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Neuronal Conditional Knockout of
Collapsin Response Mediator Protein 2
Ameliorates Disease Severity in a Mouse
Model of Multiple Sclerosis
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Abstract

We previously showed that treatment with lanthionine ketimine ethyl ester (LKE) reduced disease severity and axonal

damage in an experimental autoimmune encephalomyelitis (EAE) mouse model of multiple sclerosis and increased neuronal

maturation and survival in vitro. A major target of LKE is collapsin response mediator protein 2 (CRMP2), suggesting this

protein may mediate LKE actions. We now show that conditional knockout of CRMP2 from neurons using a CamK2a

promoter to drive Cre recombinase expression reduces disease severity in the myelin oligodendrocyte glycoprotein

(MOG)35–55 EAE model, associated with decreased spinal cord axonal damage, and less glial activation in the cerebellum,

but not the spinal cord. Immunohistochemical staining and quantitative polymerase chain reaction show CRMP2 depletion

from descending motor neurons in the motor cortex, but not from spinal cord neurons, suggesting that the benefits of

CRMP2 depletion on EAE may stem from effects on upper motor neurons. In addition, mice in which CRMP2 S522

phosphorylation was prevented by substitution for an alanine residue also showed reduced EAE severity. These results

show that modification of CRMP2 expression and phosphorylation can influence the course of EAE and suggests that

treatment with CRMP2 modulators such as LKE act in part by reducing CRMP2 S522 phosphorylation.
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Introduction

We previously showed that clinical scores in the myelin

oligodendrocyte glycoprotein (MOG)35–55 peptide-

induced experimental autoimmune encephalomyelitis

(EAE) model of multiple sclerosis (MS) were significantly

reduced by administration of lanthionine ketimine ethyl

ester (LKE), accompanied by reductions in axonal

damage in spinal cord and optic nerve (Dupree et al.,

2015). LKE is a derivatized form of the amino acid lan-

thionine, a nonproteogenic amino acid synthesized via

transulfuration of cysteine with serine by cystathionine-

b-synthase (Hensley et al., 2010b). Previous studies

showed that LKE promotes growth factor-dependent

elongation and thickening of neurites, suppresses
TNFa-induced nitric oxide production from microglia,
and reduces neurotoxicity due to microglial-conditioned
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medium (Nada et al., 2012; Hensley et al., 2013). LKE is
neuroprotective in mouse models of ischemia (Nada
et al., 2012), Alzheimer’s disease (AD) (Hensley et al.,
2013; Koehler et al., 2018), fluid percussion injury
(Hensley et al., 2016), and spinal cord injury (Kotaka
et al., 2017). We reported that LKE has direct neuro-
protective and neurotrophic effects on human neuroblas-
toma SH-SY5Y cells and on primary mouse cerebellar
granule cells (Marangoni et al., 2018); and that in prima-
ry oligodendrocyte progenitor cells (OPCs) LKE induced
branch elongation and increased messenger RNA
(mRNA) levels of markers of OPC maturation
(Savchenko et al., 2019). However, whether the beneficial
actions of LKE in EAE are mediated via effects on neu-
rons or other cell types is not yet known.

Despite showing numerous beneficial actions, the
mechanisms of action mediating LKE effects remain to
be determined. Proteomic studies showed that LKE
binds to several proteins present in synaptic complexes,
the primary target being collapsin response mediator pro-
tein 2 (CRMP2) (Hensley et al., 2010a). CRMP2 is a
member of a family of five proteins that act as adaptor
proteins and interact with binding partners affecting var-
ious cellular functions including division, migration,
polarity, synaptic connections, and cytoskeletal architec-
ture (Khanna et al., 2012; Moutal et al., 2019b). In the
CNS, CRMP2 has been well characterized with respect to
neurite growth and retraction, neural differentiation,
axonal transport, and neurotransmitter release (Quach
et al., 2004; Chae et al., 2009; Hensley et al., 2011;
Quach et al., 2015). CRMP2 and other members of this
family are highly expressed in the nervous system during
early development, and downregulated in the adult
(Quach et al., 2000; Rogemond et al., 2008) where it
remains expressed in neurons as well as in glial cells.

CRMP2 effects on axon elongation and neurite exten-
sion involve binding to tubulin dimers which are then
transferred to the growing plus end of microtubules
(Fukata et al., 2002). CRMP2 binding to tubulin is reg-
ulated by its phosphorylation status, in particular phos-
phorylation of serine 522 (S522) by cyclin dependent
kinase-5 (Cdk5) (Uchida et al., 2005), which in turn is
permissive for phosphorylation at Thr509, 514, and 518
by glycogen synthase kinase 3b (GSK3b) (Uchida et al.,
2005). Phosphorylation at these sites reduces CRMP2’s
affinity for tubulin heterodimers, thus reducing microtu-
bule growth and causing axon retraction (Uchida et al.,
2005). Blocking S522A phosphorylation is protective as
indicated by findings that the inhibition of Cdk5, or the
use of a non-phosphorylatable S522A CRMP2 vector,
reduced neurite growth defects in hippocampal cells
(Crews et al., 2011); and that knockin (KI) mice with
CRMP2 S522A have reduced impairment of synaptic
plasticity due to amyloid peptide Ab (Isono et al.,
2013). More recently, interfering with CRMP2

phosphorylation at S522 was shown to reduce pathology
in models of Parkinson’s disease (PD) (Togashi et al.,
2019), chronic pain (Moutal et al., 2016a; Yu et al.,
2018; Moutal et al., 2019a), migraine (Moutal
et al., 2016b), neurofibromatosis type 1 (NF1) (Moutal
et al., 2017b), bipolar disorder (Tobe et al., 2017), glio-
blastoma (Moutal et al., 2018c), and SOD1G93A amyo-
trophic lateral sclerosis (ALS) (Numata-Uematsu et al.,
2019). It was also reported that CRMP2 phosphorylation
plays a critical role in Nogo-receptor signaling (Petratos
et al., 2012), and that overexpression of a nonphoshor-
ylatable CRMP2 (at threonine 555) attenuates axonal
damage in the optic nerve of EAE mice (Lee et al.,
2019). Together these studies point to a role for
CRMP2 in modulating disease progression in mouse
models of neurodegenerative diseases.

Several studies suggest that LKE works, at least in
part, by inhibiting the activity of Cdk5, thus reducing
CRMP2 S522A phosphorylation (Hensley et al., 2011;
Nada et al., 2012; Hubbard et al., 2013). It is therefore
possible that the effects of LKE in MOG35–55 peptide
induced EAE are mediated by modulation of CRMP2
activity. To begin to address this, we generated
CRMP2 conditional knockout (cKO) from neurons and
examined the consequences on the development of EAE.
We found that the neuronal CRMP2 cKO mice showed
reduced clinical signs and less neuropathology as com-
pared to controls. Since CRMP2 phosphorylation regu-
lates its activity, we used the CRMP2-S522A KI mice
and found that these mice also show reduced disease
severity as compared to wild-type (WT) control mice.

Methods

Mice

All animal studies were approved by both the University
of Illinois Chicago and the Jesse Brown VA Institutional
Animal Care and Use Committees. Mouse ESCs
(Dpysl2tm1a(KOMP)Wtsi, RRID:IMSR_KOMP:
CSD38021-1a-Wtsi), harboring a Knockout First, pro-
moter driven CRMP2 allele were obtained from
Knockout Mouse Project (KOMP) Repository, reder-
ived, then crossed to Rosa26-FLPe mice (RRID:
IMSR_JAX:003946) to delete the neomycin cassette
(see Supplemental figure 1) yielding CRMP2f/f mice.
CRMP2f/f mice were crossed to CamK2a-CreER(T2)
(“Cre,” B6;129S6-Tg(Camk2a-cre/ERT2)1Aibs/J,
RRID:IMSR_JAX:012362) mice and backcrossed to
generate CRMP2f/f:Creþ/� and CRMP2f/f:Cre�/� mice.
Frozen embryos from CRMP2 S522A KI mice
(Yamashita et al., 2012) were provided by Dr. Yoshio
Goshima (Kanagawa, Japan) and rederived to generate
CRMP2 KI and corresponding WT mice (see
Supplemental figure 2). Germline transmission was
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confirmed by genotyping for the loxP allele in CRMP2f/f

mice, and by Sanger sequencing for the A to G substitu-

tion in S522A KI mice.

Induction of EAE

Eight-week CRMP2f/f:Creþ/� mice were administered

tamoxifen (TAM, 100 mg/kg/day, intraperitoneal [i.p.])

for 5 consecutive days to generate CRMP2 cKO mice.

CRMP2f/f:Cre�/� mice received identical treatment and

served as WT controls. EAE reagents were purchased

from Hooke Laboratories (EK-2110). In brief, 10-week-

old mice (9 days after TAM treatment) were injected with

200 mg of MOG35–55 peptide emulsified in CFA (two
100 ml subcutaneous injections into adjacent areas in

one hind limb). Two hours later, mice received an i.p.

injection of pertussis toxin (PT; 125 ng in 100 ml
phosphate-buffered saline [PBS]), then 24 hr later a

second PT injection. Clinical signs were scored as fol-

lows: 0¼ no clinical signs, 1¼ limp tail, 2¼ impaired right-

ing (unable to return to upright position after placed on

back), 3¼ paresis of one hind limb, 4¼ paresis of two hind

limbs, and 5¼ death. Scoring was performed every other
day at the same time and by the same investigator

blinded to allocation. For analysis of variance

(ANOVA), if a mouse died or was sacrificed its last

score was carried forward till the end of the study.

Immunohistochemistry

Mice were euthanized with carbon dioxide then transcar-

dially perfused with ice-cold PBS. Brains were removed,
dissected sagitally at midline, and one hemisphere post-

fixed in 4% PFA for 48 hr, followed by 2 days in 30%

sucrose for cryoprotection. The other hemisphere

was dissected into regions (CB, cerebellum; CTX,

cortex) and kept frozen at �80�C till use. Sections

(20 mM) were prepared starting at midline.

Immunohistochemistry (IHC) was done in cortical

areas extending from �1.0 to �2.5 mm relative to
Bregma, containing retrosplenial CTX (rCTX); and

above the lateral ventricle, extending from 0.5 to

2.0mm relative to Bregma, which contains motor

cortex (mCTX). Spinal cords were removed, and

lumbar areas (L1–L4) from four mice processed for

IHC and from four mice frozen at �80�C till use.

Primary antibodies were rabbit monoclonal anti-

CRMP2 (1:1,000, Abcam Cat# ab129082, RRID:

AB_11154701), rabbit polyclonal anti-Iba1 (1:1,000,
Wako Cat# 019-19741, RRID:AB_839504), rat mono-

clonal anti-CTIP2 (1:100, Abcam Cat# ab18465,

RRID:AB_2064130), and rat monoclonal B2.210 anti-

glial fibrillary acidic protein (GFAP, 1:1,000, Thermo

Fisher Scientific Cat# 13-0300, RRID:AB_2532994)

(Trojanowski et al., 1986). Sections were incubated

overnight at 4�C in primary antibody, washed 3 times
in PBS for 5 min each, then incubated in rhodamine
red- (RRX) or fluorescein- (FITC) conjugated secondary
antibodies (1:1,000, Vector Laboratories) in blocking
solution. Negative control sections were prepared with-
out primary antibody. Sections were counterstained with
DAPI, then mounted with VectashieldVR H-1000 mount-
ing medium (Vector Laboratories). Images were collected
on a Zeiss Axioplan 2 microscope equipped with an
MRm camera using a 40� objective. This provides a
field of view of 0.16 mm2 of which .09 mm2 is captured
by the camera. Axiovision 4.7 software parameters were
set to define positive staining versus background values,
obtained from the same regions in negative control sec-
tions. A cutoff value >10 mm2 was used to identify cell
bodies and processes positively stained for GFAP or
Iba1. Staining was quantified in sagittal sections through
the cerebellum, with at least four sections per animal and
three animals per group, and presented at % area
stained.

Immunoblot Analysis

Tissues were homogenized in radioimmunoprecipitation
assay (RIPA) buffer (Sigma-Aldrich R0278) containing
protease and phosphatase inhibitors (Roche
11836153001). Lysates were cleared by centrifugation
and protein concentration measured by bicinchoninic
acid (BCA) protein assay (Cat# PI23225, Thermo
Fisher Scientific, Waltham, MA). Samples were loaded
on 4% to 20% NovexVR gels (Cat# EC60285BOX,
Thermo Fisher Scientific). Proteins were transferred for
1 hr at 100 V using TGS (25 mM Tris pH¼ 8.5, 192 mM
glycine, 0.1% [mass/vol] sodium dodecyl sulfate), 20%
(vol/vol) methanol as transfer buffer to polyvinylidene
difluoride (PVDF) membranes 0.45 mm (Cat#
IPVH00010, Millipore, Billerica, MA), preactivated in
pure methanol. After transfer, membranes were blocked
at room temperature for 1 hr with tris-buffered saline
with Tween 20 (TBST; 50 mM Tris-HCl, pH 7.4,
150mM NaCl, 0.1% Tween 20) containing 5% (wt/vol)
nonfat dry milk, then incubated separately with the indi-
cated primary antibodies (Table 1) in TBST containing
5% (mass/vol) bovine serum albumin, overnight at 4�C.
Following incubation in horseradish peroxidase-
conjugated secondary antibodies from Jackson
Immunoresearch, blots were revealed by enhanced lumi-
nescence (WBKLS0500, Millipore) before exposure to
photographic film. Films were scanned, digitized, and
quantified using Un-Scan-It gel version 6.1 scanning soft-
ware by Silk Scientific Inc (Orem, UT). CRMP2 phos-
phorylation levels were normalized to total CRMP2
levels measured in the same sample, and total CRMP2
levels were normalized to b-actin levels measured in the
same sample.

Moutal et al. 3



Electron Microscopy Analysis of Axonal Damage

Mice were prepared for transmission electron microscop-

ic analysis as previously described (Dupree and Feinstein,

2018). Mice were transcardially perfused with 0.1 M

Millonig’s buffer containing 4% paraformaldehyde and

5% glutaraldehyde. Following 2 weeks of aldehyde post-

fixation, lumbar spinal cords were harvested, rinsed in

0.1M cacodylate buffer, postfixed in 2% osmium tetrox-

ide, rinsed in 0.1 M cacodylate buffer, dehydrated in

serial dilutions of ethanol, and embedded in PolyBed

812 resin (PolySciences, Warrington, PA). Ultrathin

(70 nm) sections from the lumbar spinal cord levels L2–

L3 were stained with uranyl acetate and lead citrate and

imaged using a JEOL JEM 1400Plus transmission elec-

tron microscope (JEOL, Peabody, MA) equipped with a

Gatan OneView CMOS camera (Gatan Inc., Pleasanton,

CA). To assess the extent of axonal degeneration, a min-

imum of 15 electron micrographs (10,000� magnifica-

tion) were collected per mouse from the lateral columns

within 100 mm of the peripheral surface of the cord.

These images were used to determine the relative percent

of axons undergoing degeneration. Axon degeneration

was quantified employing a modification of a classifica-

tion scheme (Recks et al., 2013) we previously employed

(Dupree et al., 2015). Axons were considered damaged if

they exhibited one or more of the following: (a) myelin

profiles lacking an axon (axolysis, due to either vacuoli-

zation or condensation), (b) axonal profiles with an elec-

tron dense cytoplasm resulting from dense packing of the

cytoskeleton (increased neurofilament density), (c) swol-

len axons lacking preserved organelles and neurofila-

ments, (d) axons with swollen mitochondria or

mitochondria with disrupted cristae, and (e) axons with

obvious loss of contact to myelin.

RNA Isolation

RNA was isolated from whole cerebellum, hippocampus,

lumbar spinal cord, and from cerebral cortex from �4 to

þ3 mm relative to Bregma, which includes visual,

somatosensory, parietal, retrosplenial, and motor

cortex, cingulate and orbital areas, using Direct-zol

RNA MicroPrep (Zymo Research, Irvine, CA) according

to instructions. RNA quality was determined using

a 4200 TapeStation Instrument (Agilent, Santa Clara,
CA), and all samples had RNA integrity values above 8.

Quantitative Real-Time PCR

Total RNA (1 mg) was converted to complementary
DNA (cDNA) using the High Capacity cDNA Reverse
Transcription Kit (ThermoFisher 4368814). The cDNA

was amplified with specific primers using FastStart
Universal SYBR Green Master mix (Applied
Biosystems, 04913914001) in a Corbett RotoGene real
time PCR machine (Qiagen). Relative mRNA levels

were calculated from threshold take-off cycle number
and normalized to values measured for b-actin in the
same samples. Primers were as follows:

CRMP1-forward: 50-CAGCGTGTCAGGATCAG
AAG-30

CRMP1-reverse: 50-TTGGTGTTTAGAAGGCGA
GG-30

CRMP2-forward: 50-CTGACCAGGGAATGACA
TCC-30

CRMP2 reverse: 50-TGATCAAAGGCAGCCAAT
AGG-30

b-actin-forward: 50-CCTGAACTACCCCATTGA
ACA-30

b-actin-reverse: 50-CACACGCAGCTCATTGTA

GAA-30

Data Analysis

Data are presented as mean� standard error of the

mean. Pair-wise comparisons (quantitative polymerase
chain reaction [qPCR] data; IHC for GFAP and Iba1;
axonal damage) were made using Kruskal–Wallis non-
parametric analysis. Comparisons of immunoblot data

were made using one-way ANOVA with Tukey post
hoc tests. Clinical scores were compared using two-way
repeated measures ANOVA and Sidak post hoc analysis.

Results

Generation of Neuronal Conditional Knockout of
CRMP2

Neuronal CRMP2 knockout (cKO) mice were generated
by administering tamoxifen (100 mg/kg per day for 5 days,

Table 1. Antibodies Used for Immunoblots.

Antibody Species Catalog number Company

CRMP2 Rabbit C2993, RRID:AB_1078573 Sigma, St. Louis, MO

CRMP2 p32 Rabbit Generously provided by Dr. Yoshio Goshima (Uchida et al., 2009)

CRMP2 p509/p514 Sheep PB-043, RRID:AB_262017 Kinasource, Dundee, Scotland, UK

CRMP2 p522 Rabbit CP2191, RRID:AB_2094486 ECM Biosciences, Versailles, KY

Actin Rabbit A2066, RRID:AB_476693 Sigma, St. Louis, MO

4 ASN Neuro



i.p.) to 8-week-old CRMP2f/f CamK2aCreER(T2)þ/–

mice; CRMP2f/f CamK2aCreER(T2) –/– mice treated iden-

tically served as WT controls. Two weeks later, exon III

deletion was confirmed in the CNS, but not in spleen or

tail of Creþ/� cKO mice (Figure 1(a) and (b)). qPCR anal-

ysis (Figure 2(a)) showed lower levels of CRMP2 mRNA

in CTX, HC, and CB, but not in SC of cKO mice. The

partial reductions may be due to CRMP2 expression in

CamK2a negative neurons as well as in non-neuronal

cells. In contrast, relative levels of CRMP1 mRNA were

not significantly reduced in any of the cKO samples,

although there were modest, but nonsignificant increases

observed in CTX and HC. Immunostaining for CRMP2

showed less staining of granule neurons in the dentate

gyrus of the HC (Figure 2(b)), slightly less staining of

deep cerebellar neurons in the white matter of the CB

(Figure 2(c)) but no changes in staining of SC neurons

(Figure 2(d)). Less CRMP2 staining was observed in neu-

rons in the retrosplenial cortex (Figure 2(e)) and the motor

cortex (Figure 2(f)). Costaining for Ctip2 (COUP-TF

interacting protein 2, a marker of upper motor neurons

(Arlotta et al., 2005) showed that CRMP2 was depleted

from descending motor neurons (Figure 2(g)).

CRMP2 cKO Reduces EAE Disease Severity

Two weeks after tamoxifen treatment, WT and cKO mice

were immunized with MOG35�55 peptide. Disease

incidence was not affected by genotype and reached

100% in both male and female mice (Figure 3(a) and

(c)). In females, average disease onset was not affected
by genotype (15.8� 1.0 vs. 14.1� 1.5 days; WT, cKO);

while in males, onset was slightly but not significantly

delayed in the cKO mice (13.6� 1.2 vs. 15.8� 1.5 days;

WT, cKO). In female WT mice (Figure 3(b)), disease
severity increased between Days 10 and 20 after which

there was a slight reduction (however, it was not signif-

icant when WT data were analyzed by one-way

ANOVA). Disease severity was significantly reduced in
cKO mice (two-way ANOVA), which increased after

Day 15 but more gradually than in WT mice. In contrast

to females, disease severity in male mice was similar in
WT and cKO groups (Figure 3(d)). Since only the female

cKO mice showed reduced disease severity, further stud-

ies were done using samples from female mice.
Assessment of neuroinflammation done at the end of

the study (Figure 4(a)) shows that both astrocyte

(Figure 4(b)) and microglial (Figure 4(c)) activation

was reduced in the cerebellum of cKO mice compared

to WT mice, a site of significant glial activation in EAE
(Smith and Eng, 1987; Carter et al., 2007; Qin et al.,

2012; Gentile et al., 2018; Rossetti et al., 2018).

However, in the spinal cord (Figure 4(c)), where signifi-
cant inflammation and demyelination occurs in this EAE

model (Lassmann and Bradl, 2017), the extent of GFAP

and Iba1 staining was similar in WT and cKO mice, with

Figure 1. Generation of CRMP2 cKO mice. (a) Schematic showing steps in generation of CRMP2 cKO mice. After removal of the
neomycin cassette, the loxP flanked exon III can be removed by Cre recombinase. Full details are provided in Figure S1. (b) PCR of brain,
spleen, and tail genomic DNA from tamoxifen-treated CRMP2f/f CamK2aCreER(T2)�/� (WT) and þ/� (cKO) mice using primers (shown in
red) CSD-F and CSD-R which generate products of 1,460 bp from the WTallele; 1,525 bp from the loxP flanked allele; and 693 bp when
exon III is deleted.

Moutal et al. 5



a nonsignificant modest increase of Iba1 staining in the

cKO mice (Figure 4(d)). Despite the absence of reduced

glial cell activation in the spinal cord, EM analysis

(Figure 5(a)) revealed a significant reduction in the per-

centage of damaged axons in the lateral columns of

lumbar spinal cord of cKO mice (Figure 5(b)), which

are a mix of descending vestibulospinal and corticospinal

motor tracts, and descending spinothalamic tracts

(Watson and Harrison, 2012). In contrast, there were

no differences in plots of g-ratio versus axon caliber

(Figure 5(c)) between the WT and cKO EAE mice; nor

any differences in average g-ratio, axonal caliber, or

myelin thickness (Figure 5(d)).

Effects of CRMP2 cKO on CRMP2 Phosphorylation

The beneficial actions of CRMP2 in several disease

models have been ascribed to alterations in its phosphor-

ylation state, since Cdk5-mediated phosphorylation at

serine 522 (S522), and subsequent GSK3b phosphoryla-

tion at threonine 509 and 514 (T509/514, which requires

S522 phosphorylation) inhibits CRMP2 interactions with

target proteins including tubulin, calcium channels, and

NMDA receptors (Moutal et al., 2019b). To directly test

if pS522 plays a role in regulating disease severity, we

carried out one study using S522A KI and corresponding

congenic WT mice (Yamashita et al., 2007) in which

phosphorylation at S522 is prevented. EAE was induced

in 10-week-old female KI and WT female mice and dis-

ease monitored for 4 weeks (Figure 6). Disease incidence

reached 100% in the WT mice and 88% in the KI mice

(Figure 6(a)), and the average day of disease onset was

similar (13.1� 0.5 days vs. 12.3� 0.3 days; WT, KI). In

the WT group, disease severity increased to Day 16

reaching an average score of 2.7� 0.4, after which it

did not significantly change reaching 3.0� 0.5 at the

end of the study (Figure 6(b)). In contrast, while the ini-

tial development of disease severity in KI mice was sim-

ilar to that of the WT mice, reaching an average score of

2.8� 0.6 on Day 15, at later times it was significantly less

than the WT mice, diminishing to 1.8� 0.5 on Day 26, F

(13, 169)¼ 2.70, p¼ .0018. Immunoblot analysis of

CRMP2 phosphorylation sites (Figure 7(a) and (b)) con-

firmed that levels of pS522 and pT509/514 were virtually

absent from the KI cerebellum (Figure 7(c)) and spinal

cords (Figure 7(d)).

Figure 2. Confirmation of CRMP2 reduction in cKO mice. (a) qPCR for CRMP2 and CRMP1 mRNAs in spinal cord (SC), cortex (CTX),
cerebellum (CB), and hippocampus (HC) of WT and cKO mice 2 weeks after treatment with tamoxifen. Data are mean� SE, n¼ 4 per
group, normalized to b-actin measured in the same samples, and values for the WT samples set to 100%. *p< .05 versus corresponding
WT sample. Representative images of immunohistochemical staining of WT and cKO CRMP2 mice for CRMP2 in (b) HC, (c) CB, (d) SC,
(e) retrosplenial CTX, and (f) motor CTX. Scale bars are indicated, and the boxed region in panel E is enlarged to show loss of CRMP2
labeled neurons in the subcortical layer. (g) Immunohistochemical staining of motor CTX for CRMP2 (green) and CTIP2 (red) to label
descending motor neurons.
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Discussion

We previously showed that treatment with the CRMP2
modulator LKE reduced disease severity and axonal
damage (Dupree et al., 2015) in MOG peptide induced
EAE. Among other proteins, LKE can bind to CRMP2
(Hensley et al., 2010a). This suggests that beneficial
actions of LKE in EAE may be mediated, at least in
part, to increases in CRMP2 activity. Our findings that
LKE exerts direct neuroprotective and neurotrophic
effects (Marangoni et al., 2018) prompted us to develop
a neuronal CRMP2 cKO mice to explore the roles of
neuronal CRMP2 during EAE. In female mice with
homozygous neuronal CRMP2 cKO, disease severity
was reduced, while in males, although initial disease pro-
gression was slightly delayed, it eventually reached simi-
lar severity in WT and cKO mice.

Few studies have examined the consequences of
CRMP2 depletion from brain. Global knockout of
CRMP2 led to cognitive and behavioral deficits

in adult mice, suggesting a role for CRMP2 in neuropsy-

chiatric disorders (Nakamura et al., 2016). Brain-specific

conditional knockdown of CRMP2 using nestin-Cre

mice to drive deletion during early neural development

also led to deficits in neuronal development and behav-

ioral impairment in the adults (Zhang et al., 2016). Both

global knockout and conditional brain cKO mice showed

dysregulation and disorganization of dendritic spine

development and patterning (Makihara et al., 2016),

which could account for subsequent behavioral deficits.

In our studies, CRMP2 deletion was initiated by treat-

ment with tamoxifen at age 8 weeks, 2 weeks prior to

induction of EAE. Although we did not yet examine

those mice for changes in dendritic complexity or behav-

ior deficits, it is possible that such changes occurred

during the short time period and contributed to our find-

ings. However, to our knowledge, the current results rep-

resent the first report examining the role of CRMP2 in a

model of a neurodegenerative disorder.

Figure 3. CRMP2 cKO reduces EAE severity. WT and CRMP2 cKO mice were immunized with MOG35–55 peptide. Disease incidence
reached 100% in both (a) female and (c) male mice and was not affected by genotype. (b) In female mice (n¼ 9 cKO; n¼ 11 WT), disease
severity was significantly reduced in the cKO mice (Time�Genotype F[10, 180)¼ 2.484, p¼ .0082, two-way rmANOVA). *p< .05 versus
WT (Sidak’s test). (d) In contrast in male mice, the modest decrease in severity observed at early times did not reach statistical signif-
icance—Time�Genotype, F(10, 150)¼ 1.442, p¼ .167. Data are combined from two independent studies. WT¼wild-type;
cKO¼ conditional knockout.
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Figure 4. CRMP2 cKO reduces glial activation. Representative images of sagittal sections through (a) the cerebellum and (c) spinal cords
of WTand cKO mice, sacrificed at the end of the study shown in Figure 3. At that time, the average EAE scores were 1.4 (n¼ 4, male cKO),
2.5 (n¼ 3, male WT), 1.3 (n¼ 3, female cKO), and 2.2 (n¼ 3, female WT). Sections were stained for GFAP (green) and Iba1 (red), and
counter stained with DAPI (blue). The % area stained for GFAP and Iba1 was significantly reduced in the cerebellum (b) but not in the
spinal cord (d). Data are mean� SE. *p< .05. WT¼wild-type; cKO¼ conditional knockout; GFAP¼ glial fibrillary acidic protein.

Figure 5. CRMP2 cKO reduces axonal damage without effect on myelin. Spinal cords from WTand cKO EAE female mice were isolated
at Day 35 after immunization at which time the average scores were 2.2 (n¼ 3, cKO) and 2.8 (n¼ 3, WT) and processed for electron
microscopy. (a) Representative sections of WTand cKO spinal cords. Red arrows indicate damaged axons. (b) Quantitation of the number
of damaged axons shows a significant reduction in cKO versus WT mice. Data are mean� SE, n¼ 3 mice per group; and with an average of
700 axons counted in each mouse.*p< .05. (c) G-ratios were calculated from measurements of myelin thickness and axon caliber. The
linear regression values for WT and cKO groups are shown and were similar in the two groups. (d) Average g-ratio, axonal caliber, and
myelin thickness for WTand cKO EAE mice. Values were determined by counting 50 axons from each of three mice per group for a total
of 150 axons per group. Data are mean� SE. WT¼wild-type; cKO¼ conditional knockout.

8 ASN Neuro



IHC staining and qPCR measurements using tissues
from naı̈ve (nonimmunized mice) done 2 weeks after
treatment with tamoxifen show that CRMP2 expression
was reduced, but not eliminated in the HC, CB, and

CTX, but not the SC of the cKO mice. Similarly, IHC
showed less staining of neurons in the dentate gyrus of
the HC, in the white matter of the CB, and in the retro-
splenial CTX which lies above the HC. IHC showed

Figure 6. EAE severity is reduced in CRMP2 S522A KI mice. (a) CRMP2 S522A KI and congenic WT female mice were immunized with
MOG35–55 peptide. Disease incidence reached 100% in the WT (7/7) group and 88% (7/8) in the KI group. (b) Disease severity was
significantly lower in the KI compared to WT group—F(13, 169)¼ 2.70, p¼ .0018, two-way repeated measures ANOVA. WT¼wild-type;
KI¼ knockin.

Figure 7. Effects of S522A KI on CRMP2 phosphorylation. Samples from cerebellum and spinal cords of WTand KI, sham and EAE female
mice prepared at Day 27 after immunization were used for immunoblot analysis of indicated CRMP2 phosphorylation sites. Representative
blots showing three samples per group for (a) cerebellum and (b) spinal cords. Quantitation of indicated CRMP2 phosphorylation sites
relative to total CRMP2 levels in (c) cerebellar and (d) spinal cord samples. Data are mean� SE, n¼ 3 (WT Sham), n¼ 3 (WT EAE, average
score was 2.2), n¼ 3 (KI Sham), and n¼ 5 (KI EAE, average score was 1.5) samples obtained from 2 EAE studies and show relative levels
compared to WT sham. Total CRMP2 levels were normalized to b-actin measured in the same samples. Data are mean� SE and show
relative levels compared to WT sham. *p< .05, one-way ANOVA, Tukey’s test. WT¼wild-type; KI¼ knockin; EAE¼ experimental
autoimmune encephalomyelitis.
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strong depletion of CRMP2 from neurons in the motor
cortex which were identified as descending motor neu-
rons by staining for CTIP1, a transcription factor selec-
tively expressed in corticospinal motor neurons and a
subset of spinal motor neurons (Yasvoina et al., 2013).
In contrast, IHC carried out in sections from the lumbar
SC did not reveal any obvious reductions in CRMP2
staining. Although these analyses were not quantified,
the combination of qPCR and IHC findings is consistent
with CamK2a expression which is high in CTX, HC, and
CB but low in SC (Kolker et al., 2012; Gamazon et al.,
2018). The partial reductions may also be due, in part, to
CRMP2 expression in other cell populations including
astrocytes and oligodendrocytes, as well as in non-
CamK2a expressing neurons. In addition, since the effi-
cacy of cre-recombinase is typically less than 100%,
CRMP2 levels may be reduced, but not absent, in
CamK2a expressing neurons.

In this study, EM analysis evaluated ultrastructural
alterations in the lateral columns of lumbar spinal cord
levels L2 and L3. These columns contain descending spi-
nothalamic (sensory), vestibulospinal (motor), and corti-
cospinal (motor) tracts (Watson and Harrison, 2012). As
expected, we observed extensive axonal damage in the
WT EAE mice with approximately 40% of counted
axons having one or more indices of damage, as com-
pared to a basal level of axonal damage (about 3%) pre-
sent in sham-immunized mice (Dupree et al., 2015). In
cKO mice, axonal damage was reduced to about half of
that seen in the WT mice, suggesting that CRMP2 con-
tributes to EAE-induced axonal pathology. Despite the
reduction of axonal damage, IHC staining for GFAP and
Iba1 did not reveal any reduction of glial activation in the
lumbar spinal cord of cKO mice, suggesting that effects
on neuroinflammation within the spinal cord did not
account for reduced axonal damage. Consistent with
this, measurements of axonal caliber and myelin thick-
ness did not show any differences between the WT and
the cKO EAE mice. Since MOG35–55 peptide EAE large-
ly models a chronic inflammatory encephalopathy
(Lassmann and Bradl, 2017), these data suggest that neu-
ronal CRMP2 cKO provides benefit to neurons without
affecting inflammatory-induced demyelination in the
spinal cord.

Evaluation of CRMP2 expression by qPCR and IHC
staining did not show any reduction in the spinal cords of
cKO mice; this may be due to lower levels of CamK2a
expression in spinal cord neurons (Kolker et al., 2012;
Gamazon et al., 2018). In contrast, qPCR of whole cor-
tical samples showed less CRMP2 mRNA in the cKO
mice, and IHC identified fewer CRMP2 stained neurons
in the motor cortex. These observations suggest that
reduced degeneration of spinal cord axons in CRMP2-
cKO mice might be associated with protection of cortico-
spinal motor neurons. Mechanistically, the beneficial

effect of CRMP2 deletion on EAE-induced degeneration
of spinal cord axons may result from preservation of the
axon initial segment (AIS), an axonal domain responsible
for initiation of the action potential (Buffington and
Rasband, 2011). It has been shown that disruption of
AIS integrity (number and average length) occurs in
EAE mice, associated with increased microglial activa-
tion and Ca2þ entry (Clark et al., 2016, 2017).
Increased Ca2þ can activate a variety of proteases includ-
ing calcineurin and calpain-I which have been shown to
cause AIS disruption (Schafer et al., 2009; Benusa et al.,
2017). Since CRMP2 interactions with NMDARs and
CaV2.2 channels modulate calcium influx into neurons,
lower CRMP2 levels in descending motor neurons could
lead to reduced Ca2þ influx, reduced protease activation,
and maintenance of AIS and fiber integrity.

In this study, we also examined the importance of
CRMP2 phosphorylation on the development of EAE.
pCRMP levels are higher in brains of AD patients com-
pared to controls (Cole et al., 2007; Soutar et al., 2009;
Williamson et al., 2011; Hensley and Kursula, 2016),
increased in patients with Lewy body dementia (Xing
et al., 2016), and are increased after spinal cord injury
(Nagai et al., 2016). In neurons, pCRMP2 expression
increased due to excitotoxicity (Hou et al., 2009), and
in rats, pCRMP2 levels increased in response to intra-
cerebroventricular administration of LPS or TLR4 ago-
nists, and following induction of focal ischemia (Li et al.,
2018). We focused attention on CRMP2 phosphorylation
occurring at serine 522, a site where reducing or prevent-
ing phosphorylation has been shown to mediate neuro-
protection and induce axon repair in a number of models
of disease and injury. Inhibition of Cdk5, or use of a
nonphosphorylatable S522A CRMP2 vector, reduced
neurite growth defects in hippocampal cells (Crews
et al., 2011); CRMP2 S522A KI mice have reduced
impairment of synaptic plasticity due to Ab (Isono
et al., 2013), show delayed Wallerian degeneration
(Kinoshita et al., 2019) and increased axonal regenera-
tion (Kondo et al., 2019) due to optic nerve injury; have
reduced axonal degradation of dopaminergic neurons in
an MPTP model of Parkinson’ disease (Togashi et al.,
2019); and have delayed motor neuron damage in a
transgenic mouse model of ALS (Numata-Uematsu
et al., 2019). We found that in CRMP2 S522A KI
mice, while disease progression was similar until Day
15 in the KI mice as in their WT controls, after that
time disease severity continued to gradually increase in
the WT mice while in the KI mice severity significantly
lessened. These results suggest that the S522A KI does
not affect initial events in the development of EAE which
involve T cell activation and migration into the CNS, but
instead influences later events such as activation of innate
immune responses in parenchymal tissue or neuronal
damage. Interestingly, a proteomic analysis comparing
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CRMP2 S522A to WT mice showed increases in several
proteins, including oligodendrocyte proteins MAG,
MOG, and PLP (Nakamura et al., 2018). Since
CRMP2 is expressed in adult OLGs and OPC (Dawson
et al., 2003; Piaton et al., 2011; Syed et al., 2011;
Fernandez-Gamba et al., 2012; Syed et al., 2017), it is
possible that in the S522A mice effects in OLGs or
OPCs also contributes to reduced EAE severity.

Other phosphorylation sites on CRMP2 also have
important roles in regulating axonal damage and regen-
eration. In particular, CRMP2 phosphorylation at thre-
onine 555 (T555) plays an important role in regulating
the extent of axonal damage mediated via signaling
through the Nogo receptor (ngr1). In mice with deletion
of ngr1, EAE severity was lessened and was associated
with preservation of axonal health and myelin integrity
(Petratos et al., 2012). In the optic nerve, axonal trans-
port was impaired in the ngr1 null mice, as were inter-
actions of CRMP2 with the axonal motor protein
kinesin-1 (Lee et al., 2019), which are increased upon
CRMP2 phosphorylation. Moreover, overexpression of
a nonphosphorylatable CRMP2T55A also reduced optic
nerve axonal degeneration (Lee et al., 2019), showing a
critical role for CRMP2 T555 in mediating axonal
damage during EAE. In this study, although we ran
immunoblots to measure pT555, we were not able to
detect this epitope in either spinal cord or cerebellar sam-
ples; it remains to be determined if pT555 levels are
altered in the optic nerves of CRMP2 cKO EAE mice.
We also assessed phosphorylation at CRMP2-Y32,
which is increased upregulated following spared nerve
injury (Moutal et al., 2019a), and regulates growth cone
collapse (Uchida et al., 2009); however, we did not see
any change in pY32 in either the CRMP2 cKO mice or
the CRMP2 KI mice, suggesting this site may have lim-
ited roles during EAE.

CRMP2 roles in axonal guidance were first demon-
strated by screening for proteins involved in the collapsin
pathway, mediated by Semaphorins (Goshima et al.,
1995), and which showed that in response to
Semaphorin 3A, CRMP2 induces collapse of the axonal
growth cone. CRMP2 was then shown to induce axon
elongation and neurite extension, involving binding to
tubulin dimers which are transferred to the growing
plus end of microtubules (Fukata et al., 2002), as dem-
onstrated by findings that during nerve regeneration,
CRMP2 overexpression accelerates axon regeneration
and neurite extension (Suzuki et al., 2003). CRMP2 bind-
ing to tubulin, as well as to other proteins, is regulated by
phosphorylation at Serine 522 by cyclin dependent
kinase-5 Cdk5 (Uchida et al., 2005; Moutal et al.,
2019b), which in turn is permissive for phosphorylation
at Thr509, 514, and 518 by GSK3b (Cole et al., 2004).
Phosphorylation at these sites reduces CRMP2’s affinity
for tubulin heterodimers, thus reducing microtubule

growth and causing axon retraction. In addition to tubu-
lin, CRMP2 also interacts with CaV2.2, the presynaptic
N-type voltage gated calcium channel (VGCC) (Khanna
et al., 2007; Brittain et al., 2009; Moutal et al., 2016c,
Moutal et al., 2018b), which regulates neuronal excitabil-
ity and has roles in neuropathic pain (Francois-Moutal
et al., 2015; Xie et al., 2016; Moutal et al., 2017a; Chew
and Khanna, 2018; Francois-Moutal et al., 2018; Moutal
et al., 2018a). CRMP2 targets CaV2.2 to neuronal mem-
branes (Brittain et al., 2009; Brittain et al., 2011b) and
enhances CaV2.2 currents required for transmitter
release (Chi et al., 2009). In MS, the a1B subunit of
CaV2.2 accumulated in damaged axons in areas of
actively demyelinating lesions, suggesting that Ca2þ

influx contributes to axonal damage (Kornek et al.,
2001). Increased a1B expression was also observed in
demyelinated axons in a rat model of optic neuritis,
and treatment with x-conotoxin (a selective inhibitor of
CaV2.2) reduced axon and myelin damage (Gadjanski
et al., 2009). In MOG-peptide EAE, a1B null mice had
reduced clinical signs and less demyelination (Tokuhara
et al., 2010), and ziconotide (selective CaV2.2 blocker)
reduced clinical signs and neuroinflammation (Silva
et al., 2018). Together, these findings suggest that reduc-
ing CRMP2 could lead to reductions in Ca influx and
lessen axonal damage. CRMP2 also interacts with
GluN2B containing NMDA receptors (Bretin et al.,
2006; Moutal et al., 2014), and disruption of those inter-
actions using CRMP2 derived peptides reduced NMDA-
R mediated currents providing neuroprotection against
excitotoxicity in animal models of ischemia and traumat-
ic brain injury (Brittain et al., 2011a, 2012; Brustovetsky
et al., 2014). These mechanisms that could contribute to
the beneficial effects in CRMP2 cKO mice are summa-
rized in Figure 8.

In summary, our findings demonstrate that CRMP2
deficiency from neurons can reduce the severity of disease
in the MOG35–55 peptide induced EAE model of MS,
which was associated with decreases in axonal damage
in spinal cord tracts. These effects may be mediated, at
least in part, by reduced CRMP2 in upper motor neu-
rons, whose fibers traverse through the cerebellum and
comprise descending cortico-spinal tracts. Evaluation of
glial activation revealed a reduction of astrocyte and
microglial activation in the cerebellum of cKO mice,
but not in the spinal cord. Neuroinflammation in
MOG35–55 peptide induced EAE in mice primarily
occurs in white matter tracks of the cerebellum, brain-
stem, and in the optic nerves (Lassmann and Bradl,
2017), which contrasts to what occurs in MS patients
where neuroinflammation is observed in subcortical
areas. It therefore will be important to extend the current
findings to other CNS regions and other models of MS
disease. Our findings using S522A KI mice show that
disease severity is also reduced in the absence of
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CRMP2 phosphorylation at serine 522, consistent with

other studies showing reduced pathology in these mice;

however, additional studies are needed to determine if

glial activation or axonal damage is also lessened in the

KI mice. Together our results demonstrate that modulat-

ing CRMP2 expression or phosphorylation state can pro-

vide benefit in EAE and suggest that actions on CRMP2

mediate, at least in part, the effects of LKE observed

during EAE.
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