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Abstract. The ability of plant roots to penetrate soils is affected by several stimuli exerted by the surrounding medium, 

such as mechanical stresses and chemical stimuli. Roots have developed different adaptive responses, such as increase or 

decrease of the elongation rate of the apical region and swelling or shrinking of its diameter. We propose a mathematical 

model aimed at explaining the dynamic evolution of plant roots during the penetration into the soil. We treat the root as 

a cylinder and the root-soil interaction as a purely mechanical inclusion problem. In particular, the root dynamic evolution 

is based on a modified version of the extended universal law of West, Brown, and Enquist. Coupling the solution of the 

mechanical problem and the growth equation, we compare the theoretical results with experimental data collected in 

artificial and real soils. In this work, we propose a plausible interpretation of the experimental results of the root behavior 

during the growth inside the surrounding soil medium. 

Keywords Root penetration; Mechanical inclusion; Growth model; Elasticity  

1. Introduction 

Plants do not follow a rigid predefined growing plan but adjust their strategy to environmental conditions. 

Upon germination, plant architecture is driven by a genetic post-embryonic program, which is at the basis of 

the plant plasticity ([1,2]). The study in [3] identified two types of plant plasticity based on morphological or 

physiological mechanisms. Morphological mechanisms require high energetic costs because new functional 

portions are produced. On the other hand, in the physiological mechanism, the modifications occurring in 

differentiated tissue are imperceptible, the process is completely reversible and the energetic cost is very low. 

The two types of plasticity are continuously expressed during plant life since they are fundamental for their 

own survival ([4]). The root architecture is led by the root tip, which has the entire control of the root structure 

in the space of a few millimeters ([5]). Therefore, roots adapt to the dynamically changing soil features, mainly 

its impedance, with several responses, such as the shrinking of the diameter, the root-structure architecture 

modification, mucus secretion ([6–9]), affecting in turn the surrounding medium (Figure 1). Several 

investigations to understand how plant roots can modulate and control the external stimuli on their growth 

have been performed ([10–16]). Typically, a growing plant root can exert an estimated maximum pressure up 

to 1 MPa ([17]) and, consequently, can arrest its growth when the pressure required to penetrate the soil is 

higher than such threshold value. For maize root, the arrest of the growth has been reported with a penetration 

resistance of 0.8-2 MPa ([18,19]), and in [9] some maize plants did not grow beyond a penetrometer resistance 

of 0.25 MPa. The growth pressure is defined as the stress, acting normally at the root surface, which a root has 
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to exert in order to deform the soil around it. Although a penetrometer probe is widely used to estimate the 

pressure that a root has to exert for penetrating soils, the studies in [17] and [19] demonstrated that this 

procedure overestimates the root growth strength. In literature, growth models for plant roots are mainly based 

on Lockhart’s equation ([20–24]). To better understand root penetration strategies and phenomena involved in 

this process, the investigation of key parameters is required. One option is to investigate penetration 

mechanisms and adaptation through mathematical modeling and experimental techniques.  In particular, many 

experimental studies illustrated the evolution of root system in nutrient-rich patches ([25–29]) analyzing 

phenotypical reactions (branching, root elongation, lateral root emergence, root hairs proliferation, etc.). Since 

the majority of these studies were conducted in real soils ([30,31]), characterized by high heterogeneity, these 

findings have to be considered as a result of several physical and chemical stimuli. In fact, in order to properly 

investigate each phenomenon and carry out a rigorous cause-effect analysis, plants should be studied in 

environments that allow to distinguish each single stimulus. In order to discriminate indiscernible parameters 

in a real environment ([32]), we investigated the growth of plant roots in artificial soils with different soil and 

nutrient concentrations in the absence of other physical or chemical stimuli. 

Figure 1 Schematic diagram of the plant root structure. The growth phenomenon occurs at the apical region through cell growth and 

elongation. The growing region is constituted by the elongation zone and the meristem. Therefore, the growing tip with mucilage and 

cell secretion at the root cap enables the root penetration into the soil. The maturation zone is stationary and it is characterized by the 

presence of lateral hairs on the roots. The presence of hairs and lateral roots in the mature zone provides nutrients acquisition and 

anchorage. Scale bar is 500 µm.  

Therefore, in this work, to shed light on the conducted experimental results we propose a mathematical model. 

The mathematical model is based on an elastic inclusion problem to investigate the growth of plant root and 

its surrounding medium. In fact, the field of mechanics seems to have a prominent role to investigate and 

explain biomechanical mechanisms ([33–36]). In particular, the theory of linear elasticity can offer a possible 
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way to describe complex processes by translating into mechanical problems, such as the brain deformation due 

to a decompressive craniectomy ([35]) and the mechanical relationship between the tumor growth and its 

environment ([33,34]). In this regard, we studied the mechanical inclusion of a finite cylinder into a cylinder 

of infinite length as a highly idealized system of the interaction between the growing root and the surrounding 

soil medium. By exploiting a continuum mechanics approach, we treated the plant root as an elastic cylinder 

and the soil as a homogeneous elastic fracturable matrix, in agreement with [33]. Since we focused on the 

variation of the root elongation caused by the interactions with the surrounding environment, we considered a 

single isolated root growing in the axial direction. We applied our model in the specific case of Zea mays 

primary root growth in artificial soil with different concentration of Phytagel and in real soils with different 

soil compactness. In addition, we extended our model to describe experiments conducted in Phytagel medium 

with the presence of an excessive Murashige and Skoog Basal Salt Mixture concentration to test the influence 

on both the root elongation and radial expansion. The paper is organized as follows. A description of the 

formulation of the inclusion problem is given in Section 2. Section 3 describes the root growth in the case of 

(1) axial expansion assuming the absence of nutrients in the surrounding medium; (2) axial and radial 

expansion considering the presence of nutrients in the soil medium. Sections 4 and 5 summarize the results 

and concluding remarks, respectively.  

Our approach introduces certain simplification to model the complex interaction between the root and the 

surrounding soil medium. Therefore, we disregarded some mechanisms involved in the phenomenon of root 

growth into the soil medium, e.g. the flow at the root-soil interface.   

2. Preliminaries and Problem formulation 

We focus on biological phenomena in which the time-scale of growth is longer than the time-scale of the elastic 

response, this latter is hypothesized as being a quasi-static phenomenon, thus inertial forces are negligible. We 

consider the problem of the inclusion of a cylinder in a matrix. We treat both the cylinder and the matrix as 

linearly elastic, homogeneous, and isotropic material. The constitutive relationship between the stress tensor 

{𝜎𝑖𝑘}𝑖,𝑘 and the strain tensor {𝜖𝑖𝑘}𝑖,𝑘 is given by ([37,38])  

𝜎𝑖𝑘 = 
𝐸

1 + 𝜈
(𝜖𝑖𝑘 + 

𝜈

1 − 2𝜈
 𝜖𝑙𝑙 𝛿𝑖𝑘), 

where 𝐸 and 𝜈 are the Young’s modulus and Poisson’s ratio of the material. The strain tensor can be written 

as a function of the displacement vector 𝒖 

𝜖𝑖𝑘 =  
1

2
(𝑢𝑘,𝑖 + 𝑢𝑖,𝑘). 

By introducing cylindrical coordinates (𝑟, 𝜃, 𝑧), we assume that the displacement vector is 

𝒖(𝑟, 𝜃, 𝑧) = (𝑢𝑟 , 𝑢𝜃 , 𝑢𝑧) = (𝑢𝑟(𝑟), 0, 𝑢𝑧(𝑧)).                                                                                                             (1) 
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For equation (1) the non-vanishing components of the strain tensor are 𝜖𝑟𝑟 = 𝑢𝑟,𝑟 , 𝜖𝜃𝜃 =
𝑢𝑟

𝑟
, 𝜖𝑧𝑧 = 𝑢𝑧,𝑧. 

According to the assumption of steady-state process, the equilibrium equation is 

 

Figure 2 Diagram of the domain for the embedded elastic cylinder and the surrounding elastic matrix. The zooms show the inclusion 

problem applied to the domain related to the tip region of the elastic cylinder, 𝐶, of radius R and length L. Such zone is subjected to 

axial, 𝑝, and radial pressure, p. The corresponding surrounding matrix, 𝑀, is such that 𝑀 = 𝐶+ ∪ 𝐶− with the cylindrical hole (with 

radius 𝑅1 and length 𝐿1) subjected to axial, 𝑝, and radial pressure, p. The matrix 𝑀 has length 𝐿2 and radius 𝑅2, respectively.  

2(1-𝜈)𝛻(𝛻 ∙ 𝒖) − (1 − 2𝜈)𝛻 × (𝛻 × 𝒖) = 0.                                                                                                             (2) 

In order to describe the plant root growth as an inclusion problem, we assume that the growing phenomenon 

involves only the tip region of the embedded cylinder. We denote the domain of the growing zone 𝐶, the 

surrounding matrix as 𝑀, and we split 𝑀 into two subdomains 𝐶+, 𝐶−, 𝐶+ ∪ 𝐶− = 𝑀 as in Figure 2. Therefore, 

we assume that the growing domain, 𝐶, is cylindrical, with radius 𝑅 and length 𝐿, and that the growth occurs 

only in the axial direction. The cylinder is closed at both ends and subjected to the outer pressure 𝑝 on the 

bottom surface at 𝑧 = 𝐿 and 𝑝 in the radial direction. The upper part of the matrix is a linear elastic isotropic 

thick-walled cylinder, 𝐶+, of inner and outer radii 𝑅1 and 𝑅2 , respectively. 𝑝 is the pressure applied at 𝑅1. We 

then consider a linear elastic isotropic cylinder, 𝐶−, of radius 𝑅2. We suppose that the cylinder 𝐶− is closed at 

the bottom end (at 𝑧 = 𝐿2) and the top end is subjected to axial pressure 𝑝 over a circle of radius 𝑅1. In order 

to meet the experimental conditions, we require that there is no displacement over the whole outer surface of 

𝑀. First, we compute stresses and displacements in the elastic matrix, 𝑀, with a cylindrical hole, and then in 

the elastic cylinder, 𝐶. In the case of the elastic matrix, the equation (2) has the following solution1 

 
1 All the derivatives with respect to 𝜃  vanish and there is no dependence of the angle 𝜃. 
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{
 
 
 

 
 
 𝑢𝑟

+(𝑟) =
𝐶1
+𝑟

2
+
𝐶2
+

𝑟
                                𝑖𝑛 𝐶+,

𝑢𝑧
+(𝑧) = 𝐶3

+𝑧 + 𝐶4
+                                𝑖𝑛 𝐶+,

𝑢𝑟
−(𝑟) =

𝐶1
−𝑟

2
                                           𝑖𝑛 𝐶−,

𝑢𝑧
−(𝑧) = 𝐶3

−𝑧 + 𝐶4
−                                𝑖𝑛 𝐶−,
 

 

where 𝑢+, 𝑢− are the displacements of the upper and lower part of the matrix, respectively. Thus, we look for 

values of the constants such that the following boundary conditions 

{
  
 

  
 
𝜎𝑟𝑟
+ = −𝑝                                        𝑟 = 𝑅1,   𝑧 ∈ (0, 𝐿1),

𝑢𝑟
+(𝑅2) = 0                                                     𝑧 ∈ (0, 𝐿1),

𝑢𝑟
+(𝑅2) = 0                                                   𝑧 ∈ (𝐿1, 𝐿2),

𝑢𝑧
−(𝐿2) = 0                                                     𝑟 ∈ (0, 𝑅2),

𝑢𝑧
+(𝐿1) = 𝑢𝑧

−(𝐿1)                                        𝑟 ∈ (𝑅1, 𝑅2),

𝑢𝑧
+(0) = 0                                                     𝑟 ∈ (𝑅1, 𝑅2),

 

and the equilibrium 𝜋𝜎𝑧𝑧
+ (𝑅2

2 − 𝑅1
2) − 𝜋𝑝𝑅1

2 = 𝜋𝜎𝑧𝑧
−  𝑅2

2 at 𝑧 = 𝐿1 are satisfied. By neglecting the terms of 

higher order then 휀2, we obtain 

𝐶1
+ = 

−2𝑝𝜖2

𝐸𝑚
(1 + 𝜈𝑚), 𝐶2

+ = 
𝑅1
2(1 + 𝜈𝑚)

𝐸𝑚
{𝑝
𝜖2𝜈𝑚(1 − 𝜒)

1 − 𝜈
+ 𝑝 [1 +

𝜖2

1 − 2𝜈𝑚
(−1 +

2𝜈𝑚
2 (1 − 𝜒)

1 − 2𝜈𝑚
)]}, 

𝐶3
− = 

𝜖2𝜒

𝐸𝑚(1 − 𝜈𝑚)
(𝑝 + 𝑝

2𝜈𝑚
1 − 2𝜈𝑚

) , 𝐶1
− =  0, 𝐶4

− =  0,     

where 𝜒 = 𝐿1/𝐿2, 𝜖 = 𝑅1/𝑅2, 𝜐𝑚, 𝐸𝑚 are the Poisson ratio and Young modulus of the elastic medium, 

respectively. In a similar way, in the case of the elastic cylinder, the solution of the equation (2) is given by 

𝑢𝑟 (𝑟) = 𝐶1𝑟 2⁄  and 𝑢𝑧(𝑧) = 𝐶3𝑧 with (𝑟, 𝑧) ∈ 𝐶. By imposing the following boundary conditions 

{

𝜎𝑟𝑟  = −𝑝            𝑟 = 𝑅,         𝑧 ∈ (0, 𝐿),

𝜎𝑧𝑧 = −𝑝             𝑧 = 𝐿,         𝑟 ∈ (0, 𝑅),

𝑢(0) = 0                                 𝑟 ∈ (0,  𝑅),

 

the solution, in the case of the elastic cylinder, is given by 𝐶1 = [−𝑝(1 − 𝜈𝑐) + 𝜈𝑐𝑝] 𝐸𝑐⁄  and 𝐶3 =

 (2𝜈𝑐𝑝 − 𝑝) 𝐸𝑐⁄ , where 𝜐𝑐 , 𝐸𝑐 correspond to the elastic cylinder coefficients. In order to have the contact at the 

interface between the matrix and the elastic cylinder, we require the following compatibility equation  

{
𝑅 + 𝑢𝑟(𝑅)  =  𝑅1 + 𝑢𝑟

+(𝑅1),

𝐿 + 𝑢𝑧(𝐿) =  𝐿1 + 𝑢𝑧
+(𝐿1),   

 

the radius and length of the deformed elastic root are equal to the radius and length of the deformed matrix, 

respectively. By exploiting the compatibility conditions at the contact and after some algebra, we obtain the 

expressions for axial, 𝑝, and radial pressure, 𝑝, in a dimensional form 
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𝑝 = 𝐸𝑐
(1 − 𝜈𝑐)(𝑅 + 𝑅1𝐴2)(𝐿 − 𝐿1) + 2𝜈𝑐(𝐿 − 𝐿1𝐴1)(𝑅 − 𝑅1)

(1 − 𝜐𝑐)(𝑅 + 𝑅1𝐴2)(𝐿 + 𝐿1𝐵1) − 2𝜈𝑐
2(𝐿 − 𝐿1𝐴1)(𝑅 − 𝑅1𝐴1)

 ,                                                          (3.1) 

𝑝 = 𝐸𝑐
𝜈𝑐(𝑅 − 𝑅1𝐴1)(𝐿 − 𝐿1) + (𝐿 − 𝐿1𝐵1)(𝑅 − 𝑅1)

(1 − 𝜐𝑐)(𝑅 + 𝑅1𝐴2)(𝐿 + 𝐿1𝐵1) − 2𝜈𝑐
2(𝐿 − 𝐿1𝐴1)(𝑅 − 𝑅1𝐴1)

 ,                                                          (3.2) 

where 

• 𝐴1 = 𝜖
2 𝐸𝑐

𝐸𝑚
𝜐𝑚  

(1−𝜒)(1+𝜐𝑚)

𝜈𝑐(1−𝜐𝑚)
, 

• A2 =
𝐸𝑐

𝐸𝑚

(1+𝜐𝑚)

(1−𝜐𝑐)
[1 − 𝜖2 +

𝜀2

1−2𝜐𝑚
 (
2𝜐𝑚

2 (1−𝜒)

1−𝜐𝑚
− 1)] , 

• B1 = 𝜖
2 𝐸𝑐

𝐸𝑚
(1 − 𝜒)(1 + 𝜐𝑚) 

• 𝜖 = 𝑅1 𝑅2⁄ , 𝜒 = 𝐿1 𝐿2⁄ . 

3. Theoretical translation of biological phenomena 

We present a mathematical model describing the effect of mechanical stresses on plant root growth. The model 

shows how the axial stress at the contact affects the plant root growth in the surrounding environment. When 

the soil is hard to penetrate, an individual root may stop growing ([9]). Therefore, we use a Fracture-Regrowth 

Cycle, FRC, as in [33] by including also the condition that the root stops its growth when a threshold axial 

pressure is reached. If 𝑝
𝑓𝑟
 is the fracture stress of the surrounding elastic medium and  𝑝

𝑐
 is the maximum 

pressure that a root can exert to grow, two cases can occur: 

(a) 𝑝
𝑓𝑟
≥ 𝑝

𝑐
 . The elastic root can grow until the axial stress 𝑝 reaches the critical value and there is no 

fracture of the elastic matrix, i.e. the root stops growing when 𝑝 =  𝑝
𝑐
. It may be the limit case of a root 

growing in very strong soils. 

(b) 𝑝
𝑓𝑟
< 𝑝

𝑐
. The axial stress 𝑝 can reach the fracture stress 𝑝

𝑓𝑟
 and a new growth cycle begins. In 

particular, each cycle starts with the initial length equal to the growing zone length and ends when the 

axial stress, 𝑝, at the contact reaches soil failure, 𝑝
𝑓𝑟

. Therefore, the root relaxes, the increase in root 

length is stored, and a new cycle starts with the updated root length. 
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We focus on the case (b) and Algorithm 1 shows a brief outline of the solution algorithm implementing the 

FRC. In the following Subsections, we introduce the growth equations coupled with the equation (3.1) to 

compare our theoretical results with the experiments in artificial soils (see Supplementary material for details). 

In particular, the artificial soils were prepared with different Phytagel concentrations (PC) and different 

nutrient concentrations were obtained using Murashige and Skoog Basal Salt Mixture (MS). In the first case, 

we compare the theoretical results with data collected in different Phytagel concentrations, while in the second 

case with an excessive nutrient concentration in the artificial soil medium. In addition, for the first case, we 

compare our theoretical results with data from experiments in different real soil compactions (for more details 

see [9]).  

In this work, the main assumptions related to the growth process are the following:   

• The root is cylindrical and is a linearly elastic, homogenous, and isotropic material; 

• The surrounding matrix is a linearly elastic, homogenous, and isotropic fracturable material;  

• The growth is related to a single isolated root in the axial direction; 

• The growth is uniformly distributed at the root apical zone due to cell division and extension;   

• The growing zone has the same length and number of cells at the beginning of each FRC.  

• The pressure is zero at both ends of each FRC.  

3.1. Case I: axial expansion 

3.1.1. Growth equation  

By exploiting a similar approach to Lockhart ([20]) and by taking into account the soil impedance as in [21,39–

41], we can describe the growth process with the following model2 

1

𝑉
∙
𝑑𝑉

𝑑𝑡
=  𝛷 (𝑝 − 𝑝

𝑐
)
+
,                                                                                                                                                     (4) 

where 𝑉 is the volume of the root growing zone, 𝛷, [𝛷] = (MPa ∙ s)−1, is related to the extensibility of wall 

of a plant cell and 𝑝
𝑐
 is the threshold value introduced at the beginning of this Section. The model (4) captures 

 

2 (𝑓(𝑥))+ = max (𝑓(𝑥),0) = {
𝑓(𝑥),    𝑓(𝑥) > 0
0,        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

     is the positive part of 𝑓(𝑥).  
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the most commonly accepted phenomenon related to the influence of soil physical properties on root growth, 

i.e. roots grow slower in denser soils. In order to consider not only the influence of the soil impedance on the 

root growth but also the input power from the surrounding matrix, the energy rate of consumption due to the 

metabolism and growth, we adopt the growth model reported in [33] but considering the axial pressure  

𝜂
𝑑𝑁

𝑑𝑡
+ 𝑝

𝑑𝑉

𝑑𝑡
+ 𝛽𝑁 = 𝛾𝑁𝜌 ,                                                                                                                                             (5) 

where 

• 𝑁 = 𝑀 𝑚 =⁄ 𝑉 𝑣⁄  represents the total number of cells in the growing zone of the plant root; and 

𝑀 (𝑉), 𝑚 (𝑣) are the mass (volume) of the root growing zone and average mass (volume) of a single 

cell, respectively; 

• 𝜂 is the energy required to create a new cell; 

• 𝛽 is the metabolic rate for a single cell; 

• 𝛾𝑁𝜌 = 𝛼(𝑚)𝜌𝑁𝜌 = 𝛼𝑀𝜌 is the input power from the surrounding matrix and  𝜌 =  3 4⁄ . Since we 

focus on the growth of the primary root, we assume that the plant seed continuously supplies nutrients 

and the surrounding matrix is only an external source of water. In the case of older plant roots, we 

can consider the matrix is a continuously-replenished medium. 

• 𝑝 is the axial pressure experienced by the growing root tip at the boundary between root and matrix. 

For simplicity, we consider a uniformly distributed growth at the apical zone through cell division and cell 

extension. Clearly, since we pursue an approach based on the mechanical interaction between the root and the 

soil, we disregard to model the water flow in both the root system and the surrounding soil. The equation (5) 

is a modified version of the growth equation proposed by [33]. This approach has been applied to a wide range 

of biological phenomena ([42,43]). For example, the authors of [33] developed a model for tumor invasion, 

considering the effect of interfacial pressure as an extension of the West, Brown, and Enquist law ([44]). The 

root elongation rate is sensitive to variations in axial pressure ([45,46]), but insensitive to radial pressure ([47]). 

This aspect explains the presence of the mechanical term in equations (4) and (5) due to the axial pressure. We 

will further assume that the root is cylindrical (as in Figure 2) and grows only in length. Therefore, an increase 

in length is related to an increase in volume and in the number of cells through 

𝑑𝐿

𝑑𝑡
=  

1

𝜋𝑅2
 
𝑑𝑉

𝑑𝑡
=  

𝑣0
𝜋𝑅2

 
𝑑𝑁

𝑑𝑡
,  

where 𝑣0  is the single cell volume that we consider constant. Note that if 𝜌 = 1 and if  𝑝 is small, with proper 

values of 𝑣0, 𝜂, 𝛾, 𝛽 we can recover the equation (4) from the equation (5). 

3.1.2. Dimensionless formulation  
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We recast the growth problem in a dimensionless form. We introduce the dimensionless quantities 𝐿∗ =

𝐿 𝐿0⁄ , 𝑡∗ = 𝑡 𝑡𝑟𝑒𝑓⁄ , where 𝐿0  represents the length of the growing region and 𝑡𝑟𝑒𝑓 is the duration of the 

experiment. We assume 𝐿0 = 3mm and 𝑡𝑟𝑒𝑓 = 3days.  

Remark 1 𝐿1
∗  represents the initial length of the elastic cylinder in each cycle and we assume zero pressure at 

both ends of the cycle. Therefore, we can write 𝐿1 = 𝐿0𝐿
∗(𝑡0), where the adimensional length 𝐿∗(𝑡0) is 

“updated” at the beginning of each cycle. 

Omitting the “*”, in the case of axial growth, i.e. 𝑅 = 𝑅1, we can rewrite equations (3.1) and (3.2) as   

{
 

 𝑝 = Θ1
𝐿 − Θ2
𝐿 + Θ3

,

𝑝 = Θ4
𝐿 − Θ2
𝐿 + Θ3

,

                                                                                                                                                                   (6) 

where  

• Θ1 = 𝐸𝑐  
Λ1

Λ2
,  

• Θ2 = 𝐿(𝑡0) is the root length at the beginning of the FRC; 

• Θ3 =
Λ3

Λ2
𝜖2

𝐸𝑐

𝐸𝑚
 𝐿(𝑡0)(1 − 𝜒)(1 + 𝜐𝑚), 

• Θ4 = 
𝐸𝑐

Λ2
[𝜐𝑐 − 𝜖

2 𝐸𝑐

𝐸𝑚
 (1 − 𝜒)

𝜐𝑚(1+𝜐𝑚)

(1−𝜐𝑚)
], 

• Λ1 = 1 − 𝜐𝑐 + 
𝐸𝑐

𝐸𝑚
(1 + 𝜐𝑚) [1 − 𝜖

2 +
𝜀2

1−2𝜐𝑚
 (
2𝜐𝑚

2 (1−𝜒)

1−𝜐𝑚
− 1)], 

• Λ2 = Λ1 + 
𝐸𝑐

𝐸𝑚
(1 + 𝜐𝑚)

2𝜐𝑚𝜐𝑐𝜀
2(1−𝜒)

(1−𝜐𝑚)
2 − 2𝜐𝑐

2 , 

• Λ3 = Λ1 − 
𝐸𝑐

𝐸𝑚
(1 + 𝜐𝑚)

2𝜐𝑚
2 𝜀2(1−𝜒)

(1−𝜐𝑚)
2 −

2𝜐𝑚𝜐𝑐

1−𝜐𝑚
 , 

 and [Θ1] = [Θ4] = MPa and [Θ2] = [Θ3] = 1.  

By considering the stop of the root growth when 𝑝 reaches the critical value 𝑝
𝑐
, from the equation (5) we have 

𝛽 = 𝛾 (
Θ2+Θ3𝑝𝑐 Θ1⁄

1− 𝑝𝑐 Θ1⁄
)
𝜌−1

 and we introduce the scaling parameter Θ1 for the adimesionalization of the axial 

pressure, 𝑝, as an upper bound for 𝑝
𝑐
.  

In addition, we analyze how the axial stress at the contact can affect the biomechanical properties of plant root 

penetration depending on the surrounding matrix. Since the change in length is slow, every moment of the 

growth process can be represented as a static state and we can interpret the mechanical process of root growth 

as an inclusion model. The inclusion model analyses in detail the mechanical expansion of an elastic cylinder 

in a cylindrical hole of an elastic fracturable medium. In particular, we study the sensitivity of the root length 
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to the variation in the fracture stress, 𝑝
𝑓𝑟

, and the Young modulus, 𝐸𝑚 , of the surrounding matrix. Therefore, 

we analyse the variation in the root length, 𝐿𝑓𝑟 , when the axial contact pressure is equal to 𝑝
𝑓𝑟

. From the 

equation (6), we can obtain the expression of root length in the dimensionless form at 𝑝 =  𝑝
𝑓𝑟

  

𝐿𝑓𝑟 = 
𝐿(𝑡0) + Θ3

𝑝
𝑓𝑟

Θ1

1 − 
𝑝
𝑓𝑟

Θ1

, ∀ 𝑝
𝑓𝑟
< Θ1 .                                                                                                                   (7) 

Since 𝐿1 ≪ 𝐿2, we consider 𝜒 =   𝐿1 𝐿2⁄ → 0, but we maintain the order of approximation of 𝜖 = 𝑅1 𝑅2⁄ . 

We consider 𝐿𝑓𝑟 = 𝐿𝑓𝑟(𝑝𝑓𝑟 , 𝐸𝑚), i.e. as a function of both failure stress, 𝑝
𝑓𝑟

, and the elastic modulus of the 

surrounding medium, 𝐸𝑚 . The plot of 𝐿𝑓𝑟(𝑝𝑓𝑟 , 𝐸𝑚) is shown in Figure 3, which highlights that when 

1. 𝑝
𝑓𝑟
= 𝑘 ∙ 𝐸𝑚, 𝐿𝑓𝑟  is an increasing function of 𝐸𝑚 for values of 𝐸𝑚   enough small such that 𝐿𝑓𝑟 > 0 and 

𝑝
𝑓𝑟
< 𝑝

𝑐
; 

2. 𝐸𝑚 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, 𝐿𝑓𝑟  is an increasing function of 𝑝
𝑓𝑟

 such that 𝐿𝑓𝑟 > 0 and 𝑝
𝑓𝑟
< 𝑝

𝑐
; 

3. 𝑝
𝑓𝑟
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 <  𝑝

𝑐
, 𝐿𝑓𝑟  is a decreasing function of 𝐸𝑚 such that 𝐿𝑓𝑟 > 0.  

The above analysis highlights the importance of considering the concept of failure stress at a small value for 

Young’s modulus of the elastic matrix. 

 

Figure 3 Plot of the ratio between the root length at 𝑝 =  𝑝
𝑓𝑟

 and the root initial length in adimensional form, 𝐿𝑓𝑟/𝐿(𝑡0), considering 

the critical growth pressure as 𝑝
𝑐
= 0.5 MPa, the root Young modulus as 𝐸𝐶 = 10 MPa, the Poisson ratio for both root and soil as 

𝜐𝑚 = 𝜐𝑐 = 0.49, the root and hole radius as 𝑅 = 𝑅1 = 0.588 mm, and the outer radius of the soil as 𝑅2 = 30 mm. 

3.2. Case II: axial and radial expansion 

3.2.1. Growth equations  

We couple equation (5) with the following  
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𝑑𝑅

𝑑𝑡
∙
1

𝑅
=  (1 − 

𝛾𝐶𝑐
𝛾
)
+

∙
𝑑𝑁

𝑑𝑡
∙
1

𝑁
 .                                                                                                                                     (8) 

Now, equations (5) and (8) include both axial and radial growth. In particular, the axial pressure, 𝑝, at the 

boundary between the root tip and matrix depends on both root length and radius (see Section 2). In the 

equation (8), we take into account the estimated value, 𝛾𝐶𝑐, of the previous case, i.e. without nutrient in the 

soil, meaning that the plant seed furnishes nutrients and the surrounding medium supplies continuously only 

water (𝛾𝐶𝑐 corresponds to the parameter 𝛾  of the previous case, Subsection 3.1.1). In order to include the effect 

of the nutrient in the soil, the equation (8) considers that the radial swelling occurs only when the scaling 

parameter 𝛾 of the input power from the surrounding soil is higher than 𝛾𝐶𝑐 (Figure 4). By assuming that the 

root is cylindrical, the increase in length, 𝐿, is given by 
𝑑𝐿

𝑑𝑡
= 

𝑣𝑜

𝜋𝑅2
(
𝑑𝑁

𝑑𝑡
− 

2𝑁

𝑅
∙  
𝑑𝑅

𝑑𝑡
). We consider that the total 

number of cells in a plant root is  𝑁 = 𝑉 𝑣0⁄  , where 𝑉 is the root volume of the growing zone and 𝑣0  is the 

average of a single cell volume. We update 𝑣0 with the non-dimensional initial root radius at each FRC to 

indicate the possible thickening of cells due to the chemical stimulus.  

 

Figure 4 Schematic diagram of the root control mechanism to nutrient stress. The initial conditions are differently updated if the root 

activates the radial swelling as a response to nutrient stress (𝛾𝐶𝑐 < 𝛾). In such a case, the initial root length, diameter, and cell volume 

are updated and stored, otherwise, only the root initial length is stored. Each cycle starts with updated initial conditions and ends when 

the soil medium fractures, i.e. the axial stress, 𝑝, at the contact equals the soil failure, 𝑝
𝑓𝑟

. Therefore, the root relaxes and a new cycle 

starts with the updated initial conditions. Otherwise, the fracture in the matrix does not occur and the root grows until the growth critical 

pressure, 𝑝
𝑐
. 
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3.2.2. Dimensionless formulation  

We scale the variables 𝐿 and 𝑡 as in Subsection 3.1.2. In addition, we scale 𝑅 = 𝑅0𝑅
∗ where 𝑅0 the values of 

the top diameter at the third day of life (see Supplementary material).  

Remark 2 𝐿1, 𝑅1 represent the initial length and radius of the elastic cylinder, respectively, in each cycle and 

we assume zero pressure at both ends of the cycle. Therefore, we can write 𝐿1 = 𝐿0𝐿
∗(𝑡0),  𝑅1 = 𝑅0𝑅

∗(𝑡0), 

where the dimensionless length 𝐿∗(𝑡0) and radius 𝑅∗(𝑡0) are “updated” at the beginning of each cycle. By 

assuming the same length growing zone and number of cells at the beginning of each FRC with an increasing 

radius (𝑣0𝑁(𝑡0) = 𝜋𝐿(𝑡0)𝑅
2(𝑡0)), we update the single cell volume 𝑣0  with the non-dimensional initial root 

radius in each FRC, i.e. 𝑣0 ∝ 𝑅
∗2(𝑡0).  

By omitting the “*” and assuming that the root growth ends when 𝑝 = 𝑝
𝑐
, from the equation (5), now, we 

obtain 𝛽 = 𝛾𝑁𝑐
𝜌−1, 𝜌 = 3 4⁄ ,  

𝑁𝑐 = 𝑁(𝑡0)
1 +

𝑝
𝑐
𝐸𝑐
(
𝑈1𝐵1 − 𝑈2𝐴1

𝑈1
)

1 −
𝑝
𝑐
𝐸𝑐
(
𝑈1 − 𝑈2
𝑈1

)

,                                                                                                                             (9) 

where 

• 𝑈1 = (1 − 𝜈𝑐)(1 + 𝐴2) , 

• U2 = 2𝜈𝑐
2(1 − 𝐴1),  

• 𝐴1 = 𝜖
2 𝐸𝑐

𝐸𝑚
𝜐𝑚  

(1−𝜒)(1+𝜐𝑚)

𝜈𝑐(1−𝜐𝑚)
,  

• A2 =
𝐸𝑐

𝐸𝑚

(1+𝜐𝑚)

(1−𝜐𝑐)
[1 − 𝜖2 +

𝜀2

1−2𝜐𝑚
 (
2𝜐𝑚

2 (1−𝜒)

1−𝜐𝑚
− 1)] , 

In the case of axial growth, the equation (9) corresponds to the equation (7).  

4. Results and discussion  

4.1. Case I: axial expansion  

In this analysis, the surrounding medium is assumed to be an infinite body with respect to the plant root, so 

that 𝑅, 𝑅1 ≪ 𝑅2 and 𝐿, 𝐿1 ≪ 𝐿2. Therefore, to obtain the numerical solutions, we set 𝜒 = 𝐿1 𝐿2⁄ = 0, and we 

assume  𝑅2 = 30 mm for both artificial and real soils. We then assume that the critical growth pressure 𝑝
𝑐
=

0.5 MPa (for the value range of 𝑝
𝑐
 see, e.g., [9,17–19]), and the root Young modulus 𝐸𝑐 = 10 MPa ([48]). We 

assume that 𝑅1 = 𝑅 are equal to the values of the root apex radius at the third day of life (see Supplementary 

material) for artificial soil, and 𝑅1 = 𝑅 = 0.6 mm for real soils. Both Poisson’s ratios are 𝜈𝑚,𝑐 = 0.49 for 

Phytagel and 𝜈𝑐 = 0.49, 𝜈𝑚 = 0.45 for soils ([49–51]). The values used for 𝛾, 𝐸𝑚, 𝑝
𝑓𝑟

 are reported in Table 

1 (𝐸𝑚, 𝑝𝑓𝑟 are obtained by means of compression tests, Supplementary material). In order to estimate only the 
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variation of 𝛾  with respect the different soil media, a constant value for the parameter 𝜂, 𝜂 = 1 MPa ·  mm3, 

has been chosen. Figure 5 and Figure 6 show the evolution of the root length with time for artificial and real 

soils, respectively. In order to assess the influence of 𝛾 on the variation of the final root length, we carry out 

the theoretical predictions in both artificial and real soil using all the combinations of the value for 𝛾 listed in 

Table 1. The results by means of equation (5) are given in Figure 7a, b. The value of the scaling parameter 𝛾 

of the energy released from the seed increases with both the Phytagel concentration and the real soil 

compaction (Table 1). By using artificial growth media, roots, which were grown in harder soils, were longer 

than the roots grown in softer soils, while in real soils this was not the case, see Figure 5 - Figure 7b. In the 

only case of 0.6% Phytagel we obtain a lower final length in both the numerical (Figure 7b) and experimental 

results (see Supplementary material). 

Phytagel is a hard and brittle homogeneous gel ([52]) and, because of its homogeneity, we can assume that the 

increase in Young modulus leads to an increase in the fracture stress (see Subsection 3.1.2). In addition, Figure 

7c shows that 𝛾 increases linearly with respect to the Phytagel concentration. Therefore, in the presence of 

artificial soils, the increase in energy availability and the soil mechanical properties may enhance root 

penetration. 

 𝐸𝑚 (MPa) 𝑝
𝑓𝑟
±SD(MPa) 𝜸 (MPa·mm3/s) 

 

 

Phytagel 

0.15% PC 1.02·10−2 0.0025±7.2775·10-4 2.17·10-5 

0.3% PC 1.82·10−2 0.0053±0.0012 5.56·10-5 

0.6% PC 4.23·10−2 0.0089±0.0016 7.26·10-5 

0.9% PC 7.43·10−2 0.0140±0.0018 1.31·10-4 

1.2% PC 8.09·10−2 0.0141±0.0017 1.89·10-4 

 

Real soil  

[9] 

Low compaction 2 0.02 3.37·10-4 

Medium compaction 25 0.04 6.3·10-4 

High compaction 50 0.25 0.0029 

Table 1 Values of parameters used in the numerical solutions for the growth model. PC is the Phytagel concentration.  
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Figure 5 Comparison of the empirical data (red circles) in artificial soils (mean values ±SD) and analytical solution (blue line) at (a) 

0.15, (b) 0.3, (c) 0.6, (d) 0.9, and (e) 1.2% Phytagel concentration. Each step of the analytical solution represents a cycle, which ends 

with the fracture of the soil and begins after the relaxation of the root. 

 

Figure 6 Comparison of the empirical data (red circles) in real soils and analytical solution (blue lines) at (a) low, (b) medium, and (c) 

high soil compaction. Each step of the analytical solution represents a cycle, which ends with the fracture of the soil and begins after 

the relaxation of the root.  
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Figure 7 (a) In each soil medium we evaluated the variation of the root length at the sixth day of life, by considering all the combinations 

of the values for the scaling parameter 𝛾 of the input power from the plant seed, exploited in the numerical solution (Table 1); (b) The 

dotted line represents the variation of the root length in the numerical solutions of Figs 5 and 6; (c) The linear fit of 𝛾 and different 

concentrations of Phytagel (R-squared: 0.97; y = a∙x, a = 1.498∙10-2 MPa∙mm3/s). 

4.2. Case II: axial and radial expansion  

The theoretical results are performed by means of the equations (5) and (8) applied to the growing zone of the 

root and the related surrounding medium (Figure 2). We suppose that the soil is greater than the root, i.e. 

𝑅, 𝑅1 ≪ 𝑅2 and 𝐿, 𝐿1 ≪ 𝐿2 and we set the values of the parameters 𝜒, 𝑅2, 𝑝
𝑐
, 𝐸𝑚,𝑐, 𝜈𝑚,𝑐, 𝑝𝑓𝑟 and 𝜂 as in 

Subsection 4.1. The estimated values of 𝛾 for Zea mays roots grown in artificial soil without nutrients are in 

Table 1 and we refer to those values as 𝛾𝐶𝑐  in this Subsection. Since the experimental data show an abnormal 

radial expansion only in the case of the highest concentration of nutrients (MS4, see Supplementary material) 

at 0.3, 0.6, and 0.9% Phytagel concentration, we compare the numerical solution with the latter set of data. 

Since we have observed that the radial swelling of 17% at the height of the meristematic area occurs in the 5-

6-day old roots for the MS4 concentration with respect to the mature region, we consider the increase of 17% 

in the top diameter at the 6-day age for the comparison with the numerical solutions (see Supplementary 

material). The estimated value of the parameter 𝛾 related to the nutrient availability in the case of nutrients in 

the artificial soil at 0.3, 0.6, and 0.9% Phytagel concentration are 9.054·10-5, 1.157·10-4, and 1.839·10-4 

MPa·mm3/s. The value of the scaling parameter 𝛾 of the input power from the surrounding matrix increases 
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with both the Phytagel concentration and the MS concentration. The results from the equations (5) and (8) are 

given in Figure 8. The numerical result of the MS4 at 0.3% Phytagel concentration is smaller than the measured 

data for the same elongation reduction. Moreover, we obtain a good agreement with the evolution of the root 

length, while the root radius is underestimated with respect to the experimental data. It is worth noting that the 

equation (8) cannot allow a decrease in root radius, since 𝛾𝐶𝑐 represents the parameter related to the energy 

released by seed without nutrients in soil and the soil medium is only an external source of water.  

The biological mechanism observed in our experiments (Supplementary material) could be similar to salt 

toxicity as observed in [8].  In addition, other studies show similar root apex swellings, e.g. after depletion of 

gibberellic acid or ethylene and high calcium exposures ([15,16,53]). In addition, investigations on the 

depolymerization of F-actin with latrunculin B reveal also in very similar maize root apex swellings and 

inhibition of the root cell elongation ([13]). Therefore, a possible adaptive strategy to nutrient stress could be 

the enlargement of cells (as supposed in Subsection 3.2.2), inducing a swelling of root apex (see Supplementary 

material). This strategy should help cells to uptake more water and create a stronger barrier to reduce toxic 

nutrient concentration ([8]).  

Figure 8 Numerical solution of (a)-(c) the length and (d)-(f) the radius evolution against time (blue line). The red circles are the 

empirical data (mean values ±SD) in the case of MS4 concentration at (a), (d) 0.3, (b), (e) 0.6, and (c), (f) 0.9% Phytagel concentration. 

5. Conclusions  

The aim of this work is to present a mathematical model for the growth of plant roots in a soil medium. In 

particular, we developed a theoretical framework and an ad-hoc setup for better understanding the contribution 

that mechanical stimuli play in the root growth in the case of Z. mays primary root. Our theoretical and 

experimental studies may be a further investigation to explain how plant roots could control the growth in 

response to the contact with the surrounding medium. We obtained different mechanical responses of the root 
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growth depending on different mechanical properties of its environment in agreement with the experimental 

investigations (1) with different artificial soil concentration and real soil compactness in absence of nutrients 

and (2) with different nutrient concentrations in artificial soil. In all the cases, the scaling parameter 𝛾 related 

to the input energy increases with the artificial soil concentration and real soil compactness. In addition, for 

artificial soils with high nutrient concentration we obtained the reduction in root elongation as in experimental 

data but with an underestimated radial expansion.  

The mathematical model is based on continuum mechanics and is a general formulation for any type of 

inclusion problem in the context of linear elasticity. This study may help to improve the current knowledge of 

the behavioral strategies of plant roots as a starting point for constructing more complete predictive models, 

e.g. related to the mechanical properties of both the root tissues and the soil medium, the hydraulics of root 

growth, an explicit distinction in the growth process of cell division and cell elongation, and the assumption 

of a cylindrical root. Thus, a multidisciplinary approach with the synergy of modeling, engineering and plant 

science will be required towards a better understanding of the mechanical behavior of complex biological 

systems.  

Associated Content. Supplementary material. Some more details about experimental procedures and 

statistical analysis for the growth of plant roots in artificial media with different soil and nutrient concentrations 

are given. Related Figures and Tables are also included.  
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Highlights 

• This work proposes a mathematical model of the plant root growth into soil media. 

• The root-soil mechanical interaction is considered as a mechanical inclusion model. 

• Mechanical properties of the soil medium might alter the root behaviour. 
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