {j + 1} else return ∅ }
Recognisers are built from term recognisers using binary combinators seq and alt which

take two Ifn functions and return their composition and union, respectively.

seq(p, q)(j) = ∪{q(i) | i ∈ p(j)} alt(p, q)(j) = (p(j) ∪ q(j))

(Here ∪{q(i) | ...} denotes the union of the sets q(i).) For example, for I = [b, c, $]

alt(alt(seq(tr(b), tr(c)), tr(a)), tr(b))(0)

returns {1, 2}. Since the final output contains 2 = |I| − 1, the string has been recognised.
To allow infinite languages, and to allow small specifications for large languages, we can

give recogniser expressions names and use these names in other expressions. For example,
for Γ2

S ::= A C a B | A B a a A ::= a A | a B ::= b B | b C ::= b C | b

naming

S : alt(seq(A, seq(C, seq(tr(a), B))), seq(A, seq(B, seq(tr(a), tr(a))))
A : alt(seq(tr(a), A), tr(a))
B : alt(seq(tr(b), B), tr(b))
C : alt(seq(tr(b), C), tr(b))

allows a call alt(seq(seq(seq(A,C), tr(a)), B), seq(seq(seq(A,B), tr(a)), tr(a)))(0) to test
whether I is a string in the language L(Γ2).

This is an easy way to build embedded recognisers in languages which have higher
order functions of the form seq and alt, but it also has some well known limitations. If the
recognisers are implemented as functions which call each other then the named expressions
must not call themselves in a way that results in nontermination, that is the corresponding
grammar must not be left recursive. If alt(p, q) is implemented simply as first calling p
then calling q and forming the union of the results, then repeated computations may be
carried out. For example, for Γ2 above the function A is called on the same value for
both alternates of S. These issues can be addressed using memoisation, as we will discuss
below.

4.2 Action execution

The discussion in Section 4.1 is about recognition only. In most cases it is required that
some associated semantic action is carried out, and this is usually defined in terms of the
structure of the input.

One of the attractions of combinator parsing is that it can provide embedded syntax
analysis in a simple way; the syntax analysis functions (recogniser functions) can be written
in the host language, the combinators can be provided as general library functions, and
a user simply writes the combinator expressions they require. Syntax analysis can be
enriched with actions to be carried out during the analysis; this is sometimes referred to
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as top down translation. Combinator expressions have the useful recursive descent style
property that actions, written in the host language, can be embedded in the expressions.
Indeed, combinator parsers are sometimes thought of as applying actions rather performing
syntax analysis.

An obvious approach is to parameterise the tr() function with the actions which are
executed at the same time as the function executes. However, if the underlying grammar
is not LL(1), then some actions may be performed that do not correspond to the input
being analysed. For example, for the grammar Γ2 above, if we add the action print:’b
from C’ to the occurrences of tr(b) in combinator expression C then this action will be
carried out even if the input is abaa.

We can insist, as is common for LR parsers, that embedded actions appear only at the
end of alternates, but this does not solve the problem for all grammars. For example, for
the grammar

S ::= T a c T ::= B | B a B ::= b

(which is unambiguous but not SLR-deterministic [2]) an action associated with the first
alternate of T will be carried out even when the input is baac.

A more general approach is to collect the actions together in some structured form
suitable for selective post-parse execution. The machinery required for producing struc-
tured output potentially can compromise the simplicity of the basic tr, seq, alt approach.
The components of the structure correspond to portions of the input and, typically, parser
functions will need to take and return sets of (structure object, string)-pairs. Using BSR
sets avoids the structure complexity.

To some extent the difference between recognition of a syntactically valid input and the
need to execute associated semantic actions is less frequently encountered in the combina-
tor expression approach because of the lack of emphasis on a particular grammar. Many
grammars can be rewritten to avoid nondeterminism, at least in places where semantic ac-
tions would be impacted. Classical parser generator tools are expected to generate a parser
from a given grammar, but a writer of combinator expressions for a particular application
can write them in any form that is convenient, effectively rewriting the (unspecified) im-
plicit grammar. However, there are languages which can be specified by a non-ambiguous
grammar but not by any deterministic grammar, so rewriting the grammar cannot work in
general, even for unambiguous languages. Even in the case where a deterministic grammar
does exist it may be very large and, even worse, not aligned to the intended semantics,
making the required embedded actions difficult to write (and understand).

Of course, there are many ways of addressing the parsing problem for combinator
expressions in specific cases, but we are interested in general techniques. Even in the case
where semantic actions are functionally pure, that is without side effects, there needs to be
disambiguation in the case of general grammars and this cannot be done safely on-the-fly
(i.e. without possibly rejecting all derivations). The general parsing approach is to modify
a syntax analyser so that it produces a representation of the syntactic structure of the
input which can be disambiguated and then traversed by a post-parse semantic action
evaluator. We have already described a simple extension which makes an Earley syntax
analyser produce BSR sets. It is also easy to extend simple combinator recognisers to
produce BSR sets. We shall do this, and then give a fully general BSR combinator parser
based on Johnson’s continuation passing approach [13].
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4.2.1 Parser combinator BSR construction

BSRs are defined with respect to an underlying grammar whose nonterminals are, in this
case, the combinator expression names N, and whose terminals T are the symbols b such
that these expressions contain tr(b). Effectively, the sets T and N are user defined, and
we require them to be disjoint to allow string matching. We let W = T ∪ N.

We modify the recogniser functions so that they take as parameters the elements
(α, i, k, j) required for BSR set construction. The element j is the integer parameter from
the recogniser version, and k, i are the other required BSR indices. Conceptually, the
string α ∈ W∗ is the left prefix of an alternate that has been matched before the function
is called, and the output is a set of elements of the form (αx, i, j, l), where the function
has executed the derivation x

∗⇒aj+1...al. As a side effect the corresponding BSR elements
are added to a global BSR set.

In detail, we define the set Pfn of parser functions to be functions that take a string
in W∗ and three integers, and return a set of such elements.

Pfn = {f | f : (W∗ × N× N× N)→ P(W∗ × N× N× N) }

(P(V ) denotes the set of all subsets of a set V .) We will define certain Pfn functions in
terms of a constant global array, I, of elements of T and allow them to add elements to a
global BSR set Υ as a side effect.1 To turn the recognisers into parsers we simply modify
the combinator expressions to add elements to Υ.

For conciseness we specify the following procedures which insert (i.e. add if not already
there) elements into the global BSR set, Υ.

addUe(α, i, k, j) { if (|α| > 1) insert (α, i, k, j) into Υ}
addUr(X,α, i, k, j) { insert (X ::= α, i, k, j) into Υ}
The procedure addUe() adds the BSR elements that result from the matching of left-most
prefixes of alternates, that is the elements that correspond to the intermediate, binarising,
nodes of a binarised derivation tree. At the end of a call to nonterminal expression X,
BSR elements of the form (X ::= α, i, k, j) are added by the procedure addUr().

For a terminal symbol, b, specify the Pfn terminal parser function, tp(b), by

(tp(b))(α, i, k, j) { addUe(α, i, k, j) ;
if (I[j] = b) return {(αb, i, j, j + 1)} else return ∅}

seq and alt are simply extended to elements of Pfn

seq(p, q)(α, i, k, j) = ∪{q(β, i, k′, i′) | (β, i, k′, i′) ∈ p(α, i, k, j) }

alt(p, q)(α, i, k, j) = p(α, i, k, j) ∪ q(α, i, k, j)

To allow for grammars that have ε productions we also define the identity Pfn function
eps(α, i, k, j) = (α, i, k, j).

Formally, the combinator expression named by X ∈ N is defined using a combinator
nt which takes an element X of N and outputs a user specified Ifn function nt(X). To
invoke addUr() in the correct positions we specify a new combinator, prs, which takes as
input an element X of N and outputs prs(X) which calls addUr() on the results of nt(X):

1It is easy to modify the parsers to return the BSR set if avoiding global variables is desired.
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prs(X)(α, i, k, j){
addUe(α, i, k, j);
let F = ∅
for (β, j, k′, i′) ∈ nt(X)(ε, j, j, j){
addUr(X ::= β, j, k′, i′);
add (αX, i, j, i′) to F };

return F }
The intention is that the user defines functions nt(X) constructed from tp, prs and eps

using seq and alt. For example, given the definition of nt below, prs(S) is a BSR parser
for the grammar Γ2

nt(S) = alt(seq(prs(A), seq(prs(C), seq(tp(a), prs(B)))),
seq(prs(A), seq(prs(B), seq(tp(a), tp(a)))))

nt(A) = alt(seq(tp(a), prs(A)), tp(a))
nt(B) = alt(seq(tp(b), prs(B)), tp(b))
nt(C) = alt(seq(tp(b), prs(C)), tp(b))

If the global variable I is set to [a, b, a, a, $] then prs(S)(ε, 0, 0, 0) returns the set {(S, 0, 0, 4)}
and creates the global BSR set

Υ = {(A ::= a, 0, 0, 1), (C ::= b, 1, 1, 2), (AC, 0, 1, 2), (ACa, 0, 2, 3), (B ::= b, 1, 1, 2),
(AB, 0, 1, 2), (ABa, 0, 2, 3), (S ::= ABaa, 0, 3, 4), }

4.2.2 Factorised expressions

Formally BSR sets relate to a particular grammar whose production rules have the form
X ::= α where α is a string of terminals and nonterminals. Combinator expressions
naturally correspond to grammars whose production rules may be ‘factorised’.

For example, the user can specify the same language as that specified by Γ2 using the
combinator expressions

nt(S) = seq(prs(A), alt(seq(prs(C), tp(a)), seq(np(B), prs(B))))
nt(A) = alt(seq(tp(a), prs(A)), tp(a))
nt(B) = seq(tp(b), seq(alt(prs(B), eps), tp(a))
nt(C) = seq(tp(b), seq(alt(prs(C), eps), tp(a))

The natural corresponding grammar has the (EBNF style) rules

S ::= A (C B | B a) A ::= a | aA B ::= b (B | ε) a C ::= b (C | ε) a

but the BSR set will be with respect to the ‘multiplied out’ version

S ::= AC B | AB a A ::= a | aA B ::= bB a | b a C ::= bC a | b a

Formally then, the BSR set generated by a combinator parser is with respect to the
corresponding normal form expressions, which are defined as follows:
1. tp(b) and eps are in normal form.
2. seq(p, q) is in normal form if p is of the form tp(b) or eps, and if q is in normal form
and is of the form tp(c), eps or seq(q1, q2).
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3. alt(p, q) is in normal form if p and q are in normal form and if p is of the form eps,
tp(b), or seq(p1, p2).
Effectively, the normal form is obtained by multiplying out brackets in the same way that
turns factored grammar rules into the standard BNF form. The normal form is unique,
and seq and alt are treated as right associative, which reduces the depth of nested calls,
but left associativity could be specified if preferred.

4.3 Continuation passing BSR combinators

In various places in the literature the termination and repeated computation issues men-
tioned in Section 4.1 have been addressed, see Section 7. In this paper we show how the
recognisers resulting from Johnson’s solution to the left recursion problem [14] can be
turned in to parsers which construct BSR sets.

Even for nonambiguous grammars, combinator parsers may call the same function from
the same input position more than once, and thus efficiency may be improved by using
memoisation [21, 22]. The first time a call prs(X)(α, i, k, j) is made for a particular X
and j, the i and i′ such that (β, i, k′, i′) ∈ nt(X)(ε, j, j, j) can be stored in a table indexed
by X and j. Subsequent calls of the form prs(X)(γ, i, h, j) can then just use the stored
values i′.

If, in addition to storing results, a ‘called’ flag is used it could ensure termination for
grammars with left recursion. However, to be correct it is necessary that the first call
nt(X)(ε, j, j, j) computes all the values i′ before a second call of the form prs(X)(γ, i, h, j)
is made. This is not always the case for left recursive grammars. For example, given

nt(S) = alt(tp(d), seq(prs(S), tp(a)))

the call prs(S)(ε, 0, 0, 0) with I = [d, a, a, $] will incorrectly fail to parse I.
To deal correctly with grammars which contain left recursion Johnson adopted a contin-

uation passing approach [14]. We extend his, recogniser only, approach to BSR generating
combinators. The core idea is to store in a table both the right extents of the results of
calls nt(A)(ε, j, j, j) and elements of Pfn that apply updates to the table as a side effect.

In grammar terms, at the point where a combinator expression prs(X) is evaluated
on an element (α, i, k, j), there is a ‘current’ grammar rule Y ::= αXδ which is being
‘matched’ and when prs(X) returns, the matching will continue on the remaining part, δ,
of the rule, from each input position, i′, where (αX, i, j, i′) is returned by prs(X). So we
store δ and i in position TB[X, j] of a table TB, and define ‘continuation’ Pfn functions
cX , which access TB[X, j] and evaluate δ (and any other continuations in TB[X, j]) on
the returned input index (and any other returned input indices in TB[X, j]). Once this is
complete, the continuations associated with Y need to be evaluated, so in fact (cY , δ, i) is
stored in TB[X, j].

Note, the BSR elements created by prs(X) do not have to be recorded in the table
because the only action performed is set insertion and there is no context associated
with this. In this way the generation of a BSR set rather than a structured derivation
representation reduces the complexity of the parser.

Formally then, as above we define

Pfn = {f | f : (W∗ × N× N× N)→ P(W∗ × N× N× N) }
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The parser will construct a global memo table, TB, whose entries are indexed by combi-
nator expression names, X, and integers j, where 0 ≤ j ≤ |I|− 1. The entries contain two
sets, one of continuation elements (g, δ, i) and one of integers, i′. So

TB[X, j] ⊂ P(Pfn × W∗ × N)×P(N)

and the entries of TB are initialised to (∅, ∅). We use the notation TB[X, j].Pfns and
TB[X, j].ints to denote the first and second components of a table entry, so

TB[X, j] = (TB[X, j].Pfns,TB[X, j].ints)

The Pfn functions we define will update both a BSR set Υ and the table TB as side effects.
For each combinator expression name X ∈ N we define the Pfn function cX by

cX(α, i, k, j) {
addUr(X,α, i, k, j) ;
if( j ∈ TB[X, i].ints) { return ∅ }
else {

add j to TB[X,i].ints ;
return ∪{g(δX, l, i, j) | (g, δ, l) ∈ TB[X, i].Pfns} }

Rather than being parser functions, combinator expressions take an element of Pfn,
apply it to perform the next step of the parse, and then return the function which is
needed to complete the parse.

Thus we define combinators over the combinator expression functions

CF = {f | f : Pfn → Pfn}

The terminal combinator tc takes as input a terminal symbol, b, and returns the CF
function tc(b) defined by

(tc(b)(g))(α, i, k, j){
addUe(α, i, k, j) ;
if (I[j] = b) return g(αb, i, j, j + 1) else return ∅ }

The continuation function is still the same after the action associated with tc(b) is carried
out, but the element it is called with has been updated to reflect the ‘match’ to b.

seq and alt are again binary composition and union combinators over CF. For seq(p, q)
the continuation after the action of p is q followed by the original continuation.

(seq(p, q)(g))(α, i, k, j) = p(q(g))(α, i, k, j)

(alt(p, q)(g))(α, i, k, j) = (p(g))(α, i, k, j) ∪ (q(g))(α, i, k, j)

The eps combinator is defined as the identity function eps(g) = g.
Again, we have a combinator nt which takes an element X of N and outputs a user

specified function, nt(X), from CF. To avoid repeated calls (nt(X)(g))(α, i, k, j) with
the same g, i, and j, we define a memoising combinator, mem, which takes as input X.
The output CF expression, mem(X), takes as input a Pfn, g, and produces as output
another Pfn. This function, mem(X)(g), when called with (α, i, k, j), checks to see if
nt(X)(cX) has already been called on (ε, j, j, j), by checking whether there are any elements
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in TB[X, j].Pfns. If not then the call is made. Otherwise, the continuation (g, α, k) is
added to TB[X, j].Pfns and applied to all the results currently in TB[X, j].ints.

(mem(X)(g))(α, i, k, j) {
addUe(α, i, k, j) ;
if (TB[X, j].Pfns = ∅) {

add (g, α, i) to TB[X, j].Pfns ;
return (nt(X)(cX))(ε, j, j, j) }

else if ((g, α, i) ∈ TB[X, j].Pfns) { return ∅ }
else { add (g, α, i) to TB[X, j].Pfns ;

return ∪{g(αX, i, j, l) | l ∈ TB[X, j].ints} } }
The user defined functions nt(X) are constructed from alt and seq applied to eps and

functions of the form tc(b) and mem(Y ). For example, for Γ2 we have

nt(S) = alt(seq(mem(A), seq(mem(C), seq(tc(a),mem(B)))),
seq(mem(A), seq(mem(B), seq(tc(a), tc(a)))))

nt(A) = alt(seq(tc(a),mem(A)), tc(a))
nt(B) = alt(seq(tc(b),mem(B)), tc(b))
nt(C) = alt(seq(tc(b),mem(C)), tc(b))

We define g0 ∈ Pfn as g0(α, j, k, i) = {(α, j, k, i)}. Then a parser is called as

(mem(S)(g0))(ε, 0, 0, 0).

Returning to the example grammar S ::= d | S a we have

nt(S) = alt( tc(d), seq(mem(S), tc(a) ) )

and the call (mem(S)(g0))(ε, 0, 0, 0) with I = [d, a, a, $] returns the set

{ (S, 0, 0, 1), (S, 0, 0, 2), (S, 0, 0, 3) }

builds the memo table

TB 0 1 2 3
S ({(g0, ε, 0), (tc(a)(cS), ε, 0)}, {1, 2, 3}) (∅, ∅) (∅, ∅) (∅, ∅)

and constructs the BSR set

Υ = { (S ::= d, 0, 0, 1), (S ::= Sa, 0, 1, 2), (S ::= Sa, 0, 2, 3) }

5 Clustered nonterminal BSR parsing

In this section we describe a new form of generalised LL parser which has a modified
function call stack and whose extension to a parser is, as for Earley’s algorithm above,
obtained by simply adding calls to the BSR set constructing function bsrAdd(). In com-
mon with the basic GLL parsing approach, clustered nonterminal parsing (CNP) extends
classical LL(1) recursive descent parsers to all context free grammars. The underlying
idea is to directly handle the recursive descent function call stack in a way that allows
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nondeterministic choices in a recursive parser for a non-LL(1) grammar to be recorded in
‘process descriptors’. Each descriptor records the parser configuration at the point of the
descriptor’s creation. When the descriptor is ‘processed’ the parser configuration is reset
and the parse continues as though from the point at which the descriptor was created.
To enable this, lines of the parser are labelled with grammar slots. So for example, the
first line of a section of code which attempts to match a rule X ::= α is labelled with
the slot X ::= ·α, and the line of code which is to be returned to after the rule has been
matched has a label of the form Y ::= γX · δ. (Technically there is a bijection between
grammar slots and algorithm line labels but to avoid clerical overhead we shall suppress
the distinction between a label and the corresponding slot.) The behaviour of such a
parser is formally specified by code templates and a set of data structure building support
functions, given in Section 5.3. A comparison with GLL is given in Section 5.5. First we
give an informal description of the CNP approach.

5.1 CNP: generalised LL parsing

We assume that the input is held in an array I = [a0, . . . , an−1, $] where $ is the end of
string symbol. In recursive descent style, a clustered nonterminal parser has a section of
code for each alternate of each nonterminal. At each point during a parse we are at a
current grammar position, Y ::= γ · xβ with a current input position, k. To allow nested
call handling, the current return index, h, required when the call to Y is complete, will be
recorded in a global variable cU .

If x is a terminal then it is matched to ak and if the match is successful the grammar
and input positions are moved to Y ::= γx · β and k + 1. If x = X is a nonterminal then
the return position Y ::= γX · β, the current value in cU and the current input index k
are stored. To support efficient look-up the record is indexed by X and k and contains an
entry (Y ::= γ · β, cU ). We think of this graphically

Y ::= αX · β, cU

�
�

�
�

�
�

�
�X, k�

Then, for each rule X ::= μ such that ak is in the select set (the lookahead guard set,
see below) for X ::= μ a descriptor (X ::= ·μ, k, k) is created. The parser execution then
continues by selecting a descriptor (V ::= τ · η, l, j) and restarting the parse at grammar
and input positions V ::= τ · η and j, and with cU = l.

If we are at the end of a rule Y ::= γ· then we have successfully matched γ to the
input substring acU

. . . ak−1, and for each child (Z ::= τY · η, l) of (Y, cU ) a descriptor
(Z ::= τY · η, l, k) is created so that execution from the corresponding positions can be
continued. In general it is possible for a call to Y to match more than one substring,
and for the same sub-parse from Y to belong to several derivations. For example, for the
grammar Γ1 above and input ac we have derivations

S ⇒ aAB ⇒ acB ⇒ ac

S ⇒ aAB ⇒ aB ⇒ aBc ⇒ ac

Then from grammar position S ::= aA ·B we have a call to B from input positions 1 and
2. We also have a call to B from grammar position B ::= ·Bc and input position 1. These
generate the following record entries
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B, 1B, 2 B, 1S ::= aAB·, 0S ::= aAB·, 0 B ::= B · c, 1�� �
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To keep the size of the records worst case cubic we share nodes with the same label

B, 2

B, 1

S ::= aAB·, 0

B ::= B · c, 1
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We call the record structure a Call Return Forest, CRF, and refer to the index nodes
(X, k) as cluster nodes.

The handling of the supporting data structures needed is separated into stand-alone,
grammar independent, support functions which are called from the main parser. The
processes of adding nodes to a CRF and creating descriptors from children of a cluster
node are handled by the CNP support functions call() and rtn(), see below. Flow of
control within the parser is handled using an outer descriptor selection loop together with
algorithm line labels which correspond to function call return points. The outer loop selects
a descriptor (Y ::= α · β, h, k) and then effectively the parser recommences its recursive
descent like execution at input position k and at the line of the code for Y ::= αβ that
corresponds to the first symbol of β. A simple example is given in Section 5.2.

Formally, CNP descriptors, (L, k, j), comprise a grammar slot, L, that forms a code
label, an integer index of a CRF cluster node, and an input position. As descriptors are
created they are stored in a set R. In order to ensure that repeated computations are not
performed, the set of all descriptors which have been created are stored in a set U , and
an element is only added to R if it is not already in U . This is packaged into the support
function dscAdd() defined in Section 5.3.1.

The parser initially adds (S ::= ·α, 0, 0) to R and U for each production S ::= α such
that a0 is in the select set for S ::= α. The select set includes the set of terminals, b,
such that α

∗⇒bβ for some β, and the select set test is performed by the support function
testSelect() defined in Section 5.3.1.

On removing (L, k, j) the CNP steps through the code starting at line L, with addi-
tional BSR activity handled by the support function bsrAdd(), defined in Section 2. At a
line corresponding to (Y ::= α · bβ, k, j) where b is a terminal, if b = aj and |α| ≥ 1 then
the BSR (αb, k, j, j + 1) is added to the set being constructed.

At a line corresponding to (Y ::= α·, k, j) the return positions are recovered from the
CRF. This is handled by the support function rtn(). For each of child (Z ::= μY ·ν, i) of the
node (Y, k), the descriptor (Z ::= μY ·ν, i, j) is added. If ν = ε, the BSR (Z ::= μY, i, k, j)
is also added. If ν �= ε and μ �= ε, the BSR (μY, i, k, j) is added. There is a potential
complication in that it is possible for additional children to be added to (Y, k) after a
return action has been carried out, and there are cases where it is not possible to order
the descriptor processing order to avoid this situation. To deal with it, the return action
is recorded as a triple (Y, k, j) in the contingent return set P. This return action is then
applied to new children when they are created.

Finally, at a line corresponding to (Y ::= αX · β, k, j) where X is a nonterminal, a
CRF node (Y ::= γX · β, k) is created with parent (X, j). If there is no node (X, j) then
one is created and descriptors (X ::= ·γ, j, j) are added to R and U for each production
X ::= γ whose select set contains aj . This is done by the function ntAdd().2 Linking

2The use of ntAdd() means that CNP makes fewer attempts to construct existing descriptors than
RGLL.
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the creation of descriptors associated with the start of a nonterminal X to the creation
of the CRF node (X, j) in this way ensures that the descriptors are only created once.
The creation of nodes in the CRF is handled by the support function call(). If the node
(X, j) already exists then call() applies any return actions that have already been applied
to (X, j) to the new child (Y ::= γX · β, k).

CNP parsers are specified via a set of templates into which grammar symbols and
production rules are substituted; these are given in Section 5.3. First we given an example.

5.2 Example

Before giving the formal CNP templates we give an example CNP parser for the simple
grammar S ::= d | S a from Section 4.3.

set m to be the length of the input string
read the input into I and set I[m] := $
create CRF node u0 = (S, 0)
U := ∅; R := ∅; P := ∅; Υ := ∅
ntAdd(S, 0)
while R �= ∅ {

remove a descriptor, (L, k, j) say, from R
cU := k; cI := j; goto L

S ::= ·d:
bsrAdd(S ::= d·, cU , cI , cI + 1) ; cI := cI + 1
if(I[cI ] ∈ follow(S)) { rtn(S, cU , cI) }; goto L0

S ::= ·Sa:
call(S ::= S · a, cU , cI); goto L0

S ::= S · a:
if(testSelect(I[cI ], S, a) is false) goto L0

bsrAdd(S ::= Sa·, cU , cI , cI + 1) ; cI := cI + 1
if(I[cI ] ∈ follow(S)) { rtn(S, cU , cI) }; goto L0

L0: }
if (for some α and l, (S ::= α, 0, l,m) ∈ Υ) { report success}
else {report failure}

5.3 CNP generator specification

Throughout this section the following notation is used.
m: a constant integer whose value is the length of the input
I: a constant array of size m+ 1 containing the input string
cI , cU : integer variables
CRF: a digraph whose nodes are labelled (L, j)

where L is either a nonterminal or a grammar slot
P: set of CRF return actions represented as triples (X, k, j)
Υ: set of BSRs, (X ::= μ, i, k, j) and (μ, i, k, j)
R: set of descriptors waiting to be processed
U : set of all descriptors constructed so far
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$: end-of-string character
The parser has two global variables cU and cI that hold the current CRF node index

and input position, respectively, and a set of support functions. The functions ntAdd()
and testSelect() have to be constructed for a given grammar Γ by the parser generator,
and the latter makes use of the standard first and follow sets [2] which must also be
constructed by the parser generator. The other functions are grammar independent. The
function bsrAdd() is specified in Section 2. All functions assume the existence of a global
input array I, global sets Υ, P, U , R, and a global CRF graph.

5.3.1 CNP support functions

ntAdd(X, j) {
for all(grammar rules X ::= τ)) {

if(testSelect(I[j],X, τ )) { dscAdd(X ::= ·τ, j, j) } }

testSelect(b,X, α) {
if(b ∈ first(α) or (ε ∈ first(α) and b ∈ follow(X))) {return true}
else {return false} }

dscAdd(L, k, i) { if (L, k, i) �∈ U {add (L, k, i) to U and R}}

rtn(X, k, j) {
if ((X, k, j) �∈ P) {

add (X, k, j) to P
for each child v of (X, k) in the CRF {

let (L, i) be the label of v
dscAdd(L, i, j); bsrAdd(L, i, k, j) } } }

call(L, i, j) {
suppose that L is Y ::= αX · β
if there is no CRF node labelled (L, i) create one
let u be the CRF node labelled (L, i)
if there is no CRF node labelled (X, j) {

create a CRF node v labelled (X, j)
create an edge from v to u
ntAdd(X, j) }

else { let v be the CRF node labelled (X, j)
if there is not an edge from v to u {

create an edge from v to u
for all ((X, j, h) ∈ P) {

dscAdd(L, i, h); bsrAdd(L, i, j, h) } } } }

5.3.2 The CNP templates

Now we give the code templates which specify the CNP parser. A parser is obtained by
substituting the specific grammar production rules into the templates.

For each nonterminal X in the grammar there is a section of the algorithm, code(X),
which will be defined below. In addition to the grammar slot labels, we require a label L0
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which labels the end of the controlling while loop, then the statement goto L0 is equivalent
to break in C-style programming languages.

When the descriptors have all been dealt with, the test for acceptance is made by
checking for the existence of a BSR of the form (S ::= α, 0, l,m), for some α and l, where
m is the length of the input string.

We suppose that the nonterminals of the grammar Γ are A, . . . , Z, with start symbol
S. Then the CNP parser for Γ is given by:

set m to be the length of the input string
read the input into I and set I[m] := $
create CRF node u0 = (S, 0)
U := ∅; R := ∅; P := ∅; Υ := ∅
ntAdd(S, 0)
while R �= ∅ {

remove a descriptor, (L, k, j) say, from R
cU := k; cI := j; goto L
code(A)
. . .
code(Z)

L0: }
if (for some α and l, (S ::= α, 0, l,m) ∈ Υ) { report success}
else {report failure}
We give the specification for code(X) in terms of functions code(X ::= α ·β). We refer

to the specifications of code(X ::= α ·β) as the CNP templates. Suppose that the grammar
rule for X is X ::= τ1 | . . . | τp, we define:

code(X) = X ::= ·τ1:
code(X ::= ·τ1)
if(I[cI ] ∈ follow(X)) { rtn(X, cU , cI) }; goto L0

. . .
X ::= ·τp:

code(X ::= ·τp)
if(I[cI ] ∈ follow(X)) { rtn(X, cU , cI) }; goto L0

Given a slot E we define code(E) as follows, where a is any terminal and Y is any nonter-
minal, α and β are (possibly empty) strings of terminals and nonterminals, and L denotes
the label corresponding to the slot X ::= αY · β.
code(X ::= ·) = Υ := Υ ∪ {(X ::= ε, cI , cI , cI)}
code(X ::= αa · β) =

bsrAdd(X ::= αa · β, cU , cI , cI + 1)}; cI := cI + 1

code(X ::= αY · β) = call(L, cU , cI); goto L0

L :

code(X ::= ·x1 . . . xd) =
code(X ::= x1 · x2 . . . xd)
if(testSelect(I[cI ],X, x2 . . . xd) is false) goto L0
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code(X ::= x1x2 · x3 . . . xd)
. . .
if(testSelect(I[cI ],X, xd) is false) goto L0

code(X ::= x1 . . . xd·)

5.4 Example

For completeness we give the CNP parser generated from the above templates for the
grammar Γ2 used in Sections 1.1, 3.1, 4.1, 4.2.1 above.

S ::= A C a B | A B a a A ::= a A | a B ::= b B | b C ::= b C | b

set m to be the length of the input string
read the input into I and set I[m] := $
create CRF node u0 = (S, 0)
U := ∅; R := ∅; P := ∅; Υ := ∅
ntAdd(S, 0)
while R �= ∅ {

remove a descriptor, (L, k, j) say, from R
cU := k; cI := j; goto L

S ::= ·ACaB:
call(S ::= A · CaB, cU , cI); goto L0

S ::= A · CaB:
if(testSelect(I[cI ], S, CaB) is false) goto L0

call(S ::= AC · aB, cU , cI); goto L0

S ::= AC · aB:
if(testSelect(I[cI ], S, aB) is false) goto L0

bsrAdd(S ::= ACa · B, cU , cI , cI + 1) ; cI := cI + 1
if(testSelect(I[cI ], S,B) is false) goto L0

call(S ::= ACaB·, cU , cI); goto L0

S ::= ACaB·:
if(I[cI ] ∈ follow(S)) { rtn(S, cU , cI) }; goto L0

S ::= ·ABaa:
call(S ::= A · Baa, cU , cI); goto L0

S ::= A · Baa:
if(testSelect(I[cI ], S,Baa) is false) goto L0

call(S ::= AB · aa, cU , cI); goto L0

S ::= AB · aa:
if(testSelect(I[cI ], S, aa) is false) goto L0

bsrAdd(S ::= ACa · a, cU , cI , cI + 1) ; cI := cI + 1
if(testSelect(I[cI ], S, a) is false) goto L0

bsrAdd(S ::= ACaa·, cU , cI , cI + 1) ; cI := cI + 1
if(I[cI ] ∈ follow(S)) { rtn(S, cU , cI) }; goto L0

A ::= ·aA:
bsrAdd(A ::= a · A, cU , cI , cI + 1) ; cI := cI + 1
if(testSelect(I[cI ], A,A) is false) goto L0
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call(A ::= aA·, cU , cI); goto L0

A ::= aA·:
if(I[cI ] ∈ follow(A)) { rtn(A, cU , cI) }; goto L0

A ::= ·a:
bsrAdd(A ::= a·, cU , cI , cI + 1) ; cI := cI + 1
if(I[cI ] ∈ follow(A)) { rtn(A, cU , cI) }; goto L0

B ::= ·bB:
bsrAdd(B ::= b · B, cU , cI , cI + 1) ; cI := cI + 1
if(testSelect(I[cI ], B,B) is false) goto L0

call(B ::= bB·, cU , cI); goto L0

B ::= bB·:
if(I[cI ] ∈ follow(B)) { rtn(B, cU , cI) }; goto L0

B ::= ·b:
bsrAdd(B ::= b·, cU , cI , cI + 1) ; cI := cI + 1
if(I[cI ] ∈ follow(B)) { rtn(B, cU , cI) }; goto L0

C ::= ·bC:
bsrAdd(C ::= b · C, cU , cI , cI + 1) ; cI := cI + 1
if(testSelect(I[cI ], C,C) is false) goto L0

call(C ::= bC·, cU , cI); goto L0

C ::= bC·:
if(I[cI ] ∈ follow(C)) { rtn(C, cU , cI) }; goto L0

C ::= ·b:
bsrAdd(C ::= b·, cU , cI , cI + 1) ; cI := cI + 1
if(I[cI ] ∈ follow(C)) { rtn(C, cU , cI) }; goto L0

L0: }
if (for some α and l, (S ::= α, 0, l,m) ∈ Υ) { report success}
else {report failure}
Executing this algorithm with input abaa results in CRF

S, 0

A, 0

C, 1

B, 1S ::= A · Baa, 0

S ::= A · CaB, 0 S ::= AC · aB, 0
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and descriptor, contigent return and BSR sets
U = {(S ::= ·ACaB, 0, 0), (S ::= ·ABaa, 0, 0), (A ::= ·aA, 0, 0), (A ::= ·a, 0, 0),
(S ::= A · CaB, 0, 1), (S ::= B · Baa, 0, 1), (C ::= ·bC, 1, 1), (C ::= ·b, 1, 1),
(B ::= ·bB, 1, 1), (B ::= ·b, 1, 1), (S ::= AC · aB, 0, 2), (S ::= AB · aa, 0, 2)}

P = {(A, 0, 1), (C, 1, 2), (B, 1, 2), (S, 0, 4)}

Υ = {(A ::= a, 0, 0, 1), (C ::= b, 1, 1, 2), (AC, 0, 1, 2), (B ::= b, 1, 1, 2),
(AB, 0, 1, 2), (ACa, 0, 2, 3), (ABa, 0, 2, 3), (S ::= ABaa, 0, 3, 4)}
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5.5 Comparison of CNP with GLL

Classical GLL parsers [30] follow the recursive descent style even more closely than CNP
parsers. The general form of the algorithm, the line labels, and the descriptor based
approach is as for CNP parsers. However, the nested return positions are held in a graph
structured stack (GSS) rather than a CRF. A GSS node is of the form (Y ::= αX · β, k)
where k is the input position at the time the node was created, and the node is a parent
of the node corresponding to the previous return position

Z ::= νY · ρ, h Y ::= αX · β, k
�
�

�
�

�
�

�
��. . .�

Correspondingly, instead of holding the return input index for the previous call, cU holds
the current GSS node. The GSS merges multiple call chains that can arise from alternative
derivation step choices, sharing nodes with the same label and using loops in the case of
left recursion. Of course, the support functions that build the GSS are different but
correspond to the CNP call and rtn functions.

In order to construct an SPPF, GLL descriptors contain an SPPF node and the edges
of the GSS are labelled with an SPPF node. The GSS fragment on the left corresponds
to the CRF fragment on the right

Z ::= μY · ν, l

Y ::= αX · β, h
Y ::= αX · β, kZ ::= μY · ν, h

Y, h

X, k
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The idea of modifying the GLL GSS by introducing nodes of the form (X, i) was first
proposed by Alex ten Brink whilst writing his MSc thesis [32]. The proposal, which was not
published and was for a recogniser only, required nodes labelled (X, i) to be connected via
edges labelled with the traditional GSS nodes, and did not allow for SPPF construction.
The RGLL algorithm [26] is a parser which uses the traditional GSS but uses the notion
of ‘pop equivalence’ to group together GSS nodes, allowing less information to be stored
in the descriptors.

CNP has both a space and complexity advantage over classical GLL and RGLL. For
GLL there are complex support functions that are needed to handle the SPPF construc-
tion, whereas CNP just uses the simple set function bsrAdd(). Furthermore, there is no
need for the parser to add the children of each node it constructs and thus the correspond-
ing information does not need to be recorded in the descriptor or the GSS.

For readers already familiar with GLL we remark that the functions call() and rtn()
replace the functions create() and pop() in [30]. The function call() only attempts to add
descriptors for the alternates of a nonterminal X the first time X is encountered for a
given input position j. This makes call() slightly more complicated but more efficient
than the corresponding create() function. The functions getNodeT () and getNodeP ()
from [30] that build the SPPF are replaced by the simple, and general, bsrAdd() function.

In the next section we give some experimental results comparing CNP, classical GLL
and RGLL.

5.6 Experimental data

The primary purpose of this paper is to show that BSR set generation simplifies general
parsing algorithms. However, to demonstrate the practicality of BSR sets and the space
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efficiency of CNP over other GLL algorithms, in this section we report on comparisons
between the CNP BSR algorithm defined in this paper and two SPPF generating GLL al-
gorithms: ‘classical’ GLL (CGLL) as defined in [30] and ‘reduced descriptor’ GLL (RGLL)
as defined in [26].

We first note that we have implemented a version of extractSPPF() which constructs
SPPFs of exactly the same form as those in [26] (including the required handling of rules
of the form X ::= BBβ where B is nullable) and thus we can directly compare the sizes
of the BSR sets, the GLL SPPFs and the extracted Γ-core SPPFs.

Following the experimental section in [26], we show data for the grammars for ANSI-C
(1989), ANSI-C++ (late 1997 draft), C# V1.2 (2002 ECMA standard) and Java (Java
Language Specification 1). We also present timings, which indicate an advantage for BSR
CNP over SPPF GLL.

The lexical parts of the grammars are replaced by keywords and an external lexer used
to produce ‘lexicalised’ versions of test strings: for instance every identifier in the input
string is replaced by the keyword ID and a production of the form identifier ::= ’ID’
is added to each grammar; similarly for string, character, integer, real and Boolean literals.

For C and C++ our input strings comprise the complete source code for the RDP
and GTB tool kits which are both written in ANSI-C; for C# we use ten copies of the
complete source code of a Twitter client; and for Java, ten copies of an implementation
of Conway’s Game of Life. In addition, we use two copies of the source code for the ART
support library (which is written in C++) for the ANSI C++ grammar.

Summary statistics are presented in Table 1. As mentioned in Section 5.5, in CNP
descriptors are added by call(), resulting in fewer attempts to create descriptors that
already exist. We demonstrate this by reporting the number of ‘descriptor finds’. A
‘find’ is a data structure lookup that either returns a pre-existing object, or if not found
then returns a newly created object. Hence, the descriptor find count for each algorithm
is the total number of descriptor lookups; the descriptor count is the number of unique
descriptors constructed. In RGLL, both descriptor counts and descriptor-find counts are
significantly reduced over classical GLL; in CNP the descriptor counts match those of
RGLL but the descriptor-find count is reduced further to little more than the number of
descriptors.

The BSR set elements essentially correspond to the packed nodes of a classical SPPF,
and that is borne out in the table. The slightly smaller BSR set sizes arise from the extra
sharing enabled by the use of production prefixes in the BSR elements (see Section 1.1).

There is not a direct correspondence between GSS and CRF nodes. For instance,
assuming that lookahead is used in the same way in both approaches, there is a CRF
cluster node (X, j) if and only if there is a GSS node (Z ::= αX · β, j). However, the set
of indices j such that there is a GSS node (Z ::= αX · β, j) may not be the same as the
set of h such that there is a CRF leaf node (Z ::= αX · β, h). The GSS/CRF figures show
that, for these real world examples, the GSS has about the same number of nodes as the
number of CRF leaf nodes, but the CRF has the additional cluster nodes.

However, in general, the CRF can have far fewer edges than the GSS, and again this
is borne out by our data. The reduction in edges arises from nonterminals that are called
at the same input position but from different places in the grammar. A natural example
is the standard left recursive expression grammar. For the following grammar and input
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SPPF/BSR GSS/CRF
ANSI C++ on art support.tok (36,444 tokens)
GLL 51,209,451 9,493,519 473,257 475,542 1,036,075 4,755,333 6.60
RGLL 9,418,913 1,894,009 473,257 475,542 1,036,075 4,755,333 2.94
CNP 1,894,473 1,894,009 453,248 445,138 1,032,048 1,037,632 1.26
ANSI C++ on gtb src.tok (36,827 tokens)
GLL 72,168,406 13,061,222 561,139 562,843 1,270,903 6,392,785 9.52
RGLL 12,893,820 2,366,346 561,139 562,843 1,270,903 6,392,785 3.88
CNP 2,366,528 2,366,346 539,822 523,510 1,265,359 1,271,297 1.6
ANSI C++ on rdp full.tok (26,551 tokens)
GLL 52,729,299 9,687,071 425,385 426,291 942,742 4,709,390 6.40
RGLL 9,559,741 1,771,700 425,385 426,291 942,742 4,709,390 2.67
CNP 1,771,798 1,771,700 407,681 386,641 938,788 942,966 1.15
ANSI C on gtb src.tok (36,827 tokens)
GLL 11,756,373 4,178,345 297,677 261,401 564,437 2,042,843 1.64
RGLL 4,177,163 1,127,572 297,677 261,401 564,437 2,042,843 1.14
CNP 1,127,804 1,127,572 254,191 230,746 559,723 564,730 0.67
ANSI C on rdp full.tok (26,551 tokens)
GLL 8,730,389 3,122,638 222,206 195,799 417,204 1,510,486 1.19
RGLL 3,122,083 844,344 222,206 195,799 417,204 1,510,486 0.91
CNP 844,413 844,344 191,255 169,278 413,650 417,341 0.47
C# 1.2 on twitter.tok (33,840 tokens)
GLL 4,539,122 2,024,014 255,343 225,052 443,304 1,056,916 1.51
RGLL 2,016,754 837,254 255,343 225,052 443,304 1,056,916 1.25
CNP 837,254 837,254 221,272 234,131 438,652 443,303 0.56
Java JLS1 on life.tok (36,975 tokens)
GLL 4,738,709 2,302,532 260,377 223,401 505,179 1,249,154 1.30
RGLL 2,302,532 911,430 260,377 223,401 505,179 1,249,154 1.09
CNP 911,430 911,430 211,176 249,028 503,105 505,178 0.62

Table 1: Performance on programming language grammars
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a the GSS has eight edges and the CRF has four.

S ::= E | S + E E ::= T | E ∗ T T ::= a | b

S, 0 E, 0 T, 0

$, 0 S ::= S · +E, 0

S ::= S · +E, 0

E ::= E · ∗T, 0

E ::= E · ∗T, 0

S ::= E·, 0

S ::= E·, 0

E ::= T ·, 0

E ::= T ·, 0
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GSS

CRF

An extreme example of this effect is exhibited by the highly ambiguous grammar, Γ3,

S ::= b | S S | S S S

Table 2 shows that, as one might expect, there is one CRF cluster node per input position
and that the number of CRF edges is very significantly reduced compared to the number
of GSS edges.

6 Parser oracles

We conclude this paper with a brief discussion of the use of the output of a parser in the
subsequent semantic evaluation of a sentence. As we discussed above, it is common for
the syntactic structure of a language to be used in the definition of its semantics, and thus
for the semantic analysis phase of a translator to be based on the syntactic structure of
the input. Indeed, Lang [17] writes

In practice, the well formed strings of a language must be the projection of
some syntactic structure, often a tree structure, to which meaning can be
associated. ...
Hence, it is natural to produce as the result of a parsing algorithm a single
structure that represents all possible parses ... from which any specific parse
can be extracted in time linear with the size of the extracted parse tree.

Recursive descent parsers are popular in this respect because semantic actions can be
added to the parser itself, allowing semantic analysis to be carried out at the same time as
the syntax analysis. However, efficient simple recursive descent parsers require an LL(1)
syntactic structure.

Lee [18] discusses the idea that a parser should output an oracle: a parser for a grammar
Γ takes an input string u = a0 . . . an and produces a Boolean valued function FΓ,u such
that

• FΓ,u(X, i, j) = true if there are derivations S
∗⇒a0 . . . ai−1Xaj . . . an andX

∗⇒ai . . . aj−1

• FΓ,u(X, i, j) = false if there is no derivation X
∗⇒ai . . . aj−1

• FΓ,u(X, i, j) can take any value otherwise.
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SPPF/BSR GSS/CRF
GLL 1 27 15 3 1 3 6
RGLL 1 15 5 3 1 3 6
CNP 1 5 5 1 1 2 2
GLL 5 740 288 31 55 22 144
RGLL 5 357 71 31 55 22 144
CNP 5 95 71 55 5 21 36
GLL 20 27,740 4,863 421 3,820 97 2,784
RGLL 20 9,597 1,031 421 3,820 97 2,784
CNP 20 4,280 1,031 3,820 20 96 591
GLL 30 85,240 11,038 931 13,080 147 6,419
RGLL 30 26,382 2,296 931 13,080 147 6,419
CNP 30 14,070 2,296 13,080 30 146 1,336
GLL 40 191,840 19,713 1,641 31,240 197 11,554
RGLL 40 55,167 4,061 1,641 31,240 197 11,554
CNP 40 32,960 4,061 31,240 40 196 2,381
GLL 50 362,540 30,888 2,551 61,300 247 18,189
RGLL 50 98,952 6,326 2,551 61,300 247 18,189
CNP 50 63,950 6,326 61,300 50 246 3,726
GLL 100 2,702,540 124,263 10,101 495,100 497 73,864
RGLL 100 647,877 25,151 10,101 495,100 497 73,864
CNP 100 505,400 25,151 495,100 100 496 14,951

Table 2: Performance on Γ3
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Here S is the start symbol of Γ and X is any nonterminal. Lee calls the function FΓ,u an
oracle for u.

For example, an SPPF for u can be seen as a oracle, the function FΓ,u(X, i, j) returns
true if there is a node labelled (X, i, j) in the SPPF, and false otherwise. The set of items
produced by Earley’s algorithm is also an oracle.

However, these two oracle types are not equivalent. A semantic evaluator can ‘walk’
an SPPF, starting at the root node, selecting packed nodes according to any specified
strategy. All walks are guaranteed to correspond to a derivation, and provided the packed
node selection strategy is efficient, and there are many efficient strategies, the time taken
is proportional to the size of the selected derivation.

It is not straightforward to construct a derivation from the Earley sets. The problem
is illustrate by the grammar

S := A B | C B A ::= b b B ::= b | b b C ::= b

and the string bbb. The sets of Earley items are

S0 = {(S ::= ·AB, 0), (S ::= ·CB, 0), (A ::= ·bb, 0), (C ::= ·b, 0)}

S1 = {(A ::= b · b, 0), (C ::= b·, 0), (S ::= C · B, 0), (B ::= ·bb, 1), (B ::= ·b, 1)}
S2 = {(B ::= b·, 1), (B ::= b · b, 1), (A ::= bb·, 0), (S ::= CB·, 0),

(S ::= A · B, 0), (B ::= ·bb, 2), (B ::= ·b, 2)}
S3 = {(S ::= AB·, 0), (S ::= CB·, 0), (B ::= bb·, 1), (B ::= b·, 2), (B ::= b · b, 2)}

If we choose (S ::= AB·, 0) as the first derivation item then we know we need to select an
item of the form (B ::= β, k) from S3, suppose we choose (B ::= bb·, 1). We then need
an item (A ::= α·, 0) from S1, which does not exist. So we have to backtrack and choose
(B ::= b·, 2) instead.

In general then, an oracle of the form defined by Lee may not be sufficient to allow a
derivation to extracted efficiently in the sense of Lang, above.

Scott and Johnstone [29] modified the Earley algorithm to construct, on the fly in worst
case cubic time, an SPPF which is an oracle that can be used to construct a derivation in
time proportional to the size of the derivation. However, as we have discussed above, the
need to carry around information required to build the SPPF can significantly complicate
a parser in comparison to the corresponding recogniser.

The BSR set which corresponds to the packed nodes of an SPPF is also an oracle, and
it is this set that is constructed by the Earley, combinator and CNP algorithms in this
paper. A BSR set can be represented, for example, as an array indexed on i, j and Δ,
where Δ is a grammar rule or a left prefix of the right hand side of a grammar rule. The
(Δ, i, j) entry of the array is then an ordered list of k such that (α, i, k, j) belongs to the
BSR set. With this representation a derivation can be obtained from the BSR set in time
proportional to the size of the derivation, satisfying Lang’s criterion, and disambiguation
rules such as longest match and grammar rule priority can be efficiently applied.

It is possible, then, to produce a recursive descent semantics evaluator for a general
grammar if a general parser is used to first to provide an oracle that satisfies Lang’s
criterion. This is a generalisation of the standard approach whereby a general parser
produces an SPPF and then a recursive descent style semantic evaluator walks the SPPF.
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An advantage of this general style is that disambiguation rules can be specified in the
semantic evaluator, which can then use semantic as well as syntactic context.

This is the approach taken by Ridge [24], and suggested earlier in [19]. Ridge uses an
Earley parser to generate an oracle which is then used to guide simple grammar combina-
tors which execute specified semantic actions. Ridge’s oracle is essentially a representation
of the packed nodes of the SPPF constructed by Scott and Johnstone’s Earley parser. In
order to achieve worst case cubic complexity Ridge extracts an ε-free 2-form grammar
which is used by his Earley algorithm. General BSR sets do not require this restriction,
and Ridge’s method could easily be modified to use a BSR set building Earley or CNP
parser, see [35].

7 Conclusions and other related work

In this paper we have introduced the BSR set representation as a simpler alternative to
structured representations such as SPPFs, we have described a parser version of Johnson’s
combinator parser and a new GLL-style algorithm which construct such sets, and we have
demonstrated the ease with which BSR constructing parsers can be constructed from
recognisers using Earley’s algorithm.

We are not implying that existing generalised parsers are overly complex. If graph-
structured output is required then corresponding additional complexity is unavoidable, but
by returning BSR sets this complexity is separated from the underlying parsing algorithm,
making comprehension, implementation and comparison with other general algorithms
simpler, and allowing the same SPPF extraction function to be reused with any algorithm.
Furthermore, we contend that actually for many applications BSR sets can replace the
more structurally complex SPPFs.

There is a correlation between CNP parsers and the combinator parsers we have de-
scribed, specifically between the CNP CRF and contingent return set, P, and the mem-
oisation table TB. The set TB[X, j].ints is essentially equivalent to the CNP set, P, of
elements of the form (X, i, j) where j ∈ TB[X, j]. The relationship between TB[X, j].Ifns
and the CRF is less direct, and as we are not making any formal use of the relationship
we shall describe it without proof. The combinator nt() can be defined to map X to
any combinator expression, but because of the associative and distributive properties of
seq and alt there is an equivalent expression which is in normal form, as defined above.
The elements of TB[X, j].Ifns are of the form f(cY ) where f is a combinator expression
and the alternates of its normal form are right tails of alternates of nt(X). The element
f(cY ) is then closely related to a set of clustered nonterminal CRF elements of the form
((X, i), (Y ::= αX ·β, j)), where β is an alternate of f . It is this correlation which inspired
our extension of Johnson’s recognisers to BSR generating parsers.

We conclude by briefly noting other related work. In [26] there is a GLL style algorithm,
RGLL, in which the descriptors contain integers rather than GSS nodes, which was the
starting point for our CNP algorithm and which we have compared experimentally with
CNP in Section 5.6. It is straightforward to modify the RGLL algorithm in [26] to output
BSR sets using versions of the functions described in Section 5. However the modified
algorithm will have at its heart the traditional GSS rather than a CRF. A GLL style
parser that uses a modified GSS to reduce the number of descriptors created is described
in [1] and, as recounted in [26], some of the initial (unpublished) ideas were proposed by
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Alex ten Brink.
The first version of a binarised SPPF was introduced in [28]. However, as these graphs

were constructed from a GLR parser which naturally produces rightmost derivations, the
binarisation is from the right rather than the left. The resulting SPFF is, of course,
still worst case cubic. We can easily modify the BSR definition to naturally embed right
binarised trees instead of left binarised trees, allowing them to be constructed naturally
by a GLR-style algorithm.

Memoised recognisers were introduced in [22] where the technique was applied to Ear-
ley’s algorithm. In [12] there is a presentation of a continuation passing combinator style
parser based on Johnson’s approach. The parsers are worst case cubic order and con-
struct binarised SPPFs. An alternative combinator approach which generates BSR sets
is described, together with a Haskell implementation, in [35]. The construction of deriva-
tion trees by combinator parsers is discussed in [11], and continuation passing combinator
parsers are discussed in detail in [19]. Combinator parsers that are fully general and build
Tomita-style polynomial order derivation outputs are described in [9].

Devriese and Piessen’s grammar combinators [6, 7] offer an alternative solution, within
the purely functional programming domain, to the issues regarding (left-)recursion. Their
approach makes recursion observable without compromising referential transparency. They
also give a discussion on the general topic of observable sharing within embedded lan-
guages.
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