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Abstract.

Hedonic models are widely used to predict selling prices of properties. Originally, they were proposed
as simple spatial regressions, i.e., a spatially referenced response regressed on spatially referenced
predictors. Subsequently, spatial random effects were introduced to serve as surrogates for un-
measured or unobservable predictors and were shown to provide better out-of-sample prediction.
However, what has been ignored in the literature is the fact that the locations (and times) of the sales
are random and, in fact, are an observation of a random point pattern. Here, we first consider whether
there is stochastic dependence between the point pattern of locations and the set of responses? If
S0, a second question is whether incorporating a log intensity for the point pattern of locations into the
hedonic modeling enables improvement in the prediction of selling price? We connect this problem
to what is referred to as preferential sampling. Through model comparison we illuminate the role of
the point pattern data in the prediction of selling price. Using two different years of property sales
from Zaragoza, Spain, we employ both the full database as well as an intentionally biased subset to
elaborate this story.

Keywords: Bayesian inference; log-Gaussian Cox process; Markov chain Monte Carlo; nearest
neighbor Gaussian process; real estate transactions; shared process models

1. Introduction

Hedonic modeling refers to the well-established objective of specifying regression models to
explain selling prices of properties. There is a rich literature on such modeling which we
review below. With residential properties, these models typically employ regressors capturing
features of the property as well as features of the neighborhood where the property is located.
Furthermore, recognizing the old maxim regarding property sales - “location, location, location”
- spatial random effects have been introduced. Typically, such modeling is dynamic, with
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property sales aggregated to say quarters or years in order to see the temporal evolution of the
sales market. These random effects are customarily modeled using Gaussian processes and
can be viewed as surrogates for unmeasured or unobservable predictors carrying spatial and/or
temporal information. Regardless, the random effects provide local adjustment to the model and
the flexibility of the Gaussian processes results in improved prediction of selling prices.

A key feature ignored in such hedonic modeling is the fact that the locations and times of
dwelling transactions are random. That is, selling price is modeled conditionally on location
and time; randomness is introduced only in the regression given predictors at the location and
time. Additionally, when random effects are introduced, they are also associated with locations
and times that are viewed as fixed. In this regard, Paci et al. (2017) recognized that, for a given
market and a given period, the collection of property sales comprises a realization of a random
point pattern over space and time. That is, the number of transactions is random and, given this
number, the locations and times of the transactions are random.

Investigation of selling price of properties in the context of a point pattern of property sales
takes us to what has been referred to as the preferential sampling setting. Preferential sampling
is a relatively recently recognized issue (Diggle et al., 2010) which we review below. The basic
idea is as follows. In attempting to learn about a spatial surface over a region using data obtained
from a finite set of locations, if the sampling locations arise in a “biased” fashion, such bias
can impair our ability to accurately interpolate the surface. A standard setting is geostatistical
modeling (see e.g. Cressie and Wikle 2011; Banerjee et al. 2014). Illustratively, consider the
objective of inferring about a surface of environmental exposures. If environmental monitoring
networks introduce design bias by tending to place monitors in locations where environmental
levels are expected to be high, then interpolation based upon observations from these stations
will necessarily produce high predictions.

For environmental exposure, we may have a designed set of sampling locations which, in
turn, may introduce preferential sampling. The obvious remedy lies in spatial design of the
locations, e.g., a random or space-filling design (Nychka and Saltzman, 1998; Pronzato and
Miiller, 2012) for locations over the region of interest will preclude such bias. However, in many
settings, design is not possible. Consider our context; sites where responses (selling prices)
arise occur at random, both in number and in location, i.e., again, as a realization of a spatial
(or space-time) point pattern. To clarify, in environmental exposure applications with fixed
monitoring networks, sampling locations are really not random but are viewed as a point pattern
in order to reveal their bias through an associated intensity. Conversely, we have a truly random
point pattern of property transactions which may include bias that was not designed. Then,
the question becomes a stochastic one: is the realization of the locations independent of the
realization of the selling prices? If not, then we have what is called preferential sampling.

With hedonic modeling, fixing a time window, our data consists of a spatial point pattern of
sales of properties and, associated with each transaction, we have a selling price. We also have an
available collection of predictors which can explain both sales activity as well as selling prices.
Then, adjusted for covariate information, the question is whether variation in sales activity over
a region, captured through an intensity, is related to variation in selling price over the region,
captured through a hedonic model?

This need not be the case, say if the mix of higher and lower priced property transactions
is roughly the same in subregions of high activity as in subregions of low activity. However,
it can be the case that subregions of high activity are associated primarily with higher selling
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prices or primarily with lower selling prices. Analogous to the environmental example above,
this corresponds to over-sampling of subregions where selling prices tended to be high or over-
sampling of subregions where prices tended to be low, respectively. Our dataset provides a
full census of property transactions. Now, if preferential sampling arises (in fact, it does as we
show in Section 4), then it will be attributable to economic forces which provide bias rather
than the foregoing design bias. These economic forces may be observable as, for instance, after
the deep financial crisis that began in 2008. Banks had to sell off many properties (so-called
toxic assets) because of mortgage defaults, at very low prices. However, these forces, e.g.,
interest rate, unemployment rate and consumer price indexes do not vary over the city so they
cannot be used for studying the spatial variation of selling price. Regional economic forces
are typically unobserved or unmeasured but can reveal a preferential sampling effect, as in our
ensuing analysis. It is also the case that other local covariate information could mitigate possible
preferential sampling issues. Examples include information, e.g., about amenities available in
neighborhoods, about the so-called “built” environment associated with neighborhoods, about
access to transportation or to health care in neighborhoods. Such covariates are difficult to obtain
and beyond the scope of our study.

Continuing our example, suppose that for regions in space where there is lower selling price,
we tend to see higher sales activity. Two potential scenarios of this sort are: (i) the case of a high
rate of foreclosures or mortgage defaults in portions of the city which would lead to consequential
under-pricing in property sales or (ii) a large governmental development of subsidized housing
in portions of the city, again leading to under-pricing. If there is over-sampling of such regions,
then we may tend to see underpricing in prediction of selling price. This would result in the
presence of a preferential sampling effect. Furthermore, if we view the log intensity for the point
pattern as a regressor, a negative coefficient in a hedonic model can help to push up prediction
where selling prices tend be lower but also pull down prediction where they tend to be higher.
Similarly, if there is over-sampling of higher priced properties, now a positive coefficient attached
to the intensity can help to explain selling price.

So, two general questions arise here. Is there bias in the set of property transaction locations
which affects inference with regard to selling prices of properties? If there is such bias, can
we revise our hedonic model, using the spatial behavior of transaction activity, to improve the
prediction of selling price? Our contribution is to illuminate the stochastic connection between
the point pattern of sales locations and the associated selling pricest. We can illustrate this
issue with both the full database and an intentionally biased subset of a collection of transactions
discussed in Section 2. There is evident value to buyers, seller, realtors, banks, etc. in achieving
better understanding of the nature of this relationship, and how it affects inference regarding
selling price. However, to date, such connection has not been studied in the literature. Our
objective is not to remove preferential sampling bias. Rather, we seek to identify whether it is
present and attempt to provide a better spatial prediction model if it is.

We elaborate the above through three stories. First, working with the full database, under a
simple hedonic model, that is, a spatial regression specification with no random effects, inclusion
of the log intensity of the point pattern of sales locations as a regressor yields a significant
regression coeflicient. There is a preferential sampling effect which has a clear interpretation
and which, again, we attribute to unmeasured economic forces. Second, with this database,

Stochastic dependence is different from functional dependence. The latter merely reflects the fact that
a selling price is attached to a location.
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if we adopt a hedonic model with spatial random effects (a so-called geostatistical model) and
then introduce the log intensity of the point pattern of sales locations as a regressor, we find
no preferential sampling effect, no improvement in prediction of selling price. This may not
be surprising due to the flexibility provided by the spatial random effects. Moreover, when we
have the complete inventory of real estate transactions, there is no design] to bias the sampling.
So, in the absence of a very strong economic effect, there is no reason to expect a preferential
sampling effect under this model. As a result, our third story finds us introducing consequential
sampling bias into our sample of transaction locations. Then, we are able to demonstrate a
preferential sampling effect in the hedonic model with spatial random effects and to improve
prediction taking this effect into account.

Each story emerges from a particular specification of the joint model for selling prices and
locations of sales, applied to a set (or subset) of residential property transactions in Zaragoza,
Spain. The hedonic models also allow for the inclusion of Gaussian processes (GPs) to capture
local adjustment. Similarly, the spatial point pattern modeling of sales activity includes a
Gaussian process in the intensity, yielding a log Gaussian Cox process (Mgller et al., 1998),
capturing more detail in the point pattern intensity. Through the model specifications we can
learn about the presence of preferential sampling; through out-of-sample model comparison, we
can evaluate whether a model incorporating preferential sampling better predicts selling price.

In brief, we can employ a nonhomogeneous Poisson process (NHPP) model or a log Gaussian
Cox process (LGCP) model for the intensity surface of the point pattern of sales locations. In
fact, Paci et al. (2017) demonstrated that the LGCP is preferred to the NHPP so, in the sequel, we
only use the former. For the hedonic model, we consider four choices: (i) a spatial regression,
(ii) a spatial regression incorporating preferential sampling, (iii) a geostatistical hedonic model,
and (iv) a geostatistical model incorporating preferential sampling. In terms of the stories above,
comparison of (i) vs. (ii) reveals a preferential sampling effect for the full dataset. Comparison
of (ii) vs. (iii) reveals that the geostatistical model slightly outperforms the preferential sampling
model for the full dataset. Comparison of (iii) with (iv) reveals that adding preferential sampling
to the geostatistical model does not improve its performance with the full set of transactions.
Then, introducing intentional bias into the set of transactions in the form of over-sampling of
expensive properties, we can make the same comparisons; now comparison of (iii) with (iv)
reveals improved predictive performance with a biased subset of transactions.

As mentioned above, a hedonic pricing model is customarily employed to measure the
contribution of individual house characteristics to the overall composite value of the housing
asset. Location along with other house characteristics are typically introduced into the mean
structure in the hedonic model resulting in a spatial regression (Ridker and Henning, 1967; Li and
Brown, 1980; Dubin and Sung, 1990; Anselin and Lozano-Gracia, 2009; Ahlfeldt and Kavetsos,
2014). However, sometimes important neighborhood characteristics are unavailable; in these
cases, spatial effects may be introduced into the error structure, the so-called geostatistical
approach (Dubin, 1988; Basu and Thibodeau, 1998; Gelfand et al., 2003), or as random effects
using autoregressive specifications (Gelfand et al., 1998; Beamonte et al., 2010).

Preferential sampling was introduced by Diggle et al. (2010) to account for stochastic de-
pendence between the point pattern of locations and sample of response data observed at these
locations through the use of a shared process specification. The authors proposed a class of

THere, design refers to intentionally over-sampling higher priced properties or to over-sampling lower
priced properties.
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stochastic models for preferentially sampled geostatistical data with likelihood-based inference.
A richer formulation in a Bayesian framework was proposed by Pati et al. (2011). Gelfand et al.
(2012) discussed the differences in spatial prediction using randomly selected locations versus
preferentially chosen locations and showed how the latter provide biases in prediction. Ferreira
and Gamerman (2015) analyzed the effects of preferential sampling in the process of obtaining
an optimal design in geostatistical models. Lee et al. (2015) studied the impact of preferential
sampling on the inference of health effects in the air pollution epidemiology. As mentioned,
many studies of preferential sampling in the literature are in the context of air pollution exposure
assessment (Pati et al., 2011; Lee et al., 2011; Shaddick and Zidek, 2014). Other examples arise
in veterinary parasitology, where the location of the sampled farms is not independent of the
spatial distribution of parasites (Cecconi et al., 2016) and in studies of population distributions
(Conn et al., 2017). However, to our knowledge, we are the first to investigate preferential
sampling in the context of real estate markets.

Our motivating dataset consists of a complete census of residential property sales in Zaragoza,
Spain during 2006-2014. We work with sales of apartments in a region around the city center.
For each sale we have the geo-coded location and associated selling price. In addition, we
have characteristics of the individual apartments and have constructed a file of neighborhood
characteristics to assign to each apartment. We work with two years, one pre- and one post- the
deep financial crisis that started in 2008.

The remainder of the paper is organized as follows. In Section 2 we describe the dataset.
In Section 3 we first discuss some basic ideas behind the preferential sampling. Then, specific
modeling choices are detailed as well as the use of the nearest neighbor Gaussian process to
facilitate model fitting. In Section 4 we analyze the selling prices of the full set of transactions in
Zaragoza. Section 5 illustrates the benefit of adjusting for preferential sampling when we have a
biased subset of the residential sales data. Finally Section 6 provides discussion and indications
for future work.

2. The residential sales data

We consider residential sales in Zaragoza, Spain, during the 9 year period 2006 —2014. Zaragoza
is a city situated in the northeast part of Spain with a population of 664, 953 inhabitants as of
2014. The dataset has been provided by the Colegio Nacional de Registradores de Espaiia and
contains, for every sale, information on location (UTM coordinates), selling price, living area,
year of building construction and the exact day of the transaction.

The area of the municipality is large and for urban designs/plans the town hall divides the
city into 89 urban polygons. Some of them, considered rural neighborhoods/areas, are distant
from the city center and, in some cases, are disconnected from the rest of the city. For this
study, we have considered 52 of those polygons, all of them around the city center, following the
dense distribution of population in old cities in Spain. We have discarded properties other than
apartments, the dominant type of dwelling everywhere in the city. Family houses, townhouses,
etc. are located only in a few polygons. Large areas with no housing within the polygons have
been removed (e.g. parks, the University of Zaragoza campus, hospital areas, etc.). What is
retained is, essentially, a full census of apartment sale transactions in and around the city center.

Figure 1 shows the average price per year and the number of transactions per year. For
the period analyzed in this work, it is important to keep in mind the deep economic financial
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Figure 1. Number of transactions (left panel) and average price (right panel) per year.

crisis that, starting in 2008, sank the economy in Spain and many other countries, leading to
devastating consequences especially in the real estate market. A clear drop in the prices is shown
starting from 2010. Paci et al. (2017) analyzed the spatio-temporal point pattern of sales over
the 9 year period. In this work, we bring in selling price with interest, as described above, in
assessing preferential sampling with regard to selling price. Therefore, we focus on relating the
spatial point pattern of sales to the spatial surface of selling price over the city. So, we abandon
temporal modeling, instead analyzing selling prices for two different years, 2007 and 2012, pre-
and post- crisis, respectively. Figure 2 shows the number of sales and the average price by urban
polygons in 2007 (top panels) and 2012 (bottom panels); we have 2, 969 sales in 2007 and 2, 186
in 2012§.

Features of the sold properties are available to explain selling price, including the size of the
property, its age and a binary regressor which records the presence of accessory elements (AE).
Accessory elements are considered as complements to the apartment such as a garage space or
a storage area. Specifically, AE = 1 if no accessories, AE = 0 if there are. Paci et al. (2017)
partitioned all of the transactions into four size classes. Here, we consider all the sales as our
point pattern and employ log size as a covariate in the hedonic model. Figure 3 displays the
scatterplot of log size and log price for 2007 (left panel) and 2012 (right panel), showing the
expected strong relationship. We also consider the age of the property defined as the difference
between the year of transaction and the year of building construction. Then, a logarithmic
transformation is applied and the scaled variable is retained. The weak relationship between
log price and log age is displayed in Figure 4. Usually, economic variable are also employed
in hedonic modeling, such as interest rates, unemployment rates and consumer price indexes.
However, such variables do not vary over the city and so they cannot be used for studying the
spatial variation of selling price.

Finally, we introduce demographic covariates at spatial level (polygon), i.e., total population,
percentage of youth population (< 14 years old), elderly population (> 65 years old) and the
percentage of foreign population. These proposed covariates are discussed in Gonzalez and
Ortega (2013) and Eichholtz and Lindenthal (2014). They were also employed in the purely

§While we see spatial pattern in the selling prices, it is important to note that they have not yet been
adjusted to reflect differences in the regressors associated with each sale.
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Figure 3. Scatterplot of log size and log price for 2007 (left panel) and 2012 (right panel).

point pattern analysis presented in Paci et al. (2017).

3. Modeling

3.1. Basic ideas

We begin with some basic modeling ideas in our setting. Let )’ denote the set of selling prices
and let S denote the spatial point pattern of sales. In Paci et al. (2017), S is modeled using a
LGCP driven by an intensity A(s), i.e., [S|A(s)],s € D, where D is the spatial domain. Note
that, if we simply overlay on this model a hedonic model for ), e.g. [V|S, parameters], then we
can fit both models separately. S is viewed as fixed in the hedonic model; hence, S does not
inform about ) and we do not introduce the notion of preferential sampling.

When the locations are viewed as random along with the responses at the locations, we
have a marked point process. There are many ways to model marked point processes. The
preferential sampling framework sets out the joint model for the locations and marks through
a model for locations and then a model for marks given locations. Specifically, Diggle et al.
(2010) suggest thinking in terms of three processes, i.e., the “measurement” process from which
we sample )/, the “point” process which yields S, and the “field” process, say {2 which drives
the measurement and point processes. At a high level, we can formalize the modeling through
[VI|S, 2, parameters][S|€2, parameters][2|parameters] §. According to Diggle et al. (2010), pref-
erential sampling involves stochastic dependence, as opposed to functional dependence, between
the point process and the measurement process. Hence, the field process adds the option of intro-
ducing a latent spatial random field driving both the measurement and the point processes, that
is, a “shared” component model (Cecconi et al., 2016). In other words, we are asking whether
there is a common latent spatial process driving dependence in selling price as a function of

€ Often, the set of locations may not have been developed randomly. However, in the context here, it is
viewed as if it were a realization of a spatial point process.
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Figure 4. Scatterplot of log age and log price for 2007 (left panel) and 2012 (right panel).

proximity as well as the intensity for sales locations as a function of proximity. By analogy, we
can imagine having a point pattern of tree locations along with diameter for each tree and asking
if diameters for neighboring trees are strongly dependent. For trees, the answer may not be clear.
For selling prices, adjusted for differences in regressors, this is the goal of our investigation.

Additionally, we can have covariates that are relevant in explaining both the selling price and
the sales activity. Being more explicit, Paci et al. (2017) developed a LGCP model with intensity
driven by demographic covariates as above (as well as economic covariates and a space-time
GP). As noted in Section 2, such covariates arose by a partitioning of Zaragoza into a collection
of areal units (urban polygons), assigning covariate levels to each unit over windows of time
and then, if say s € A;, setting X(s) = X(A;), where j = 1,...,52. In this regard, none of
the covariates used in modeling S are associated with individual properties. Rather, they are
characteristics of the areal units in given time windows. Such covariates can also be employed
in the hedonic modeling, viewed as “neighborhood” characteristics expected to influence selling
price.

Evidently, we can have additional covariates that are only in the selling price model. More
precisely, in constructing a hedonic model, we work at the level of the individual sale and so we
customarily introduce features associated with the individual property sold. As noted in Section
2, the property specific information includes size, age, and presence of accessory elements.

3.2. Elaborating the modeling

Let s denote a location observed over a bounded spatial domain D C R2. The collection of
points that makes up the spatial point pattern is denoted by S = {s;; i« = 1,...,n}, where
n = N (D) is the number of points observed in D. In particular, as above, we model S using a
LGCP driven by an intensity \(s) specified as

log A(s) = X(s)7 8 + n(s), (1)
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where X(s) is a p-dimensional vector containing the demographic covariates discussed in the
previous section at location s and the 7)(s) are spatial random effects. These effects are assumed to
come from a zero mean GP with covariance function of the form say C(s,s') = o7 py(s —s'; 6,),
where p,(-;6,) is a correlation function depending on 6,,. Paci et al. (2017) show that such
modeling provides an effective LGCP model for explaining the point pattern of sales activity in
the dataset described in Section 2. The LGCP likelihood for a realization S is given by

El (/Gv’r’DvO-%; S) = €xp {_ /D )\(S)dS} H)‘(sl)a (2)
=1

where \(s) is defined according to (1) and np = {n(s) : s € D}. The integral in (2) is a
stochastic integral, i.e., an integral over a random realization of a stochastic process. It can
never be evaluated explicitly and, in practice, it is approximated numerically using a grid of
representative points (Banerjee et al., 2014) within D.

Turning to selling prices, let Y (s) be the (log)selling price of a property at location s||.
The collection of selling prices is denoted by ). Let W(s) = (V(s),X(s)) where V(s) is
the ¢-dimensional vector collecting individual property level covariates at the given location s
introduced in Section 2. We consider four regression models for prediction of Y (s) as follows.

(i) A simple spatial regression model

y(s) = W(s) o+ e(s), 3)

where we partition & = (o, ax ) and the £(s) are white noise errors, normally distributed with
zero mean and variance 72. The hedonic model is fitted apart from the point pattern model,
excluding the opportunity to learn about ) from S through the intensity.

(ii) A shared component model

y(s) = W(s) o+ dn(s) + &(s), (4)

where 7)(s) is as in (1). Again, @ = (ay, ayx) and the £(s) are white noise errors, normally
distributed with zero mean and variance 72. Here, 7(s) plays the role of a regressor and §
becomes the coefficient for preferential sampling effect. In the words of Diggle et al. (2010),
0 = 0 is non-preferential sampling while 6 # 0 indicates preferential sampling with the sign
of ¢ indicating the direction of preferential adjustment. If § > 0 we find that, with increased
expected sales activity, we predict increased selling price, vice versa for § < 0. So, fitting (4)
and (1) jointly enables assessment of the presence of preferential sampling.
(iii) A geostatistical model

y(s) = W(s) o+ o(s) +<(s), (5)

where again, a = (ay, ax), the (s) are white noise errors, normally distributed with zero
mean and variance 72. Now, the ¢(s) are spatial random effects specified by a zero mean
GP with covariance function of form C(s — s';0,) = J£p¢(s —s';04), where py(-;6,) is a
correlation function depending on 64. They provide local adjustment to the model in (i) and, as
is customary, they are interpreted as capturing omitted covariates with spatial information. This

|I[We have carried out all of the ensuing analyses replacing selling price with price per square meter.
Similar stories emerge so we chose to present the results only for selling price.
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hedonic model is fitted apart from the point pattern model, excluding the opportunity to learn
about ) from S through the intensity.
(iv) A geostatistical model with preferential sampling

y(s) = W(s)"a + ¢(s) + dn(s) + £(s), (6)

where 7)(s) is as in (1) and, again, a = (ay, ax), ¢(s) are spatial random effects as in (5), and
the £(s) are white noise errors, normally distributed with zero mean and variance 72. Again,
we have the shared process idea and the coefficient  carries the interpretation of a preferential
sampling effect. The 7 process and the ¢ process are modeled a priori as independent. In
conjunction with (1), this is the model offered in Pati et al. (2011). We see the introduction of
n(s) as a regressor in the geostatistical hedonic model. Because of the flexibility of ¢(s), model
(iv) need not perform better than model (iii). So, joint fitting of (6) and (1) assesses whether
0 remains significant, whether we can improve on prediction of selling price in the presence of
preferential sampling.
Under (6), the likelihood for a realization of selling prices ) is

n

£2 (Oé, 5a ¢7 n, O-gya 072]7 7—2; y) = H N (y(sl) ‘ W(si)Ta + QS(SZ) + 577(51) 77_2)' (7)
i=1

We offer four remarks:

Remark 1: Combining (1) with (3) or (5) implies independence of the )V and S processes.
However, along with a suitable set of regressors, the flexibility of (5) may enable it to predict
well ignoring the information in S if S does not show strong bias with regard to locations of
sales over D. In other words, a shared process model for selling price need not be better than a
geostatistical model for predicting selling price. Indeed, the geostatistical model allows selling
price to have its own random effects process (GP) while the shared process model forces ) to
inherit the same GP as for S. As a result, a comparison of (1) and (4) (essentially just using
(4) for prediction) with (1) and (5) may favor the latter. However, with bias in the locations of
sales over D, comparison of (1) and (5) with (1) and (6) can now favor the latter. But, unless the
preferential sampling effect is very strong, the flexibility in local adjustment available from the
¢(s) will annihilate the local linear effect of 7(s) inherited from (1).

Remark 2: Combining (1) with (4) or (6) creates dependence between )) and S in the sense
that 7(s) is shared in the model for each. When there is stochastic dependence between )’ and
S then not only does S inform about the mean surface for y(s) but also ) informs about the
intensity, A(s). It is natural to ask whether the data can identify both GPs in (6)? One way
to clarify the identifiability issue is to note that the model in (1) informs about 7(s) and O’%.
But then, for the hedonic model in (6), we can learn about J, the regression coeflicient for 7(s)
and therefore the spatial component of the residual, ¢(s), as with usual geostatistical models.
Nonetheless, since 7(s) is unobserved, unlike W (s), there could be some tradeoff between the
dn(s) term and the ¢(s) term. This is perhaps why in the original Diggle et al. (2010) paper
no ¢(s) term was introduced, like our model (ii). Adding the ¢(s) term to obtain our model
(iv) was suggested in Pati et al. (2011) who were fortunate to have an ozone dataset which was
sufficiently biased to extract a significant 4.

Remark 3: Though we assume that the 7(s) and ¢(s) processes are independent, the joint
model (1) and (6) specifies a joint model for sales activity and selling price that provides spatial
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dependence through a linear model of coregionalization (Banerjee et al., 2014). That is, if
we write the shared component in the log intensity for the sales locations as 7(s) = o, Ui (s)
and we write the hedonic model in the form y(s) = W(s)Ta + 60,U1(s) + a4Ua(s) + €(s),
where ¢(s) = o4Us(s), then we have a coregionalization model with coregionalization matrix
A o 0

do, oy
model with spatial random effects but that the models are independent.

Remark 4: The need to approximate (2) with representative points along with the fairly
large number of properties in the product term in (2) results in a high-dimensional multivariate
normal vector of random effects as part of the model fitting. The additional GP for the selling
prices included in (5) and (6) brings an additional high dimensional multivariate normal vector
of random effects. To expedite computations we employ a nearest neighbor Gaussian process
(NNGP; Datta et al. 2016) which we briefly review in the next subsection.

. We again see that 6 = 0 endows the locations model and the selling price

3.3. Replacing the GP with a NNGP

The NNGP (Datta et al., 2016) is constructed as follows. Let R = {si,...,s,} be a fixed set
of r points in D, which is called ‘reference set’. Let the vector {p = ({(s1),...,((s;)) have a
multivariate normal distribution with mean zero and spatial covariance matrix C'r arising from
a GP over D C R2. The NNGP proceeds from the factorization of the joint density of ¢ ; as the
product of conditional densities, i.e.

P(Cr) = p(C(s1)) p(Cls2) | C(s1)) - - p(C(sr) | C(Sr—1), -+, C(81)) - (®)

Then, the conditioning sets on the right hand of (8) are replaced with carefully chosen condi-
tioning subsets, N (s;) C R\ {s;}, called ‘neighbor sets’, of size at most m, where m << r (see
e.g. Vecchia 1988; Stein et al. 2004; Datta et al. 2016).

The NNGP replaces the distribution for ¢ in (8) with

p(Cr) = ﬁp (C(Sz’) | CN(si))
i—1

=TI (¢ts0) 1 ey vi) = N (G | 0.K) ©)
i=1

where a; is the m x 1 vector defined as a; = CX,%S,_) N(S,‘)C N(s:).s, and the variance is given by

v; = Cs, — C,, N(Si)C&%&)’ N(si)C N(s:).s;- Lhe resulting precision matrix K~ is sparse with at
most O(rm2) non-zero elements (Datta et al., 2016). Hence, the approximation in (9) produces
a sparsity-inducing prior distribution for the spatial random effects over R. Here, we choose
the same reference set in the NNGP specification of ¢(s) and 7(s). In particular, the reference
set R consists of the set of the observed locations; this choice has been shown to yield good
approximations to the parent GP (Datta et al., 2016).

With regard to the neighbor set N (s; ), any subset of {s1, ..., s;_1 } ensures a valid probability
density in (9). However, the choice of the m nearest neighbors depends upon the order of the
collection of the spatial points. Datta et al. (2016) showed that the inference is robust to the
ordering of the locations. Since spatial locations are not ordered naturally, here we impose order
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by one of the coordinates (longitude). Then, we chose the neighbor set as the set of m = 10
nearest neighbors with respect to a Euclidean distance.

Next, lettd = {si,...,s;} be any finite set in D outside R, i.e., R NU is empty. The nearest
neighbor density of ¢;; = (¢(s7), ..., ¢(s})) is defined conditional on  as

ZB(CU | CR) =

<

P (<) | Cvisr))

1

.
Il

I
:Q

N (6(5) | @ Cvgey v ) (10)
1

.
Il

where N (s}") is the set of m-neighbors of s7 which must be in the reference set R, while a; and
v; are defined analogous to (9). Datta et al. (2016) show that the finite dimensional distributions
supplied through (9) and (10) determine a valid GP which is defined to be an NNGP. Here, the
set U contains all the representative points (roughly 4500 points) used to evaluate the integral in
the LGCP likelihood (2).

3.4. Fitting and prediction details

To complete the Bayesian specification we supply a prior distribution for all of the model
parameters. Independent vague normal distributions are employed for all of the coefficients, the
a’s and 3’s. Also, a vague normal prior distribution is adopted for J, the preferential sampling
coefficient.

We assume that the spatial random effects 7(s) come from an NNGP, arising from a parent
GP with zero mean and an isotropic covariance function, with variance 03) and exponential
correlation function, i.e., C(s,s + h;0,)) = o5 exp(—6y||h||), depending upon a spatial decay
parameter 6,,. We replace (s) in (1) with 7j(s) = 7(s) —0727/2 so that, a priori, E [exp{7(s)}] =1
in order to center the random effects with regard to \(s).

Model fitting is more challenging with the additional spatial GP ¢(s) but, for the NNGP,
we only need the s; associated with the sales. Hence, we assume that the spatial random
effects ¢(s) come from an NNGP, arising from a parent GP with zero mean and an exponential
covariance function, depending upon a variance 03) and a decay parameter 4. To accommodate
identifiability issues with the hyperparameters (Banerjee et al., 2014), we adopt an empirical
Bayes approach for the decay parameters, i.e., we fix 6, and 64 at values corresponding to
spatial ranges of roughly 3.5 km and 1.5 km, respectively. We select a shorter range for selling
prices than for selling intensity since we envision that price is more “local” than selling activity.
Different ranges also allow us to better identify the two GPs of model in (6). We experimented
with other values of the decay parameters, learning that predictive inference has little sensitivity
to choices close to these values. Finally, we place vague inverse Gamma priors on the variances

2 2 2
To> O s and 7°.
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The joint posterior distribution of model (iv) in equation (6) is given by
p (aa 67 55 Np> ¢7 U%’ 0-357 7—2 ’ yv S) X ['1 (ﬂ Mp, O-%; S) X 'CQ (av 57 ¢a n, 0-357 03, 7—2; y)

X HN( Si) |a77N()vi>
n+L

X HN( |a77N(s) )

j=n+1

X HN( (si) | b dn s )

x m(a) x7(8) x w(d) x 7r(0727) X 71'(035) x m(T2Y11)

where L1 (8,mp,07; S) and L, (a, 8, ¢,m, 03,00, 7% y) are defined in (2) and (7), respec-
tively, and 7(-) denotes the prior distributions.

Fitting the model using Markov chain Monte Carlo (MCMC) requires Gibbs sampling steps
for updating the coeflicients of price modeling and Metropolis steps for updating the coefficients
of sales modeling. In general, model fitting for the LGCP is computationally demanding because
of the large number of Gaussian random variables which arise in the intensity. However, we
benefit from the NNGP specification for the random effects which enables easily calculated
univariate normal draws for these random effects. Thus, sequential updating of each of the n’s
and ¢’s conditionally on their neighbors in the reference set is performed through a random walk
Metropolis step and a Gibbs step, respectively.

Besides the explanation provided by the regressors, the hedonic model is used for prediction.
So, we need the predictive distribution [Y (so)|data] for a new location sg. This will require
the samples from predictive distributions for 7(sg) and ¢(sp) along with usual composition
sampling (Banerjee et al., 2014). We perform model comparison out-of sample. The LGCP
enables random p-thinning of the point pattern (Illian et al., 2008; Leininger and Gelfand, 2017)
to partition the locations roughly into a proportion p for fitting and a proportion 1 — p for
validation. This thinning induces a fitting set and a validation set of selling prices. As a last
remark, with the hedonic modeling here, prediction only considers interpolation within the given
spatial study area.

4. Analysis of the full set of transactions in Zaragoza

In this Section we present the results obtained from fitting models discussed in Section 3.2 for
the full set of residential sales data that consists of 2356 and 1726 transactions in 2007 and
2012, respectively. First, we show posterior summaries for the hedonic models and then present
a comparison of such models in terms of predictive performance. Presumably, with the full
census of sales transactions, design bias should not be an issue but a preferential sampling effect
may still arise, as we discussed in the Introduction.
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4.1. Posterior summaries

Posterior summaries for the models (i), (ii), (iii) and (iv), each fitted with (1), for each of the two
years, are shown in Tables 1-4, respectively. Results of simple hedonic model in Table 1 show
that the price is higher in less populated neighborhoods, with a higher percentage of elderly
people and with a lower proportion of foreigners. However, the coefficients associated with the
demographic covariates become not significant when spatial random effects are included in the
hedonic model, with the only exception of the percent of foreigners.

Recall that the size of the apartment and the age of the property are on the log scale; in this way
the corresponding coefficients estimate the elasticity of the price with respect to these covariates.
The coefficient of the size of the property is positive, indicating that the bigger the property, the
higher the price. Conversely, the negative coefficient of the age of the property reflects an age
penalization on the price of the dwelling. In particular, since the size coefficient is roughly 1,
an increase of 1% in (log) size results in a rise of roughly 1% in the price. Analogously, since
the age coeflicient is roughly —0.1 in 2007 and —0.25 in 2012, an increment of 1% in the age of
the property is reflected in a decrease of around 0.1% in the price in 2007 and roughly 0.25% in
2012. Finally, the AE variable presents a negative coefficient in 2012, revealing, as anticipated,
that presenting accessories yields an increase in expected price.

With regard to the preferential sampling coefficient § under model (ii), we note that it is
significantly negative in 2007 and positive in 2012. There is significant evidence of a preferential
sampling effect, following the interpretation of Diggle et al. (2010). There is evidence of a latent
economic effect that is introducing bias into the full set of transaction locations. These effects
have to be interpreted with care. In 2007, before the crisis, there was high demand with relatively
higher sales activity away from the center where properties were developed (some with subsidies)
with relatively lower prices. So, & < 0 for this year reflects the effect of the log intensity to pull
down prices where there was high activity. By contrast, in 2012, just after the crisis, overall
demand decreased but there was relatively higher sales activity in the center, where prices were
relatively higher. So, § > 0 for this year reflects the effect of the log intensity to push up prices
where there was high intensity.

Under model (iv), the coefficient ¢ is not significant for both 2007 and 2012, revealing that
the sales activity does not effect the selling prices in the presence of flexible GP random effects
in the hedonic model. Again, when analyzing the full dataset, there is no expectation of strong
sampling bias, hence there is no reason to expect a significant preferential sampling effect in
model (iv). However, this is not the case when we employ a strongly biased subsample of
transaction locations, as shown in Section 5 below.

4.2. Model comparison

Model comparison focuses only on prediction of selling prices since the motivation for this
work is to assess the effect of preferential sampling on the prediction of such prices. That is,
we hold out a proportion of the selling prices and obtain their associated posterior predictive
distributions. Predictive mean square error (PMSE) and continuous ranked probability score
(CRPS; Gneiting and Raftery 2007) are used to compare performance across the four choices
of hedonic models. Here, a nominal 20% of data are held out for validation using a p-thinning
approach (Illian et al., 2008; Leininger and Gelfand, 2017), resulting in 613 sales held out in
2007 and 460 sales held out in 2012.
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Table 1. Posterior summaries of parameters of regression model (i).

2007 2012

2.5% 50% 97.5% 2.5% 50% 97.5%
o 12.0753 12.1203 12.1665 | 11.5809 11.6266 11.6729
Qpop -0.0656  -0.0380 -0.0105 | -0.0912 -0.0607 -0.0299
<14 -2.0475  -0.7132  0.5694 | -3.2256 -2.0220 -0.8768
>65 0.2026 09110 1.6436 | 0.6864 14316  2.2062
Olforeign~ -1.8420  -1.4436  -1.0531 | -2.3405 -2.0259 -1.7200
Olsize 09130  0.9607 1.0119 | 1.0863 1.1415 1.1995
Qlage -0.1323  -0.1161  -0.1003 | -0.2706 -0.2524 -0.2345
QAE -0.0802 -0.0327  0.0165 | -0.1186 -0.0703  -0.0205
72 0.1327  0.1405  0.1491 | 0.1162  0.1241  0.1331

Table 2. Posterior summaries of parameters of shared component model (ii).

2007 2012

2.5% 50% 97.5% 2.5% 50% 97.5%
Qg 12.5545 12.6743 12.8218 | 11.0866 11.2173 11.3229
Otpop -0.0821 -0.0356 0.0163 | -0.0447 0.0070 0.0563
<14 -4.2382 -2.1571 -0.1696 | -4.4355 -2.6334 -0.7507
65 -1.3251  -0.0683 1.0735 | -1.2399 -0.0415 1.0574
Oforeign ~ -1.9629  -1.2785  -0.2785 | -1.7051 -1.0917 -0.4734
Qlsize 0.8143 0.8653 0.9150 1.0264 1.0853 1.1428
Oage -0.1215 -0.1052 -0.0882 | -0.2676 -0.2492 -0.2300
QAR -0.0817 -0.0341 0.0155 | -0.1253 -0.0751 -0.0263
) -0.8431 -0.6867 -0.5580 0.4344 0.5484 0.6838
ag 0.1260 0.1615 0.2120 0.1080 0.1525 0.2189
72 0.1083 0.1158 0.1242 0.0890 0.0972 0.1061

Table 3. Posterior summaries of parameters of geostatistical model (iii).
2007 2012

2.5% 50% 97.5% 2.5% 50% 97.5%
Qg 12.0021 12.0908 12.1833 | 11.4903 11.6032 11.7074
Qpop -0.0485 0.0034 0.0654 | -0.0809 -0.0229 0.0368
<14 -3.6748  -1.2990 1.0384 | -3.8308 -1.4872 0.8206
a>65 -1.1069 0.1606 1.4812 | -1.0711 0.4124 1.9133
Olforeign~ -2.1212 -1.2862  -0.4358 | -1.3901 -0.7524 -0.1100
Qsize 0.8297 0.8798 0.9306 0.9697 1.0265 1.0865
Qlage -0.1318 -0.1147 -0.0985 | -0.2540 -0.2356 -0.2171
QAE -0.0925  -0.0449 0.0023 | -0.1159 -0.0652 -0.0166
02 0.0432 0.0567 0.0752 0.0545 0.0724 0.0937
72 0.1016 0.1088 0.1163 0.0800 0.0872 0.0950
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Table 4. Posterior summaries of parameters of geostatistical model with preferential

sampling (iv).
2007 2012

2.5% 50%  97.5% 2.5% 50% 97.5%
g 11.9308 12.1489  12.315 | 11.4932 11.6187 11.7493
Qpop -0.0471 0.0062  0.0649 | -0.0912 -0.0349  0.0193
a<i4 -3.6739  -1.3985 0.8132 | -3.9975 -1.9712  0.0715
Qa>65 -1.0635  0.2137  1.4425 | -0.6425 0.7015  2.0568
Olforeign ~ -2.2608  -1.2984  -0.3535 | -1.8518 -1.2604 -0.6474
Olsize 0.8290  0.8783  0.9292 | 0.9673 1.0257 1.0855
Qlage -0.1314  -0.1139  -0.0979 | -0.2519 -0.2333  -0.2140
OAE -0.0903  -0.0438  0.0043 | -0.1188 -0.0686 -0.0198
] -0.1383  -0.0435  0.0682 | -0.0980  0.0055  0.1057
U¢2> 0.0445  0.0571 0.0762 | 0.0458  0.0570  0.0708
or,?7 0.2964 03623 0.4363 | 0.2257 0.2803  0.3616
72 0.1018  0.1086  0.1159 | 0.0692  0.0771 0.0849

Figure 5 displays the posterior predictive distribution for the selling price of four illustrative
transactions in 2007 (first row) and in 2012 (second row) from each of the four models, overlaid
with a vertical line showing the actual selling price. Properties located in the city center and away
from the center are shown in the left and right panels, respectively. The posterior predictive
distributions obtained under models (ii), (iii) and (iv) are well centered on the actual prices,
showing the clear benefit of local spatial adjustments introduced by random effects relative to
the simple spatial regression model.

Results of the model comparison are presented in Table 5. Comparing the simple spatial
regression model with the shared component model we can appreciate the benefit of the correction
introduced by the preferential sampling in the hedonic model. The comparison of model (ii) with
model (iii) tells us that the geostatistical model slightly outperforms the preferential sampling
model. This is likely attributable to model (iii) not having to share 7(s) with (1). However, the
closeness in performance between these two models suggests that the effects of omitted variables
are captured roughly equally as well by 7(s) as ¢(s). Finally, adding a shared component to the
geostatistical hedonic model, model (iv) does not provide any improvement in terms of predictive
performance. Again, we have anticipated this in our discussion above.

In summary, there is a preferential sampling effect in the absence of the spatial GP in the
hedonic model and there is substantial improvement in prediction when a shared process is
introduced. However, with the GP included in the hedonic model, such benefit disappears.
Moreover, with a full inventory of transactions, prediction of selling prices using model (iv) is
not beneficial. We next demonstrate that this need not be the case when consequential bias is
introduced into the locations of the sales.

5. Introducing bias in the set of transactions

In this section we show that we can benefit by adjusting for preferential sampling when we have
a strongly biased subset of the data. In the canonical environmental exposure setting, we usually
have a designed set of sampling locations which may introduce preferential sampling. In other
words, there is bias in the selection of monitoring site locations. For instance, in Pati et al. (2011)
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Figure 5. Posterior predictive distribution for the selling price of four illustrative transactions in 2007 (first
row) and 2012 (second row) under the four models. Properties located in the city center and away from the
center are shown in the left and right panels, respectively. The vertical line represents the actual selling

price.

2007 2012
PMSE CRPS | PMSE CRPS
model (i)  0.1487 0.2066 | 0.1247 0.1947
model (ii) 0.1346 0.1943 | 0.1121 0.1832
model (iii) 0.1328 0.1940 | 0.1098 0.1808
model (iv) 0.1327 0.1939 | 0.1124 0.1834

Table 5. Model comparison based on predictive mean square
error (PMSE) and continuous ranked probability score (CRPS).
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Figure 6. Log prices of all transactions (left panel) and of the biased sample of locations (right panel) over
the subregion in 2012.

monitoring stations tended to over-sample locations with high exposure levels. This led to the
log intensity surface associated with the designed locations becoming a significant covariate
with a positive coeflicient. In particular, they showed that this happened in the presence of the
usual GP random effects, analogous to our geostatistical plus shared effects model (iv). Here,
we develop a comparable illustration with our dataset by intentionally introducing design bias
into our point pattern of transactions. We create a biased subset of transaction locations with
regard to selling price, e.g., the sales locations available are more likely to be at say higher price
locations.

Specifically, we draw a subsample of sales locations in 2012 in a subregion of the city. We
take all the transactions from polygons which tend to have expensive apartments and we sample
1/8th of the locations from cheaper neighborhoods. Figure 6 displays the log prices of all
transactions (left panel) and of the biased sample of locations (right panel) over the city center
in 2012; that is, the biased sample on the right panel mimics the proposed design intention.
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Figure 7. Posterior predictive distribution for the selling price of two illustrative transactions in 2012 under
the two models. The vertical line represents the actual selling price.

Table 6. Model comparison based on
PMSE and CRPS over the biased sample
of transaction locations of 2012.
PMSE CRPS
model (iii) 0.1560 0.2213
model (iv) 0.1467 0.2140

We fit hedonic models (iii) and (iv) to the biased sample of transactions (616 transactions)
and we predict selling prices for all of the transactions not sampled (1190 transactions). In
this example, we show the results considering only log size and age as predictors, since the
demographic covariates did not exhibit significant effects. As expected, the coefficient of the
preferential sampling under model (iv) is significantly positive with 90% CI equal to [0.0655,
0.1718], raising the predicted response in areas of high activity, lowering it in areas of lower
activity. So here, with a geostatistical hedonic model, we can see significant explanation
associated with locations of sales activity.

Under models (iii) and (iv), each fitted to the biased sample, Figure 7 displays the posterior
predictive distribution for the selling price of two illustrative held out transactions in 2012; the
vertical line shows the actual selling price. In particular, the left panel is associated with a
property located close to a location in the fitting set (less than 8 meters) while the right panel
displays a property located far from the locations in the fitting set (more than 400 meters). In
both cases, the posterior predictive distribution obtained under model (iv) is better centered and
more concentrated with regard to the actual price.

Table 6 presents comparison of models (iii) and (iv) in terms of PMSE and CRPS obtained
using the biased sample of transactions. The table now reveals that adding preferential sampling
to the geostatistical model yields an improvement of 6% in PMSE and 3% in CRPS compared to
the geostatistical hedonic model. Though the improvements are modest, the theme that emerges
from both this section and the previous one is, essentially, that fitting the richer model (iv) will
always be at least as good as fitting the geostatistical model (iii).
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6. Summary and future work

We have considered the issue of preferential sampling in a novel context, that of extracting
whether there is a preferential sampling effect on the selling price of properties, taking into
consideration the fact that the locations of property sales are random. In fact, we have addressed
two questions: (i) is there evidence of dependence between activity in sales locations and
associated selling prices and (ii) if so, can we improve prediction of selling prices by taking
advantage of this dependence. Our approach leads to a data fusion between a point pattern model
for the locations of individual sales and a hedonic model for the selling prices of individual
properties. We have demonstrated for both the full census of transactions and an intentionally
biased sample of transactions the presence of a preferential sampling effect. We have further
argued that, under the full census, a flexible geostatistical hedonic model is not outperformed by
a model including a preferential sampling component. However, when there is substantial bias
in the sample of locations, the latter can provide modest predictive improvement.

Future work will consider comparison with other cities (in particular, such data is available
for several other cities in Spain). We can also explore retrospective investigation of the effects
of economic shocks with regard to a potential preferential sampling effect. Additionally, since,
for each transaction, we have both a location and a time of sale, we can attempt to extend this
analysis to a continuous space-time setting, requiring jointly, a space-time hedonic model for
selling price and a space-time point pattern model for property sales. Here, many modeling
choices are available including dynamics in coefficients as well as separable vs. nonseparable
space-time modeling for the random effects. Computation becomes more demanding due to
the fact that the dimension of the latent random effects vectors will increase by an order of
magnitude. This is exacerbated with a nonseparable covariance specification.
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