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Abstract
The aim of this study was to evaluate the variation of radiomics features, defined as “delta radiomics”, in patients undergoing 
neoadjuvant radiochemotherapy (RCT) for rectal cancer treated with hybrid magnetic resonance (MR)-guided radiotherapy 
(MRgRT). The delta radiomics features were then correlated with clinical complete response (cCR) outcome, to investigate 
their predictive power. A total of 16 patients were enrolled, and 5 patients (31%) showed cCR at restaging examinations. 
T2*/T1 MR images acquired with a hybrid 0.35 T MRgRT unit were considered for this analysis. An imaging acquisition 
protocol of 6 MR scans per patient was performed: the first MR was acquired at first simulation (t0) and the remaining ones 
at fractions 5, 10, 15, 20 and 25. Radiomics features were extracted from the gross tumour volume (GTV), and each feature 
was correlated with the corresponding delivered dose. The variations of each feature during treatment were quantified, and 
the ratio between the values calculated at different dose levels and the one extracted at t0 was calculated too. The Wilcoxon–
Mann–Whitney test was performed to identify the features whose variation can be predictive of cCR, assessed with a MR 
acquired 6 weeks after RCT and digital examination. The most predictive feature ratios in cCR prediction were the L_least 
and glnu ones, calculated at the second week of treatment (22 Gy) with a p value = 0.001. Delta radiomics approach showed 
promising results and the quantitative analysis of images throughout MRgRT treatment can successfully predict cCR offer-
ing an innovative personalized medicine approach to rectal cancer treatment.
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Introduction

Significant improvements in locally advanced rectal cancer 
(LARC) treatment have been met in the past two decades, 
and to date the typical therapeutic workflow is represented 
by neoadjuvant long-course radiochemotherapy (RCT), fol-
lowed by total mesorectal excision (TME) [1–4].

Regardless of the initial disease stage, approximately 
11–42% of these patients achieve a pathological complete 
response (pCR) after long-course RCT. Different studies 
have shown that patients achieving pCR usually have a bet-
ter prognosis in terms of local control (LC), metastases-free 
survival (MFS) and overall survival (OS) [5, 6].
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Conservative surgical approaches have recently been 
investigated in patients showing clinical complete response 
(cCR) after neoadjuvant treatments: both local excision 
(LE) and “watch and wait” (W&W) approaches represent 
to date feasible options in order to reduce morbidities and 
toxicities related to unnecessary TME procedures [7–9].

In the framework of a fully personalized medicine, the 
possibility to predict the patients who will achieve cCR 
before surgery or even during neoadjuvant RCT is of 
crucial importance and the contribution of imaging tech-
niques to this end is significantly increasing [10–12].

The still ambiguous correlation between cCR and pCR 
has been evaluated by Hiotis and colleagues, who dem-
onstrated a cCR rate of 19% in a dataset of nearly 500 
patients with a pCR rate of 25% among complete respond-
ers at restaging, while Smith et al. observed that 61.3% of 
patients with a pCR had evidence of incomplete clinical 
response at restaging [13, 14]. In a very recent systematic 
review and pooled analysis, however, patients undergo-
ing W&W approach showed a 3-year overall survival of 
93.5% (against a 90.1% rate for patients with pCR) and a 
non-regrowth free survival rate was of 89.2% at 3 years, 
supporting the favourable prognostic value of cCR already 
supposed by the first conservative experiences of Habr-
Gama et al. [15, 16].

Several prediction models have been developed to predict 
pCR in LARC, providing clinicians with valuable decisional 
support systems (DSS) for multidisciplinary oncological 
care tailoring, so that patients “predicted as not respond-
ing” will take advantage of intensified treatments, while 
those “predicted as responding” will undergo a therapeutic 
approach more oriented to organ preservation [13].

A few studies suggest models for pCR prediction in 
LARC founded on clinical data information or on features 
extracted from previously acquired diagnostic images (i.e. 
staging scans) or during RCT, but the evidence about cCR 
prediction is still poor. The extraction of these signifi-
cant features from biomedical images takes advantage of 
innovative biotechnologies, such as the radiomics analysis 
techniques that aim to a quantitative analysis of the images 
[17–19].

Cusumano et al. recently described a radiomics-based 
predictive model able to identify patients achieving pCR 
through the use of staging magnetic resonance (MR) images, 
while other authors investigated the possibility to identify 
such patients analysing the tumour volume on one or more 
MR scans acquired throughout the radiotherapy treatment 
[20–22].

The use of radiomics features variation in different imag-
ing techniques throughout the treatment, defined as “delta 
radiomics”, has been proposed in the literature as a predic-
tive tool for several oncological diseases, for both response 
and toxicity prediction outcomes [23–26].

Magnetic resonance imaging (MRI) appears to be a 
promising imaging technique for this application, due to 
its consolidated use for the specific purpose, the high level 
of soft-tissue contrast and the valuable anatomical detail in 
the definition of LARC response, but very scarce evidence 
about radiomics applications on low-tesla images is to date 
available [27].

The recently released MRIdian® system (ViewRay Inc., 
Cleveland, OH, USA) joins a 0.35  T whole body MRI 
scanner and a radiation therapy delivery system composed 
of three Cobalt-60 sources (Tri-60-Co) or a 6MV linear 
accelerator.

This hybrid solution represents a great opportunity as 
it allows an MRI acquisition before each daily fraction of 
radiotherapy and assures high-quality visualization of the 
volume and movements of the tumour and of the surround-
ing organs at risk in the framework of real-time MRI-based 
adaptive radiotherapy [28].

The aim of this hypothesis-generating study is to investi-
gate the feasibility of radiomics analysis of low-tesla hybrid 
MR images and to evaluate the possibility to correlate delta 
radiomics data with cCR in patients (pts) affected by LARC 
and undergoing neoadjuvant RCT [29].

The variation of the parameters extracted from such 
images has been correlated with cCR in order to investigate 
the prognostic value of this innovative approach.

Materials and methods

Patients selection criteria

Patients affected by locally advanced (cT2-4 and/or cN0-
1, cM0) rectal adenocarcinoma, undergoing long-course 
neoadjuvant RCT with a low-Tesla tri-Co-60 MRI-Hybrid 
system have been enrolled for this study.

Specific informed consent and MRI safety screening 
forms were administered to all eligible patients.

Patients denying specific consent to MRgRT, presenting 
clinical contraindications to MRI (e.g. the presence of non-
MRI-compatible implanted cardiac devices, claustrophobia 
or major psychiatric disorders) or younger than 18 years, 
were considered not suitable for this study.

Treatment workflow and response assessment

Neoadjuvant long-course RCT was prescribed to the selected 
patients, according to a Simultaneous Integrated Boost 2 
(SIB2) delivery protocol.

5500 cGy in fractions of 220 cGy were prescribed to 
planning target volume (PTV) 1, while 4500 cGy in frac-
tions of 180 cGy to PTV2.

A total number of 25 fractions were therefore scheduled.
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PTV1 was considered as tumour and correspondent meso-
rectum with a 7-mm isotropic margin; PTV2 as mesorectum 
in toto and selected lymphatic drainage stations according to 
disease stage with a 7-mm isotropic margin [30].

Concomitant chemotherapy with Capecitabine chrono-
modulate (1650 mg/mq)/5-Fluorouracil (5-FU) c.i. or an 
intensification schedule with Capecitabine (1300 mg/mq) 
plus Oxaliplatin (60 mg/mq) was prescribed, in relation to 
clinical stage and general conditions of the single patient.

Patients were immobilized in the supine position, using 
the Fluxboard device (FluxboardTM, MacroMedics, The 
Netherlands) in an appropriate, fully personalized and com-
fortable configuration.

Clinical restaging was assessed 6–8 weeks after the end 
of RCT by digital rectal examination (DRE) and restaging 
MRI, according to our institutional guidelines and clinical 
practice.

In case of major or complete clinical response at restag-
ing imaging, endoscopic examination was performed with 
random biopsies to confirm absence of disease.

Complete clinical response was defined by the presence 
of all these criteria, independently reviewed by the multidis-
ciplinary tumour board members:

A.	 Complete absence of palpable masses at DRE
B.	 Restaging MRI findings:

•	 No lymph nodes detected or lymph nodes with short 
axis < 5 mm.

•	 No primary tumour residual at morphological and 
diffusion weighted imaging (DWI) series with com-
plete integrity of rectal wall layers.

•	 Hypointense parietal thickening in T2 sequences 
without evidence of hyperintense residual lesions in 
DWI sequences or hypointense lesions in apparent 
diffusion coefficient (ADC) map.

C.	 No detection of residual lesions or the presence of a flat 
scar at endoscopic examination.

Image analysis

An imaging protocol consisting in 6 MR acquisitions was 
applied to all patients.

The first MR scan was acquired during the treatment sim-
ulation procedures (t0 Gy), and the others were performed 
one every five fractions (t11 Gy, t22 Gy, t33 Gy, t44 Gy and t55 Gy).

Figure 1 shows the imaging protocol applied in a case 
where a clinical complete response was achieved. The red 
contour indicates the GTV delineation.

All images were acquired on MRIdian using a TRUe Fast 
Imaging (TRUFI) with steady-state precession sequence, 

with image resolution of 1.5 × 1.5 × 1.5 mm3 and acquisi-
tion time of 175 s.

GTV was contoured slice by slice for all the image sets 
(t0 Gy–t55 Gy) by two radiation oncologists expert in the man-
agement of lower gastrointestinal malignancies.

The contoured images were then exported to Moddicom, 
a R library developed in our institution to perform radiomics 
analysis [31, 32].

The variation of the radiomics features that occurred 
during the treatment was quantified considering “delta 
features”.

Delta features were defined as the ratio between the fea-
tures extracted from the images acquired at different treat-
ment fractions (t11 Gy, t22 Gy, t33 Gy, t44 Gy and t55 Gy) and the 
corresponding ones extracted from the image simulation 
(t0 Gy).

The Wilcoxon–Mann–Whitney (WMW) test was then 
performed to identify the features showing a predictive abil-
ity in discriminating patients undergoing cCR from those for 
which residual disease was expected [33].

Features showing a p value lower than 0.05 were consid-
ered statistically significant.

Results

Sixteen consecutive patients (13 males and 3 females) 
affected by LARC (stages IIA–IIIC), with a median age of 
64 years (range 49–86) were retrospectively enrolled for this 
study.

Five patients (31%) showed cCR at restaging examina-
tions (DRE and MRI).

Patients characteristics are described in Table 1.
Median time interval between end of neoadjuvant RCT 

and restaging examinations was 62 days.
A total of 53 radiomics features belonging to four families 

(morphological, statistical, fractal and textural based on run-
length matrix) were extracted from each raw image, without 
applying any image filter.

A total of 318 radiomics features were therefore obtained 
(53 features extracted from the simulation image and 265 
calculated as delta features).

Of these, a total of 6 simulation features and 57 “delta 
radiomics” features showed a p value < 0.05 (WMW test) in 
discriminating cCR patients from the non-responding ones. 
Table 2 reports the features that are significant with the cor-
responding time of acquisition and p values.

As reported in the tables, most of the delta radiomics fea-
tures show a higher statistical significance in discriminating 
between cCR and not-cCR patients when compared to those 
extracted from the analysis of the simulation images.

More specifically, three delta features (energy, grey level 
non-uniformity and least axis length) showed a statistically 
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significant association (p value < 0.05) with the considered 
outcome throughout the entire treatment course.

The most significant p values were observed for the L_
least and glnu features (p value = 0.001), when their varia-
tion between the simulation imaging and the second treat-
ment week t22 Gy MR was analysed.

The technical characteristics of the statistically significant 
features are reported in Appendix.

Figure 2 shows the values of the two most significant 
aforementioned features for all the enrolled patients.

Discussion

Imaging-based response prediction represents a very con-
temporary topic in rectal cancer management, allowing 
multimodal treatment tailoring and offering an important 

prognostic value for patient stratification, in the frame of 
the most modern personalized medicine approaches.

The usual workflow of radiomics-based radiotherapy 
studies generally considers imaging acquired in standard 
staging procedures (i.e. at least 1.5 T staging MRI) and 
assumes that the prescribed radiotherapy dose will be 
effectively delivered to the patient, without taking advan-
tage of any information coming from IGRT imaging pro-
tocols during treatment delivery and limiting the models 
learning to a single image set [20, 34].

The very limited access to images acquired during treat-
ment for radiomics purposes can be related to different 
causes, such as the present impossibility to extract reli-
able radiomics features from pelvic tumours CBCT, the 
extra dose to which the patient is exposed and the reduced 
access to diagnostic MRI scanners for studies [35].

Fig. 1   The complete image set of a patient from first simulation acquisition (t0 Gy) (S) to last fraction (t55 Gy) (a–e). The GTV is represented by 
the red contour
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Table 1   Patients characteristics

Sex 1 male, 2 female, Site 1 high, 2 medium, 3 low, CT chemotherapy: 0 no CT, 1 Capecitabine alone, 2 
Capecitabine and Oxaliplatin, Watch and Wait 1 yes, 0 no

Age Sex Site CT Stage Restaging Watch 
and wait

49 1 2 2 cT3 cN2 cM0 ycT0 ycN0 ycM0 1
80 1 1 1 cT4 cN2 cM0 ycT2/3 ycN1 ycM0 0
65 2 3 2 cT4 cN2 cM0 ycT0 ycN0 ycM0 1
75 1 2 1 cT4a cN1 cM0 ycT2 ycN0 ycM0 0
56 1 2 2 cT3 cN2 cM0 ycT2/3 ycN1 ycM0 0
77 1 3 1 cT4 cN0 cM0 ycT0 ycN0 ycM0 1
86 1 1 0 cT3 cN1 cM0 ycT0 ycN0 ycM0 1
61 2 2 1 cT3 cN0 cM0 ycT3 ycN0 ycM0 0
71 1 2 2 cT4a cN2 cM0 ycT0 ycN0 ycM0 1
62 1 2 2 cT3 cN2 cM0 ycT3 ycN1 ycM0 0
54 1 3 2 cT3 cN1 cM0 ycT2 ycN0 ycM0 0
69 1 2 1 cT3 cN1 cM0 ycT3 ycN0 ycM0 0
60 2 2 2 cT4 cN2 cM0 ycT4 ycN0 ycM0 0
55 1 2 2 cT3 cN1 cM0 ycT3 ycN0 ycM0 0
52 1 2 1 cT2 cN1 cM0 ycT2 ycN0 ycM0 0
54 1 2 2 cT3 cN1 cM0 ycT3 ycN0 ycM0 0

Table 2   Significant statistical, 
morphological, fractal and 
textural features with the 
corresponding MR acquisition 
treatment fraction

Features obtained from the analysis of simulation images (t0 Gy) are reported in italic style. p values ≤ 0.001 
are highlighted in bold

Feature type t0 Gy t11 Gy t22 Gy t33 Gy t44 Gy t55 Gy

(S) Min – 0.009 0.025 – 0.024 –
(S) Range – – – – 0.038 0.019
(S) Energy – 0.025 0.002 0.009 0.006 0.028
(M) Surface – – – – 0.003 0.019
(M) Volume – 0.049 0.003 – 0.006 0.028
(M) Areavolume – – 0.003 0.013 0.006 –
(M) L major – – – – 0.028 –
(M) L least – 0.037 0.001 0.006 0.002 0.013
(M) Compactness 1 0.038 – – – – –
(M) Compactness 2 0.038 – – – – –
(M) Sphdispr 0.038 – – – – –
(M) Sphericity 0.038 – – – – –
(M) Asphericity 0.038 – – – – –
(F) MedianFD – 0.038 – – – –
(F) MinFD – – 0.013 – – –
(T) glnu 0.027 0.038 0.001 0.013 0.003 0.038
(T) sre – 0.019 0.019 0.028 – –
(T) lre – 0.019 0.019 0.038 – –
(T) hgre – – 0.038 – 0.013 0.009
(T) srhge – – 0.038 – 0.013 0.009
(T) lrhge – – 0.038 – 0.013 0.009
(T) rlnu – – 0.028 – 0.013 –
(T) rlnu norm – – 0.019 0.028 – –
(T) rperc – 0.019 0.019 0.028 – –
(T) rlvar – – 0.019 0.038 0.018 –
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This significant limit has been recently overcome by the 
availability of MRgRT daily setup images that allow the 
development of imaging-based response predictors during 
RCT treatment’s course with no additional burden in terms 
of dose to the patient, costs and procedures.

Indeed, the aim of this hypothesis-generating study was 
to explore the potentialities of the delta radiomics approach, 
more than to train a multiparametric prediction model, as 
the limited number of patients could not gather reliable 
conclusions.

The choice of using the Wilcoxon–Mann–Whitney test to 
investigate the predictive value of the delta radiomics param-
eters was adopted considering a recent study carried out by 
Parmar et al., who compared 14 different feature selection 
methods. Analysing the performance of these methods in 
different radiomics studies, the authors concluded that the 
WMW test is the most reliable and accurate method for fea-
ture selection in radiomics [36].

The obtained results suggest that delta features better 
discriminate between cCR and not-cCR patients reaching 
a statistical significance even higher of one order of mag-
nitude when compared to the standard radiomics analysis 
performed on simulation imaging.

This increase in predictive power suggests that taking into 
account features variation during the course of the treatment, in 
addition to their absolute values at its beginning, could repre-
sent a significant added value for reliable outcome prediction.

Furthermore, the delta radiomics approach has the advan-
tage of providing information related to the treatment course 
and the progressive response to multimodal therapies, allowing 
a real personalization of the treatment before its own end. The 
introduction of the described radiomics workflow can enrich 
the observations already available in the literature that took 
into account the predictive power of different tumour-related 
parameters during treatment: as an example, Palmisano et al. 
recently presented their experience about the impact of tumour 
volume reduction, evaluated with a mid-treatment diagnostic 
MRI scan, in the prediction of complete pathological response 
(pCR) in patients affected by rectal cancer [21].

Similar conclusions were reached also by van den Begin 
et al., through the use of serial diagnostic MRI [22].

Our results about tumour response are in general accord-
ance with those obtained by these colleagues with differ-
ent techniques, as hybrid MRgRT images showed the most 
promising radiomics applications for response prediction 
starting from the second week of treatment (t22 Gy).

The fact that several features coming from the textural 
analysis of low-tesla MR images show high significance in 
discriminating between cCR and not-cCR patients suggests 
that low-tesla MR images, although having an inferior signal 
to noise (SNR) ratio in comparison to diagnostic high-tesla 
MR images, could provide clinically valuable information.

Furthermore, Wachowicz et al. recently demonstrated that 
low magnetic field strength performs as well or better than 
higher fields in terms of contrast-to-noise (CNR) ratio of 
the images [37].

For these reasons, low-tesla MR images show inferior 
resolution with respect to diagnostic images but present a 
comparable or even better contrast.

As far as the authors know, this study represents the first 
radiomics evaluation of images acquired during the course 
of hybrid MRgRT in rectal cancer, introducing an innovative 
approach in the management of this disease.

Prospective validation studies based on this preliminary 
results and new related hypothesis-generating experiences 
are needed to confirm the clinical usability and the impact 
of these observations and to train “delta Radiomics” predic-
tive models in order to improve and better define the optimal 
acquisition timing (i.e. taking into account all fractions or 
only the most significant ones).

Fig. 2   L least (a) and glnu (b) features trend. Patients undergoing 
cCR are indicated in light grey
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Conclusions

Our hypothesis-generating experience suggests that low-
tesla MRgRT images can be suitable for radiomics analyses 
and opens new frontiers for the development of imaging-
based prediction models.

Larger cohorts of patients are, however, needed to con-
firm these preliminary observations and to allow more reli-
able technical assumptions on this innovative radiomics 
workflow.

These applications may enhance the role of low-tesla 
hybrid MRgRT approach in rectal cancer management, 
theoretically reducing unnecessary overtreatment-related 
toxicities through treatment tailoring (e.g. surgery spar-
ing in responding patients) and avoiding any increase in 
patient irradiation (e.g. CBCT-based radiomics) or diag-
nostic MRI scanner workload, saving time for patients 
waiting for disease staging and resources.

Our experience demonstrates that delta radiomics and 
imaging features variation during MRgRT treatment may 
represent a cCR prediction tool in locally advanced rectal 
cancer RCT and can be considered hint for new observations.

This innovative biotechnological approach adds prom-
ising resources to current personalized medicine in rectal 
cancer care and encourages treatment imaging radiomics 
analysis throughout the therapeutic workflow.
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Appendix

Technical characteristics of the statistically significant fea-
tures are listed in Table 2.

All the definitions refer to the “Image biomarker stand-
ardisation initiative” by Zwanenburg et al. available at 
https​://arxiv​.org/abs/1612.07003​.

Statistical

•	 Min is represented by the lowest grey level present in 
the ROI.

•	 Range describes the statistical values of the grey levels 
range in the ROI.

•	 Energy indicates how grey levels are distributed inside 
the ROI.

Morphological

•	 Surface represents the surface calculated summing over 
the triangular face surface areas of the ROI mesh.

•	 Volume represents the volume calculated from the ROI.
•	 Areavolume “Surface-to-volume ratio”. Ratio between 

surface and volume of the ROI.
•	 L major “Major axis length” determines the main orien-

tation of the ROI, according to a principal component 
analysis (PCA) approach.

•	 L least “Least axis length” describes the axis along which 
the object is least extended according to a principal com-
ponent analysis (PCA) approach.

•	 Compactness 1 measures how compact, or sphere-like 
the volume is.

•	 Compactness 2 measures how sphere-like the volume is.
•	 Sphdispr “Spherical disproportion” measures how 

sphere-like the volume is.
•	 Sphericity measures how sphere-like the volume is.
•	 Asphericity describes how much the ROI deviates from 

a perfect sphere.

Fractal dimension

•	 MedianFD median value of all fractal dimensions calcu-
lated on the ROI slice by slice.

•	 MinFD minimum value of all fractal dimensions, calcu-
lated on the ROI slice by slice.

Textural

•	 glnu “Grey level non-uniformity” describes the distribu-
tion of neighbouring grey level dependence counts over 
the grey values themselves.

•	 sre “Short runs emphasis” emphasizes short run length.
•	 lre “Long runs emphasis” emphasizes long run length.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://arxiv.org/abs/1612.07003
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•	 hgre “Low grey level run emphasis” emphasizes low grey 
levels.

•	 srhge “Short run high grey level emphasis” emphasizes 
runs in the lower left quadrant of the GLRLM.

•	 lrhge “Long run high grey level emphasis” emphasizes 
runs in the lower right quadrant of the GLRLM.

•	 rlnu “Run length non-uniformity” describes the distribu-
tion of runs over the run lengths.

•	 rlnu norm “Normalized run length non-uniformity”. Nor-
malized version of rlnu.

•	 rperc “Run percentage” defines the fraction of the num-
ber of realized runs and the maximum number of poten-
tial runs.

•	 rlvar: “Run length variance” estimates the variance in 
runs for run lengths.
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