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Saturated random sequential adsorption packings built of two-dimensional ellipses, spherocylin-
ders, rectangles, and dimers placed on a one-dimensional line are studied to check analytical pre-
diction concerning packing growth kinetics [A. Baule, Phys. Rev. Let. 119, 028003 (2017)]. The
results show that the kinetics is governed by the power-law with the exponent d = 1.5 and 2.0 for
packings built of ellipses and rectangles, respectively, which is consistent with analytical predictions.
However, for spherocylinders and dimers of moderate width-to-height ratio, a transition between
these two values is observed. We argue that this transition is a finite size effect that arises for sphe-
rocylinders due to the properties of the contact function. In general, it appears that the kinetics of
packing growth can depend on packing size even for very large packings.

I. INTRODUCTION

Random sequential adsorption (RSA) [1] is a model of
random packing generation in which objects are added
to the packing according to the following scheme:

• a virtual object’s position and orientation are se-
lected randomly inside a packing;

• if the object does not intersect with previously
added particles, it is added to the packing and holds
its position and orientation unchanged;

• if the object intersects with any of the existing ob-
jects, it is removed and abandoned.

These iterations are repeated until the packing becomes
saturated, which means that there is no possibility of
placing another object there. RSA owes its popularity to
the observation that such packings resemble monolayers
obtained in irreversible adsorption processes [2, 3]. From
the theoretical point of view, RSA packings are inter-
esting as probably the simplest, yet not trivial random
packing model which accounts for excluded volume ef-
fects. In contrast to more popular random close packings,
where neighboring particles are in touch, the RSA pack-
ings have well-defined mean packing fraction, which is
an additional asset for numerical and theoretical studies
[4, 5]. However, only for some specific two-dimensional
shapes, there exist algoritms, which generates saturated
RSA packings [6–11] and estimation of the mean satu-
rated packing fraction is straightforward. In general case,
the knowledge about packing growth kinetics is needed
because above described RSA protocol does not give any
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hint when packing become saturated and no other parti-
cle can be added to it. Therefore, typically the packing
generation is interrupted after some finite number of it-
erations and the number of particles in saturated state is
estimated using the power-law:

θ(t) = θ −At−1/d. (1)

Here θ(t) and θ are the mean packing fraction after t iter-
ations and at saturation, respectively and A is a positive
constant [2]. Parameter d, for packings built of spher-
ically symmetric particles, is equal to the packing di-
mension [12, 13]. For two-dimensional packings built of
anisotropic shapes, it is typically equal to 3 [14–18], and
therefore it was assumed that it is equal to the num-
ber of shape’s degrees of freedom [19, 20]. Situation
changes when two-dimensional shapes are placed on a
one-dimensional line. Recently, Baule provided analyt-
ical arguments that the RSA packing built of ellipses,
whose centers are on a one-dimensional line, grows faster
than similar packings built of rectangles or spherocylin-
ders [21], which is different than for two-dimensional
packings [14, 15, 18]. The difference in growth kinet-
ics originates in the properties of the contact function,
which is defined as the separation distance at which two
particles of given orientations are in contact. For ellipses
the contact function is always analytical, but it can be
non-analytical, i.e. piecewise-continuous, for rectangles
and spherocylinders depending on the orientations of the
particles.

The main aim of this study is to check this effect nu-
merically, using recent algorithms that allow generating
strictly saturated RSA packings [8, 9]. Besides ellipses,
rectangles and spherocylinders, packings built of two-
dimensional dimers are also analyzed to study if there
is any difference for non-convex shapes. Additionally,
the dependence of the packing fraction on the anisotropy
of particles that build the packing and the scaling of the
number of RSA iterations needed to generate a saturated
packing with the size of the packing are studied. For
spherically symmetric particles this scaling is governed
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by the same parameter as the kinetics of packing growth
[22].

II. MODEL

Random packings of ellipses, rectangles, spherocylin-
ders and dimers (see Fig. 1) were generated using algo-
rithms for saturated packing generation [8, 9, 11]. These
algorithms trace regions where subsequent shapes can be
added. Note, that each figure placed on a line blocks
some area around it because placing there the center of
the next shape will cause intersection. The size of this
area varies with the orientation of the next figure. The al-
gorithms trace these regions and when they fill the whole
line for any orientation of the shape that can be added
to the packing then the packing is saturated. This ap-
proach was firstly used for generation of saturated RSA
packings built of spherically symmetric figures [6, 23, 24]
and further was extended to some anisotropic shapes like
ellipses and spherocylinders [8] rectangles [9] and dimers
[11]. Centers of shapes were placed on a one-dimensional

FIG. 1. Four types of shapes used for RSA packing genera-
tion. All the shapes were characterized by their anisotropy x
which is defined as width-to-height ratio. Note that dimer,
which is built of two identical disks (left bottom panel) is
equivalent to the smooth shape in the right bottom panel.

line segment. Typically, the length of this line segment
was L = 106, but for spherocylinders and dimers different
sizes: L ∈ [102, 107] were also used. Periodic boundary
conditions were used to minimize finite-size effects [25].
Each shape had a unit surface area. It is worth noting
that this assumption is one of many other possibilities
of comparing results obtained for shapes with different
anisotropies. For example, in the study of Chaikin et
al., different ellipses had the same length of short axis
[26]. Simulations were performed for width-to-height ra-
tios x < 3 for ellipses, rectangles and spherocylinders.
For dimers the highest studied anisotropy is x = 2.4.
Here, considering their smooth version, it ceases to be
connected for x > 1 +

√
3. However, the equivalence be-

tween two disks and smoothed dimers breaks already for

x ≥ 1+
√

2, because there it becomes possible to arrange
non-intersecting disks in a way that they correspond to
intersecting dimers. For each particular shape and the
packing size L, 100 independent saturated random pack-
ings were generated and analyzed to determine the mean
saturated packing fraction and the kinetics of packing
growth. In particular:

θ =
1

100

100
∑

i=1

θi

σ(θ) =
1

100

[

100
∑

i=1

(θ − θi)
2

]

1

2

, (2)

where θi is the coverage of i-th packing, θ is the mean cov-
erage and σ(θ) is its standard deviation that estimates its
error. The number of packings used in these calculations
guarantees that the statistical error of studied properties
will be negligible. To compare results for differently sized
packings, the number of iterations n was measured using
dimensionless time units

t =
n

L
. (3)

III. RESULTS AND DISCUSSION

Fragments of illustrative packings are shown in Fig. 2.

FIG. 2. Fragments of illustrative saturated random pack-
ings of ellipses, spherocylinders, rectangles and dimers. The
width-to-height ratio for all of these shapes is x = 2.0.

A. Mean saturated packing fraction

In contrast to the case where shape and packing di-
mensions are the same, here the mean saturated pack-
ing fraction can be defined at least in two ways: using
the coverage ratio θ, or using the mean density of shapes
N/L. Because a single, anisotropic object covers a differ-
ent amount of a line depending on its orientation, these
definitions can lead to different results, and, what is even
more interesting, to different conclusions – see Fig. 3. For
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FIG. 3. The dependence of the mean coverage ratio θ (a) and
the mean density of shapes (b) on the width-to-height ratio
x for studied shapes. Dots are numerical data obtained for
packing size L = 106, and solid lines are to guide the eye.

x = 1, in case of ellipses and spherocylinders the cover-
age ratio should be equal to Rényi car parking constant
θ = 0.7475979... [27]. Here, numerical simulation gives
θ(1.0) = 0.747573 ± 0.000022, which agrees with theo-
retical predictions within slightly more than one stan-
dard deviation error range. For squares this value is a
little smaller θ(1.0) = 0.734679 ± 0.000021, which seems
counter-intuitive. In contrast to disks, the case of squares
corresponds to packing of variable size segments on a one-
dimensional line, and such shapes typically form denser
packings [28, 29]. However here, the space for placing
another object can be blocked due to crossing in the ad-
ditional (in this case the second) dimension, which was
not the case in already studied RSA of multidispersive
shapes. For growing anisotropy the coverage ratio in-
creases and reaches its maximum for moderate width-
to-height ratio x. This is typical for a packing built of
anisotropic shapes [14, 15, 17, 18]. Here, the highest ob-
served coverage ratios are θ(1.5) = 0.775380 ± 0.000019
for ellipses, θ(1.5) = 0.781249±0.000020 for spherocylin-
ders and θ(1.3) = 0.749575 ± 0.000016 for rectangles.
Results for dimers were not included in this discussion,
because of the equivalence of different shapes (see Fig.
1), which results in different values of packing fractions.

Packing density behaves differently. It starts from a
lower value than the coverage ratio, which is a conse-
quence of the normalization used. Because of the unit
surface area, the diagonal of the disk is 2/

√
π ≈ 1.128....

Therefore, packing densities for disks are smaller by this
factor than the coverage ratio, which does not depend on
the size of the shape. It is worth noting that for x = 1,
packing densities for all studied shapes are almost equal
to each other. With an increase of the width-to-height
ratio, the objects’ density grows monotonically, which is
a consequence of the assumption that all shapes have
the same surface area. Therefore, for larger anisotropy
x, the shapes become thinner and the expected value of
their cross-section with the line becomes lower. Thus,
more of them can be placed there. However, this rea-
soning does not work in case of dimers, because their

height does not decrease as fast as for other studied
shapes. Therefore, here we observe the maximum density
of 0.774962± 0.000027 for x = 2.3.

It is worth noting that the mean packing fraction can
also be determined by studying cumulative distribution
function:

CDF(θ) = Prob(θi < θ), (4)

where θi is the packing fraction of the i-th random pack-
ing. For infinitely large packings the CDF(θ) is a step
function, but for finite ones it grows continuously from
0 t o1 – see Fig. 4. The mean packing fraction at the
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FIG. 4. The cumulative distribution function (4) for pack-
ing of different length. Dots corresponds to numerical data
obtained by studying 100 independent random packings.

limit of infinite packing can be estimated by finding the
crossing of the CDF’s for different packing sizes. This
method is especially useful for studying RSA on lattices
[30–35]. However, in our case, the precision given by 2
is enough due to quite large size of packings used in this
study.

B. The kinetics of packing growth

Although in general the kinetics of packing fraction
growth and particles density growth is different, here, to
be consistent with the previous theoretical study [21], we
will focus on the second one. We have also checked that
for large enough t, both kinetics converge to each other;
thus, the presented results should be universal.

Examples of kinetics of the mean density of particles
in the packing are shown in Fig. 5. Besides the fact,
that the kinetics in a log-log scale for high enough value
of t seem to agree with the power-law (1) for all shapes,
the more detailed analysis shows that the slopes of these
lines are apparently not constant – see the inset in Fig. 5.
Here we are mainly interested in the asymptotic value of
the parameter d, however, the accuracy of the power-law
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FIG. 5. The dependence of the increments of the mean par-
ticles density on time for ellipses, spherocylinders, rectangles
and dimers of width-to-height ratio x = 2.0. The inset shows
the dependence of the exponent d from Eq. 1 on the dimen-
sionless time t (3). The value of parameter d for a given time
t was estimated as a best fit of Eq. 1 to numerical data in
the range [10−2t, t]. Ends of the lines correspond to the time
tmin for which the first of 100 generated packing saturates.

(1) fitting decreases near saturation due to poor statis-
tics – there are only very few shapes added to the pack-
ing there, so a single placing event can significantly affect
the result. Additionally, the number of iterations after
a packing becomes saturated is a random variable de-
scribed by heavy-tail probability density function [22],
so after the same number of iterations, different packings
are not similarly close to saturation. Therefore, as a final
value of the parameter d the result of fitting in the range
[10−3tmin, 10−1tmin] was used, where tmin is the smallest
observed number of iterations needed to generate satu-
rated packing for the given shape. The dependence of
such exponent d on the anisotropy of the shape packed
is shown in Fig. 6. The results for ellipses and rectangles
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FIG. 6. The dependence of the exponent d near saturation
on the width-to-height ratio x for ellipses, spherocylinders
and rectangles. Dashed lines correspond to d = 1.5 and
d = 2 derived analytically for shapes with analytical and non-
analytical contact function [21].

are in a good agreement with analytical predictions [21].
Interesting behavior is observed for spherocylinders and
dimers. For spherocylinders of small anisotropy (x ≤ 1.3)
the RSA kinetics is the same as for ellipses, but for large
ones (x > 2.0) it resembles kinetics of packings built of
rectangles. For medium anisotropies, a continuous tran-
sition between these two limits is observed. A similar
smooth transition is observed for dimers.

To be sure that these results are not affected by the
particular definition of packing growth kinetics, another
way of determining the parameter d at saturation can
be used. It bases on the dependence of the median of
the number of iterations required to reach the saturation
on the packing size [22]. Namely Mt(L) ∼ Ld, where t
is the random variable denoting the number of iterations
needed to generate saturated packing expressed in dimen-
sionless time units, and d is the same exponent as in (1).
The dependence is shown in Figs. 7 and 8. Exponents

10
2

10
3

10
4

10
5

10
6

10
7

L

10
3

10
6

10
9

10
12

10
15

M

rectangle
spherocylinder
dimer
ellipse

t

FIG. 7. The dependence of the median of the number of
iterations needed to generate saturated packing on pack-
ing size. Dots correspond to numerical data for shapes of
anisotropy x = 2.0 and solid lines are power fits correspond-
ing to d = 1.486, d = 1.851, d = 1.852 and d = 1.967 for
ellipses, dimers, spherocylinders and rectangles, respectively.

d obtained from fitting are 1.486 ± 0.014, 1.581 ± 0.025,
1.852±0.023 and 1.967±0.023 for ellipses, dimers, sphero-
cylinders and rectangles of width-to-height ratio x = 2.0,
respectively. These results confirm previous conclusions
and agree with theoretical predictions for packings built
of ellipses and rectangles [21]. However, in order to check
if the continuous character of transition of d from 1.5 to
2.0 observed for spherocylinders and dimers of moderate
anisotropy will be preserved for arbitrary large packings,
the dependence of packings properties on packing size
should be examined more carefully.

C. Finite size effects

As it was shown for disks, when considering packing
fraction, finite size effects in RSA packings vanish along
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FIG. 8. The dependence of the median of the number of
iterations needed to generate saturated packing on packing
size for spherocylinders (a) and dimers (b). Insets show the
dependence of parameter d determined from such power fits
on aspect ratio x.

with the oscillations of the density autocorrelation func-
tion [25]. Therefore, because the density autocorrela-
tions vanish super-exponentially with the distance [36],
it is not expected to observe any finite size effects for the
packings studied. Fig. 9 shows the dependence of the
mean measured value of the shape density and the ex-
ponent d near saturation on a packing size. For smaller
packings L ≤ 103, some deviations of the measured den-
sities can be noticed but it can be rather a statistical
effect due to large uncertainty of the mean density than
a systematic error caused by a finite size of the packing.
Parameter d obtained from fitting numerical data to eq.1
varies more, but in case of packing built of ellipses and
rectangles it stabilizes around L ≥ 105. The situation
is different for spherocylinders and dimers, where it is
clear that at least for x = 2.0 parameter d increases with
packing size.

Detailed analysis of this dependence for other
anisotropies is shown in Fig. 10. The stable value of
d is observed only for quite large anisotropies (x = 3.0),
while for smaller ones, parameter d estimated from (1)
after initial decline seems to slightly grow with packing
size. Moreover, for small anisotropies the rate of this
growth is larger for larger x. The only exception to this
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FIG. 9. The dependence of the mean packing density (a)
and the exponent d near saturation (b) on packing size. Dots
correspond to numerical data for shapes of anisotropy x = 2.0.
Dashed black lines on the right panel correspond to d = 1.5
and d = 2 derived analytically for shapes with analytical and
non-analytical contact function [21].

behavior is the case of x = 1.1, but it is possible that
in this case the packing is still to small to observe any
growth there. It means that the continuous transition
from d = 1.5 to d = 2.0 can be caused by the finite size
of a packing, and in the limit of infinitely large system the
transition can be discontinuous. Interestingly, for dimers
of small anisotropy and packing sizes L ≈ 105 − 106, pa-
rameter d is significantly below 1.5, which is not observed
for spherocylinders.

Theoretical arguments also support the explanation of
the transition as a finite size effect. In the analytical
solution of the growth kinetics [21], it is shown that d
is determined by the analytic properties of the function
ψ(z, α, β) = r(α, z) + r(z, β) as z approaches the mini-
mum z∗ of ψ for given α, β. Here, r denotes the contact
function and α, β are the orientations of the particles at
the left/right end of the interval of length z. If ψ is
analytic around z∗ as for ellipses, d = 3/2, if it is non-
analytic (piecewise-linear), d = 2. However, depending
on α, β the behaviour around z∗ can be either analytic
or non-analytic for rectangles and spherocylinders. This
implies that the asymptotic approach is governed by a
superposition of power laws with ∼ t−2/3 and ∼ t−1/2

such that the true asymptotic scaling ∼ t−1/2 requires
much larger t to be clearly visible. Translated to the
simulation of saturated packings, L needs to be likewise
larger for rectangles and spherocylinders than for ellipses
to exhibit the correct asymptotic scaling.

Following this argument, the difference in the mea-
sured d values for rectangles and spherocylinders at the
same value of L should be due to the different frequen-
cies at which analytic/non-analytic configurations are ob-
served for these two shapes. To verify this argument, we
have uniformly sampled orientations α, β and determined
the relative frequency of non-analytic minima z∗ in ψ
(see Fig. 11). We see that over the range of aspect ratios
considered the fraction of non-analytic minima is > 0.4
throughout for rectangles, while it is much smaller for
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FIG. 10. Dependence of the parameter d estimated from (1)
on packing size for RSA packings built of spherocylinders (a)
and dimers (b) of several different anisotropies x. Dots are
the data obtained from numerical simulation and dashed lines
were drown to guide the eye. Insets show the dependence of
the parameter d on the anisotropy for packing size L = 107.

spherocylinders, increasing monotonically. The increase
in the relative frequency for larger x explains the transi-
tion observed in Fig. 6 for fixed L. Moreover, Fig. 11 also
clarifies that for the same x, spherocylinders will need
larger L than rectangles to reveal the true asymptotic
scaling, confirming the observations in Fig. 9 (right).

Fig. 10 likewise confirms that d will generally approach
the asymptotic limit for larger L. However, the discrep-
ancy for x = 1.1 is striking. It might be that for such
small aspect ratios the number of configurations with
non-analytic minima are simply not sufficient for the
overall packing to exhibit the predicted scaling. From
a theoretical perspective, this relates to the measure of
such configurations in the continuous α, β range, which
has not been taken into account in the analysis of [21].
Extensions of the theory might thus be needed to explain
the behaviour in the regime of small x.

Likewise, the case of dimers is special theoretically, be-
cause the function ψ can exhibit continuously degenerate
minima due to the non-convex shape. This case is thus
not covered by the results of [21] and requires further
analysis. The fact that dimers behave overall very sim-
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FIG. 11. Fraction of non-analytic minima in ψ(z, α, β) sam-
pled uniformly from 5000 α, β values ∈ [−π/2, π/2] for a given
aspect ratio x.

ilar to spherocylinders indicates that the effect of the
degeneracy might be small.

IV. SUMMARY

The numerical study of saturated random pack-
ings built of two-dimensional ellipses, spherocylinders,
dimers, and rectangles placed on a one-dimensional line
confirms the analytical results concerning the kinetics of
packing growth for packing built of ellipses end rectan-
gles [21]. The first one is characterized by a power-law
(1) with the exponent 3/2, and the second is governed by
the exponent 2. The behavior of the kinetics of packing
growth for packing built of spherocylinders and dimers
depends on the shape’s anisotropy. For small values of
the width-to-height ratio, it is the same as for ellipses,
while for large values it is governed by the same expo-
nent as for packings built of rectangles. For moderate
anisotropies, and finite packing size, the continuous tran-
sition between these two regimes is observed, which can
be explained for spherocylinders based on finite size ar-
guments. In contrast to packing fraction, which quickly
approaches its limiting value, parameter d may vary from
its value for infinitely large packing significantly even for
very large systems.
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98, 063310 (2018).
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