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In order to account for non-Fourier heat transport, occurring on short time and

length scales, the often-praised Dual-Phase-Lag (DPL) model was conceived,

introducing a causality relation between the onset of heat flux and the temper-
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ature gradient. The most prominent aspect of the first-order DPL model is the

prediction of wave-like temperature propagation, the detection of which still re-

mains elusive. Among the challenges to make further progress is the capability

to disentangle the intertwining of the parameters affecting wave-like behaviour.

This work contributes to the quest, providing a straightforward, easy-to-adopt,

analytical mean to inspect the optimal conditions to observe temperature wave

oscillations. The complex-valued dispersion relation for the temperature scalar

field is investigated for the case of a localised temperature pulse in space, and

for the case of a forced temperature oscillation in time. A modal quality factor

is introduced showing that, for the case of the temperature gradient preceding

the heat flux, the material acts as a bandpass filter for the temperature wave.

The bandpass filter characteristics are accessed in terms of the relevant delay

times entering the DPL model. The optimal region in parameters space is dis-

cussed in a variety of systems, covering nine and twelve decades in space and

time-scale respectively. The here presented approach is of interest for the design

of nanoscale thermal devices operating on ultra-fast and ultra-short time scales,

a scenario here addressed for the case of quantum materials and graphite.

Keywords: Temperature wave, Thermal nanodevices, Dispersion relation,

Band-pass filter, Q-factor, Quantum Materials, Graphite, 2D Materials.
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1. Introduction

The validity of Fourier’s law [1], the milestone constitutive relation describ-

ing diffusive heat transport, is affected by a major pitfall - notably the lack of

causality between the heat flux and the temperature gradient - which manifest

on short time and length scales [2] and/or at low temperatures [3]. Non-Fourier

schemes are thus required when dealing with heat transport in micro- and nano-

devices and with devices operating at cryogenic temperature and/or on ultrafast

time-scales [4, 5, 6, 7, 8, 9].

Among the non-Fourier formulations of heat transport, the much celebrated

macroscopic Cattaneo-Vernotte model (CV) [10, 11, 12, 13] assumes the heat

flux sets in after a delay time τq > 0, following the onset of a temperature gra-

dient. Coupling the CV model constitutive relation with energy conservation

leads to the telegraph equation for the scalar temperature field, which is of the

hyperbolic type. In this mode, temperature propagates as a damped wave with

finite velocity. The thermal wave concept proved useful in a variety of different

contexts where thermal inertia plays a role [14].

As a further gereralization, the DPL model [15, 16, 17] introduced the pos-

sibility for precedence switching between the heat flux and the temperature

gradient. The constitutive equation reads:

q (r, t+ τq) = −κT ∇T (r, t+ τT ) . (1)

where q is the heat flux, T the temperature, κT the Fourier’s thermal conduc-

tivity, and τT and τq are positive delay times. For τT < τq the temperature

gradient is the cause and the heat flux the consequence, whereas for τq < τT

the heat flux is the cause and the temperature gradient is the consequence, thus

switching precedence in the causality relation1. Upon first order expansion in

1Actually, the DPL model is exactly the same as the one-lag model: q (r, t+ τ) =

−κT ∇T (r, t), where τ = τq − τT and, obviously, their exact solutions are the same. Ex-

panding the models in Taylor series in time to first-order though, the DPL model and the

single-phase lag model yield two different constitutive equations, the latter being exactly that
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time and coupling with energy conservation, the DPL model leads to a Jeffrey’s

type equation for the temperature scalar field, which is parabolic in nature. Al-

though the third-order mixed derivative term, which will be explicitly addressed

further on, formally destroys the wave nature of the equation (the wave equation

is hyperbolic, whereas the Jeffrey’s type temperature equation is parabolic), the

solution may still bear, under a practical stand-point, ”wave-like” characteris-

tics [19]. Temperature propagation may thus preserve coherence properties, in

contrast to the classical idea of an incoherent temperature field. This is the long

sought behavior for applications dealing with micro- and nano-scale applications

and/or ultra-fast time scales [2].

The macroscopic DPL model, in its first-order formulation, has the merit of

encapsulating a variety of microscopic models of non-Fourier heat transport aris-

ing from different physical contexts. For instance, the phonon scattering model

[20], based on the solution of the linearized Boltzmann equation for the phonon

field, was developed to investigate heat waves in dielectrics at cryogenic temper-

atures and, most recently, was applied [21] to rationalise seminal experimental

findings on ultrafast thermal transport at the nano [22, 23] and micro-scale [24].

The two-temperature model, derived solving the Boltzmann equation for the

phonon-electron interaction [25], effectivly described the ultrafast thermal dy-

namics in thin-films subject to impulsive laser heating [26] and proved successful

in interpreting a multitude of phenomena ever since. Heat conduction in two-

phase-systems [27], granular materials [28], nanofluids [29, 30] and in the frame

of bio-heat transfer [31] may all be cast in the frame of the first-order DPL for-

mulation. As a matter of fact, the specific microscopic physics may be lumped

in the delay times τq and τT . This fact, on one side supports the validity of

the macroscopic model itself, on the other it furnishes a practical tool to either

of the CV model. This is due to the difference in which the expansion is taken, i.e. one linear

expansion around t of extent τq-τT for the single-phase lag model vs two linear expansions

around t of extent τq and τT respectively. We refer the reader to Reference [18] for a thorough

explanation of this important point.
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retrieve the microscopic parameters by fitting the solutions to experiments [32]

or to determine the requirements the materials parameter must meet in order

to achieve the sought transport regime [33].

An abundance of analytical [8, 34, 35, 36, 37, 38] and numerical works

[39, 40, 41, 42, 43] have been devoted to the DPL and CV models and their

solutions in several contexts. In an effort to directly backup experimentalists,

strategies to access the relevant time lags have recently been proposed, either

based on specifically-designed experiments [41, 44] or molecular dynamics ap-

proaches [45, 46]. However, the dispersion relation in ω-k space has remained

relatively unexplored, despite the wealth of information that may be readily ex-

tracted [47, 18], namely propagating thermal wave vectors, frequencies, group

velocities and quality factors.

The present work tackles temperature propagation in the frame of the first-

order DPL model, and its CV limit, adopting the same line of thought as the

one that has been successfully followed in solid state physics, for instance when

addressing coherent electronic transport [48], acoustic propagation in metamate-

rials [49, 50, 51] and electromagnetic wave propagation in matter. The complex-

valued ω-k dispersion relation is investigated for the cases of a localised temper-

ature pulse in space and of a forced temperature oscillation in time, linking the

temperature wave angular frequencies ω and wave vectors k. A modal Q-factor

is introduced to discern which temperature oscillations modes are practically

accessible. The Q-factor allows mimicking the material as a frequency and/or

wave-vector filter for the propagation of temperature oscillations. For the case

of the temperature gradient preceding the heat flux, and in the case of the DPL

(CV) model, the material acts as a bandpass (high-pass) filter for the tempera-

ture wave. The filters characteristics are accessed in terms of the relevant delay

times entering the DPL model. The Q-factors for the localized temperature

pulse in space and forced temperature oscillation in time are compared and, in

the former case, the group velocity is addressed. Previous reports of tempera-

ture oscillations, among which the recently observed temperature oscillation in

graphite at cryogenic temperatures [2], are revised at the light of the present
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formulation, together with the possibilities offered by quantum materials on

the ultra-short and ultra-fast space and time scales respectively. Specifically,

the possibility of observing electronic temperature wave-like behaviour in solid-

state condensates and spin-temperature oscillations in magnetic materials opens

the way to all-solid state thermal nanodevices, operating well above liquid he-

lium temperature while tacking advantage of different excitations - i.e electrons,

phonons and spins - and, possibly, of their mutual interplay. All the same, op-

timizing the conditions to observe lattice temperature wave-like oscillations in

graphite further expands the range of materials amenable to new nanothermal

devices schemes. The here presented approach yields to experimentalists a sim-

ple, easy-to-adopt, conceptual frame, together with algebraic formulas allowing

to inspect the optimal conditions to observe temperature wave-like oscillations

in materials. The present work will be beneficial in engineering thermal devices

exploiting temperature waves.

The overall organisation is as follows: the theoretical background is presented

in section 2, theoretical results are discussed throughout sections 3 to 5, case

studies are addressed in section 6 and conclusions summarized in section 7.

2. General dispersion relation

The starting point, to address temperature propagation, is the constitutive

equation, which is obtained expanding the DPL model to first order in time:

q (r, t) + τq
∂q

∂t
(r, t) = −κT ∇T (r, t)− κT τT

∂

∂t
∇T (r, t) . (2)

Coupling Equation 2 with the conservation of energy2 at time t

C
∂T

∂t
(r, t) = −∇ · q (r, t) , (3)

where C is the volumetric heat capacity, and resorting to 1D propagation along

the x-direction, yields the Jeffrey’s type equation for the temperature scalar

2The conservation of energy is instantaneous and holds at any time t, no delay time hence

enters the local conservation of energy.
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field [8]: (τq
α

) ∂2T
∂t2
− ∂2T

∂x2
+

1

α

∂T

∂t
− τT

∂3T

∂t∂x2
= 0, (4)

in which α = κT /C is the thermal diffusivity. In the present work small tempera-

ture variations, with respect to the equilibrium temperature Teq, are addressed,

hence the κT and C temperature dependence may be ignored. In the limit

τT → 0 Equation 4 merges into the telegraph equation, i.e. the CV limit, while

for both τT → 0 and τq → 0 the classical Fourier diffusion equation is restored.

Adimensionalization of Equation 4 is conveniently achieved by introducing

the set of non-dimensional variables β = t
τq

, ξ = x√
ατq

, Z = τT
τq

, θ = T
Teq

, hence

yielding:
∂2θ

∂β2
− ∂2θ

∂ξ2
+
∂θ

∂β
− Z ∂3θ

∂β∂ξ2
= 0, (5)

We seek for solutions of Equation 5 in the form θ (ξ, β) = θ0e
i(k̃ξ+ω̃β), where

the complex-valued adimensional wave vector, k̃, and angular frequency, ω̃, are

linked to their dimensional counterparts k and ω by: ω̃ = τqω and k̃ =
(√
ατq
)
k.

Substituting θ (ξ, β) in Equation 5 gives the dispersion relation:

k̃2 (1 + iZω̃) = ω̃2

(
1− i

ω̃

)
. (6)

Already in its general form, the dispersion relation provides, in a straight-

forward manner, the general conditions [19] that must be met in order to observe

wave-like temperature propagation. For Z|ω̃| � 1 and 1/|ω̃| � 1, Equation 6

reduces to the dispersion relation k̃2 = ω̃2 for a free-propagating wave. Rear-

ranging terms, the above mentioned prescription may be cast as Z � 1/|ω̃| � 1.

Switching back to dimensional variables, the condition for wave-like motion

reads τT � 1/|ω| � τq, meaning that the temperature oscillation period in

time 2π/|ω| must lay between the two relaxation times and that the tempera-

ture gradient must precede the onset of heat flux.

The dispersion relation in a linear problem, as in the present case, does

not depend on the spatio-temporal features of the excitation. Nevertheless, the

dispersion relation in its general form is too involved to allow making further

progress. Depending on the excitation scenario though, some features of the
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dispersion relation may be simplified, allowing for further understanding of the

propagation problem.

θa)

b)

ξ
θ

ξ

β1
β2>β1

Figure 1: Schematics of (a) temperature pulse in space and (b) forced temperature oscillation

in time.

In the present paper we address the propagation of a spatial temperature

peak and a forced temperature oscillation in time.

A temperature pulse in space (Figure 1 a) may be obtained as a linear super-

position of infinitely many spatial-harmonic oscillations, each of the form eik̃ξ,

with the non-dimensional wave-vector k̃ being the integrating variable in the in-

tegral. It thus suffices to investigate the time-evolution of each space-harmonic

component. As time evolves, each space-harmonic component remains periodic

in space while, due to damping, its amplitude is reduced in time. This scenario

is accounted for assuming a complex-valued angular frequency ω̃ and a real-

valued wave-vector k̃. This case is addressed in Section 3.

A forced temperature oscillation in time (Figure 1 b) may be obtained by

forcing the temperature at a specific location to oscillate at an angular fre-

quency ω̃, for instance by forcing the temperature to oscillate at the surface of

a semi-infinite solid. Moving away from the excitation source, the temperature

still oscillates at the same temporal frequency, whereas the amplitude, due to

damping, diminishes with increasing distance from the source. This scenario is

accounted for by assuming a complex-valued wave-vector k̃ and a real-valued

angular frequency ω̃. This case is addressed in Section 4. The two scenarios are
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compared in Section 5.

3. Dispersion relation: spatial temperature pulse

In the following, we investigate the propagation of a spatial temperature

pulse. The angular frequency is denoted ω̃ = ω̃1 + iω̃2, where |ω̃1| = 2π/βosc is

the inverse of the oscillation period βosc and ω̃2 = 1/βdamp is the inverse of the

damping time βdamp, the latter giving a measure of the maximum time-lapse

within which temperature oscillations can be observed before the propagation

turns diffusive; k̃ ∈ R.

The onset of a wave-like regime is conveniently addressed introducing the Q-

factor, Q = |ω1|/ω2 = |ω̃1|/ω̃2, which discriminates the underdamped (Q > 1)

from the overdamped (0 < Q < 1) and the non-oscillatory regime (Q = 0).

In the following, the expression for ω̃(k̃), Q(k̃) are first derived for the case of

Z = 0 (CV limit) and next for the general case Z 6= 0. This allows illustrating

the effects introduced by the additional delay time τT with respect to the CV

case.

3.1. CV Model Limit

Substituting ω̃ = ω̃1 + iω̃2 into the dispersion relation Equation (6), calcu-

lated for Z = 0, stems in:


ω̃2
1 − ω̃2

2 + ω̃2 − k̃2 = 0

(2ω̃2 − 1) ω̃1 = 0.

(7)

We first seek for potentially oscillatory solutions, i.e. ω̃1 6= 0. The second

equation of the above system gives ω̃2 = 1/2, and, upon substitution of ω̃2 =

1/2, the first equation of the system reduces to:

ω̃2
1 − k̃2 +

1

4
= 0. (8)
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Equation 8 admits real and non-null solutions provided the discriminant

∆(k̃) = k̃2 − 1
4 > 0. The latter condition is satisfied for wave vectors in the

range |k̃| > k̃lo = 1/2. The potentially oscillatory solutions and their Q-factors

are:

 ω̃1(k̃) = ±
√

∆(k̃) = ±
√
k̃2 − 1

4

ω̃2(k̃) =
1

2
,

(9)

Q(k̃) =

√
4k̃2 − 1. (10)

For the case in which no oscillatory solutions are admitted, i.e ω̃1 = 0, the

first equation in system (7) reduces to

ω̃2
2 − ω̃2 + k̃2 = 0, (11)

the latter relation allowing real solutions for ω̃2 provided ∆(k̃) ≤ 0 (we pinpoint

that the discriminant of Equation 11 is equal to −∆(k̃)). The latter condition is

satisfied for wave vectors in the range |k̃| ≤ k̃lo = 1/2. Thus, the non-oscillatory

solutions are:


ω̃1(k̃) = 0

ω̃2(k̃) =
1

2
±
√
−∆(k̃) =

1

2
±
√

1

4
− k̃2,

(12)

whereas the Q-factor is null. Throughout the manuscript the subscripts lo (for

low) and hi (for high) will define the lower and higher boundary value of a given

range that will be specified case by case. For the case of the CV model only

the subscript lo will appear, since the upper range will diverge to infinity in all

considered cases.

The dispersion relation is reported in lin-log scale in Figure 2 a where the

oscillation angular frequency |ω̃1| (blue curve, left axis) and the inverse damping

time ω̃2 (red curve, right axis) are plotted vs the wave vector |k̃|. As for the use

of the absolute values in the plots, we pinpoint that for a given k̃ value there
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Figure 2: Dispersion relation and Q-factor for the ω̃ ∈ C and k̃ ∈ R case. Lin-log scale plots

are adopted unless otherwise stated. (a) plot of the dispersion relation: |ω̃1| (blue line, left

axis) and ω̃2 (red line, right axis) vs |k̃| (horizontal axis, log scale) for the case of Z = 0, i.e.

the CV model. (b) plot of the Q-factor vs |k̃| for the case of Z = 0, i.e. the CV model. (c)

and (d): same as for panels (a) and (b) respectively but for the case Z = 0.01. The inset

of panel (c) represents the expanded view of ω̃1 and ω̃2 for low wave vectors in lin-lin scale

(as opposed to the lin-log scale of the main graph). The regions admitting underdamped (i.e.

Q > 1), overdamped (i.e. with 0 < Q < 1) and non-oscillatory solutions are highlighted in

yellow, dark-grey and left blank respectively. The black dashed (continuous) line denotes k̃lo

(k̃Q=1,lo), the green dashed (continuous) line indicates k̃hi (k̃Q=1,hi). The red dashed line in

panel (d) denotes the wave vector k̃Qmax for which the Q-factor is maximum.
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are actually two opposite values of ω̃1, whereas for a given ω̃1 one finds two

opposite values of k̃, see SI for further details. For |k̃| > k̃lo different modes

have different oscillation angular frequencies but same damping time, whereas

for |k̃| ≤ k̃lo two non-oscillatory solutions are admitted.

The meaning of these solutions, with regard to the wave-like behavior, is

better synthetised in Figure 2 b, where the Q-factor is plotted vs |k̃| in lin-log

scale. The plot shows that the material behaves as a high-pass filter for temper-

ature oscillations. Specifically, for |k̃| > k̃Q=1,lo = 1/
√

2 one has Q > 1, that is

the material sustains underdamped wave-like temperature oscillations (yellow

shaded portion). Furthermore, Q ∼ 2|k̃| for |k̃| � 1/
√

2 (mind the fact that

a lin-log scale is adopted in Figure 2), thus approaching the case of free-wave

propagation: |ω̃1| ' |ω̃| ∼ |k̃|. For k̃lo < |k̃| < k̃Q=1,lo (dark gray shaded por-

tion) one has 0 < Q < 1, that is temperature oscillations are overdamped, no

wave-like behavior is therefore experimentally accessible. For |k̃| ≤ k̃lo (white

portion) one has Q = 0, i.e. ω̃1 = 0. From the perspective of observing tem-

perature wave-like propagation the latter two cases are substantially alike. The

high-pass filter characteristic holds also with respect to ω̃1, as can be seen in-

specting the relation between |ω̃1| and |k̃|, the blue curve in Figure 2 a.

Resorting to dimensional variables, the condition |k̃| ≤ k̃lo = 1/2 has the

vivid physical meaning λ ≥ 4πDq, where λ=2π/k is the thermal wavelength

and Dq =
√
ατq the diffusion length. Where the thermal wavelength exceeds

the diffusion length by a factor of 4π, the oscillatory behaviour is suppressed.

Furthermore, for |k̃| � 1/2 on has λ � Dq and Q ∼ Dq/λ, the meaning being

that, when the thermal wavelength is very short with respect to the diffusion

length, the solution becomes purely oscillatory. A transition region exists in

between the two regimes, where, although λ is small enough to be out of the

diffusive regime, λ < 4πDq, it is still too long to develop underdamped oscilla-

tions, λ > 2
√

2πDq.
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3.2. General case

In the following, the investigation is extended to the general case Z 6= 0,

proceeding in analogy with the derivation reported in the previous section. The

complex eigenfrequency ω̃ = ω̃1 + iω̃2 is substituted into dispersion equation

(6).

We first seek for potentially oscillatory solutions, i.e. ω̃1 6= 0. A second

degree algebraic equation for ω̃1, characterised by the discriminant ∆(k̃), is

thus obtained (see SI for details):

∆(k̃) = −Z
2

4
k̃4 +

(
1− Z

2

)
k̃2 − 1

4
. (13)

In order for ω̃1 to be real and non-null, the inequality ∆(k̃) > 0 must hold.

The latter condition can be fulfilled for a specific set of wave vectors if and only

if Z < 1, i.e. if the temperature gradient precedes the heat flux. Specifically,

∆(k̃) is positive only for |k̃| in the range k̃lo < |k̃| < k̃hi, where:

k̃lo(hi) =

√
2

Z2

[
1− Z

2
− (+)

√
1− Z

]
. (14)

Therefore, differently from the CV limit, the general case introduces a second

cutoff, k̃hi, for the wave vectors beyond which no oscillatory solution is admitted.

The potentially oscillatory solutions and their Q-factor read:


ω̃1 = ±

√
∆(k̃) = ±

√
−Z

2

4
k̃4 +

[
1− Z

2

]
k̃2 − 1

4

ω̃2 =
1

2
+
Z

2
k̃2,

(15)

Q(k̃) =

√√√√√ 4k̃2(
1 + Zk̃2

)2 − 1. (16)

No oscillatory solution is admitted, i.e ω̃1 = 0, provided ∆(k̃) ≤ 0. If Z ≥ 1,

the latter condition is fulfilled for every wave vector. On the other hand, if

13
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Figure 3: Partitioning of the the k̃ − Z plane (panel a) and ω̃ − Z plane (panel b) in regions

were the temperature oscillation is underdamped (yellow), overdamped (dark gray) and non-

oscillating (white). (a) ω̃ ∈ C and k̃ ∈ R case. A lin-log scale is adopted. The red-dashed line

represents the curve k̃Qmax vs Z, the black-dashed (continuous) line represents k̃lo (k̃Q=1,lo)

vs Z, the green-dashed (continuous) line represents k̃hi (k̃Q=1,hi) vs Z. (b) k̃ ∈ C and ω̃ ∈ R

case. A lin-lin scale is adopted. The red-dashed line represents the curve ω̃Qmax vs Z.

Z < 1, we have ∆(k̃) ≤ 0 only for wave vector in the range |k̃| ≤ k̃lo and

|k̃| ≥ k̃hi. The dispersion relation for non-oscillatory modes reads:


ω̃1 = 0

ω̃2 =
1

2
+
Z

2
k̃2 ±

√
−∆(k̃),

(17)

whereas the Q-factor is zero.

The dispersion relation and Q-factor are functions of both k̃ and Z, see SI for

the plot of Q(k̃, Z). Since we are interested in observing wave-like temperature

oscillations, we discriminate among the possible cases inspecting the regions in

k̃ − Z space in which Q > 1, 0 < Q < 1 and Q = 0. The solutions of the

above-mentioned inequalities are reported in Figure 3 a, where the values in

the k̃−Z plane admitting underdamped (yellow), overdamped (dark gray) and

non-oscillatory (white) modes are shown.

For 0 ≤ Z < 1/2 there always exists a range of wave vectors k̃ for which

underdamped wave-like temperature oscillations are admitted. For 1/2 ≤ Z < 1

14



underdamped wave-like temperature oscillations are suppressed, nevertheless

there still exists a range of wave vectors for which overdamped wave-like tem-

perature oscillations are admitted. For Z ≥ 1 no oscillating solutions whatso-

ever are admitted. For a finite value of Z, the Q-factor is now bound and its

maximum value is obtained for k̃ = ±k̃Qmax = ± (Z)
−1/2

, yielding:

Q
(
± k̃Qmax

)
=

√
1

Z
− 1. (18)

In Figure 3 a, the curve k̃Qmax is plotted as a function of Z, see red dashed

line in Figure 3 a. The CV limit is restored for Z → 0 where k̃hi → +∞ and

k̃Qmax → +∞, and the maximum for the Q-factor diverges.

We now focus on the case in which under-damped wave-like temperature

oscillations may be admitted, i.e. 0 < Z < 1/2. The dispersion relation -

|ω̃1| (blue curve, left axis) and ω̃2 (red curve, right axis) - and the Q-factor are

plotted vs |k̃| in lin-log scale in Figure 2 c and d respectively, where a value of

Z = 0.01 has been chosen for the sake of illustrating the salient features.

As for the dispersion, the striking difference, brought in by the non-zero

delay time τT , is the onset of an upper cutoff wavelength, k̃hi, beyond which

no-oscillatory behaviour is admitted, see Figure 2 c. Furthermore, the low-

frequency cut-off, k̃lo, is now Z-dependent. The maximum oscillation frequency

is also bound and occurs at a wave vector k̃ = ±k̃max where:

k̃max =

√
1

Z

(
2

Z
− 1

)
. (19)

As for the Q-factor, it shows that the material behaves as a bandpass filter

for temperature oscillations, a fact well illustrated in Figure 2 d. The Q-factor

reported in Figure 2 b and d corresponds to the cut taken along the line Z = 0

and Z = 0.01 respecrively in Figure 3 a.

Let’s analyse the filter characteristics for the general case 0 < Z < 1/2.

Underdamped wave-like temperature oscillations may be observed provided

Q(k̃) > 1 (yellow shaded region in Figure 2 d for Z = 0.01). The latter is
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satisfied if Z < 1/2 and k̃Q=1,lo < |k̃| < k̃Q=1,hi (see SI for the solution of the

inequality), where:

k̃Q=1,lo(hi) =

√
(1− Z)− (+)

√
1− 2Z

Z
, (20)

thus defining the filter pass-band [k̃Q=1,lo, k̃Q=1,hi]. The third-order term in

Equation 4, brought in by the delay time τT , thus hampers temperature oscil-

lations both on the low and high wave vectors side. On the low side, k̃Q=1,lo

ranges from 1/
√

2 for Z=0 (i.e CV case: τT= 0) to
√

2 for Z=1/2. The effect is

drastic on the high wave vector side, where k̃Q=1,hi, which diverges for Z → 0,

approaches
√

2 for Z=1/2. The bandpass filter characteristic holds also with

respect to ω̃1, as can be appreciated mapping ω̃1 vs k̃, see blue curve in Figure

2 c, and plotting the Q-factor accordingly.

The dispersion relation allows addressing the group velocity for the temper-

ature pulse. The definition of an adimensional group velocity, ṽg(k̃) = ∂ω̃1/∂k̃,

remains physically meaningful provided the temperature pulse distortion during

propagation is not too severe. For instance, if damping selectively suppresses

Fourier components at certain k̃ vectors with respect to others, the initial pulse’s

center-of-mass looses significance all together with the concept of group velocity.

The concept of group velocity thus remains valid provided Q� 1. The sign of

ṽg changes in correspondence of the k̃ values maximising ω̃1, |k̃| = k̃max, a fact

well appreciated inspecting the plot of |ω̃1| vs |k̃| reported in Figure 2 c or upon

direct inspection of its expression:

ṽg(k̃) =
∂ω̃1

∂k̃
= ±1

2

−Z2k̃3 + 2
[
1− Z

2

]
k̃√

−Z2

4 k̃
4 +

[
1− Z

2

]
k̃2 − 1

4

. (21)

For the sake of simplicity let’s focus on the band’s branch characterised by

k̃ ≥ 0 and ω̃ ≥ 0. The group velocity is positive for k̃ < k̃max and negative

for k̃ > k̃max. The latter k̃ range falls in the overdamped region where the

wave-packet is suppressed and ṽg loses its significance. This fact shows that,

within a given branch and for practical purposes, the group velocity preserves

the same sign.
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Figure 4: Dispersion relation and Q-factor for the case k̃ ∈ C and ω̃ ∈ R. Lin-lin scale plots

are adopted. (a) dispersion relation |k̃1| (blue line, left axis) and |k̃2| (red line, right axis) vs

|ω̃| (horizontal axis) for Z = 0, i.e CV model. (b) Q-factor vs |ω̃|; the Q = 1 reference line

(dotted grey line) indicates underdamped oscillatory solutions (yellow shading of the panels

consistently with Figure 2). (c) and (d): same as for panel (a) and (b) respectively but for

the case Z = 0.01.

4. Dispersion relation: Forced Temperature Oscillation in Time

In this section we investigate a forced temperature oscillation in time. The

wave vector is denoted k̃ = k̃1 + ik̃2, where |k̃1| = 2π/ξosc is the inverse of the

oscillation length ξosc and k̃2 = 1/ξdamp is the inverse of the damping length

ξdamp, the latter giving a measure of the maximum distance from the excitation

point at which the temperature oscillations can be observed; ω̃ ∈ R.

We introduce the Q-factor, defined in the current case as Q = |k1|/|k2| =

|k̃1|/|k̃2|, discriminating the underdamped (Q > 1) from the overdamped (0 <

Q < 1) and the non-oscillatory regime (Q = 0).

We derive the expression for k̃(ω̃), Q(ω̃) first in the case of Z = 0 (CV limit)

and afterwards for the general case Z 6= 0.
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4.1. CV Model Limit

Proceeding in analogy with the derivation reported in Section 3.1, we sub-

stitute k̃ = k̃1 + ik̃2 into the dispersion relation Equation (6), calculated for

Z = 0.

Performing the algebra (see SI for further details) one proves that, for every non-

zero angular frequency ω̃, all the modes have a non-zero oscillatory wave vector

k̃1, that is, at variance with the temperature spatial pulse case, no frequency

cut-offs are present. The solutions and the Q-factor read:


k̃1 = ∓

√
|ω̃|
2

√
1 + ω̃2 +

ω̃2

2

k̃2 = ±sign(ω̃)

√
|ω̃|
2

√
1 + ω̃2 − ω̃2

2
,

(22)

Q(ω̃) = |ω̃|+
√
ω̃2 + 1. (23)

The dispersion relation is reported in Figure 4, where the absolute value of

the oscillations wave vector |k̃1| (blue curve, left axis) and that of the inverse

damping length |k̃2| (red curve, right axis) are plotted against the absolute

value of the angular frequency |ω̃|. In plotting the graphs, at variance with the

temperature pulse case, a lin-lin scale is here adopted for ease of visualisation,

whereas the absolute values are used for the same reasons as in the preceding

case3.

The meaning of these solutions, with regard to the wave-like behavior, is

shown in Figure 4 b, where the Q-factor is plotted vs |ω̃|: Q ≥ 1 for every

angular frequency and increases with |ω̃|. For |ω̃| � 1 one has Q ∼ 2|ω̃|, thus

approaching the case of free-wave propagation: |k̃1| ' |k̃| ∼ |ω̃|. Although, for-

mally speaking, in the present case the material always sustains underdamped

oscillations, from an experimental stand point one is better off with Q� 1. In

3As we did for the spatial temperature pulse, we do not keep into account ω̃, k̃1 and k̃2

signs, the latter discriminating between modes with the same properties but propagating in

two different directions (namely forward or backward propagating).
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this sense the system behaves as an actual high-pass filter for temperature oscil-

lation frequencies, as displayed in Figure 4 b. The high-pass filter characteristic

holds also with respect to |k̃1|.

4.2. General case

Also for the general case Z 6= 0, all modes have a non-zero oscillatory wave

vector k̃1 (refer to SI for the derivation). The dispersion relation and Q-factor

read:



k̃1 = ∓

√
|ω̃|
2

√
1 + ω̃2

1 + Z2ω̃2
− ω̃2

2

(
Z − 1

1 + Z2ω̃2

)

k̃2 = ±sign(ω̃)

√
|ω̃|
2

√
1 + ω̃2

1 + Z2ω̃2
+
ω̃2

2

(
Z − 1

1 + Z2ω̃2

)
,

(24)

Q(ω̃) =
|ω̃| (1− Z)

1 + Zω̃2
+

√[
|ω̃| (1− Z)

1 + Zω̃2

]2
+ 1. (25)

The dispersion relation and Q-factor being functions of both ω̃ and Z, the

kind of oscillatory solution is discriminated partitioning the ω̃−Z space accord-

ing to the value of Q, see Figure 3 b (refer to SI for the full plot of Q(ω̃, Z)).

For 0 ≤ Z < 1 one has wave-like temperature oscillations (Q ≥ 1). The Q-

factor is bound and its maximum value is obtained for ω̃ = ±ω̃Qmax = ±Z−1/2,

yielding:

Q(±ω̃Qmax) = Z−1/2. (26)

The curve ω̃Qmax is plotted as a function of Z in Figure 3 b as a red dashed-line.

The CV limit is restored for Z → 0 where both ω̃Qmax and Q diverge.

For Z ≥ 1 the wave-like temperature oscillations, although present, are over-

damped (Q ≤ 1).

We now focus on the case in which underdamped wave-like temperature os-

cillations may be admitted, i.e. 0 < Z < 1. The dispersion relation - |k̃1| (blue

curve, left axis) and |k̃2| (red curve, right axis) - and the Q-factor are plotted vs

|ω̃| in Figure 4 c and d respectively, where a value of Z = 0.01 has been chosen for
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sake of comparison with Section 3.2. Although the example illustrated in Figure

4 d shows underdamped oscillatory solutions for all angular frequencies, a clear

resonance in Q stems out. This fact bears great relevance from an experimental

stand point, where one seeks the greatest possible Q-factor. Practically the ma-

terial thus behaves as an actual passband filter for temperature oscillations both

with respect to ω̃, as displayed in Figure 4 d, and k̃1, the latter assertion arises

mapping k̃1 vs ω̃ (blue curve in Figure 4 c) and plotting the Q-factor accordingly.
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Figure 5: Q-factor vs |k̃| for the case ω̃ ∈ C and k̃ ∈ R (black curve). Q factor vs |ω̃| for the

case k̃ ∈ C and ω̃ ∈ R (red curve). The plots are obtained setting Z = 0.01. Q = 1 reference

(black-dashed line) highlighting the transition between the underdamped and overdamped

regimes.

5. Comparison between the two scenarios

Although the spatial temperature pulse propagation and the forced temper-

ature oscillation in time are two essentially different problems, they are alike

when damping is exiguous. To substantiate this point, in Figure 5 we report,

within the same graph and for a value of Z=0.01, the curves Q=Q(k̃), for the

ω̃ ∈ C, and k̃ ∈ R case (black line) and Q=Q(ω̃), for the k̃ ∈ C and ω̃ ∈ R case

(red line). The oscillation behaviour is substantially the same for Q ≥ 5. This

may be rationalised noting that, for the case of negligible damping terms in
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Equation 5, Jeffrey’s equation becomes a free wave equation that is symmetric

in the adimensional space, ξ, and time, β, variables. In reciprocal space, these

variables map into k̃ and ω̃ respectively, which, for negligible damping, are real-

valued. With these prescriptions Equation 6 yields ω̃1 ∼ k̃ and a negligible ω̃2,

for the spatial temperature pulse propagation, k̃1 ∼ ω̃ and a negligible k̃2, for

the forced temperature oscillation in time.

The two scenarios share, for high enough Q-factors, very similar dispersion

relations. Figure 6 reports the dispersion relations both for the spatial temper-

ature pulse propagation (top panel), and the forced temperature oscillation in

time (bottom panel), for a value of Z=0.01. The Q-factor is superposed on the

dispersion relation as a color map. The two dispersion relations are substan-

tially equal for the case of Q ≥ 5, a region highlighted by the shaded grey area.
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Figure 6: Dispersion relation for Z = 0.01 in lin-log scale. Top panel: |ω̃1| (vertical axis) vs

˜|k| (top horizontal axis) for the case ω̃ ∈ C and k̃ ∈ R. Bottom panels: |ω̃| (vertical axis) vs

|k̃1| (bottom horizontal axis) for the case ω̃ ∈ R and k̃ ∈ C. The Q-factor is plotted in color

scale. The shaded grey areas highlight the regions in which Q ≥ 5.
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6. Applications to real materials: case studies

In the following, we address the possibility of observing temperature wave-

like oscillations in real systems based on the specific material’s bandpass filter

characteristics. Several systems are analysed following a top-down progres-

sion for the temperature oscillation dynamics both in time - from seconds to

picoseconds - and space-scale - from millimetres to nanometers. The under-

lying microscopic physics differs substantially, the focus laying on the lattice,

electronic or spin temperature. Previously reported observations of tempera-

ture oscillations in macroscopic granular media and solid He4 are first revised

at the light of the present formulation. Next, we put forward predictions for

bandpass filters characteristics of quantum materials as potential candidates for

all-solid state thermal nanodevices, namely strongly correlated copper oxides

and magnetically frustrated iridates. As a last case study, we revisit, at the

light of the present formulation, the recent report of temperature oscillations in

graphite at 80 K measured via transient thermal grating (TTG) spectroscopy

[2]. Graphite and other layered or 2D materials indeed constitute an alternative

class of materials with potential for all-solid state thermal devices operating in

the temperature wave-like regime [52]. We here restore dimensional variables

for comparison with real materials via the transformations k = k̃/
√
ατq and

ω = ω̃/τq.

We first focus on the spatial temperature pulse case. In order to observe tem-

perature wave-like oscillations the thermal wave vector has to be comprised in

the material’s pass-band, k ∈ [kQ=1,lo, kQ=1,hi], while the corresponding thermal

wavelength should exceed the system characteristic length L, λ = 2π/k ≥ L.

The ideal situation is the one where λQmax
> L, λQmax

= 2π/kQmax
being

the thermal wavelength of the best oscillating mode. Practically, the relevant

time-scale to observe oscillations is comprised between the oscillation period

2π/ω1(k) and Q(ω1) times its value, the quality factor being a measure of the

number of cycles it takes for an oscillation to die-off.

Granular materials have been proposed as possible systems sustaining tem-
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Sand Bio Solid COSCs MFI Graphite

tissue He4

α
[
m2

s

]
3×10−7 1.5×10−7 2 6×10−7 1×10−10 0.02

τq [s] 8.9 16 6×10−5 1×10−12 1×10−9 1.8×10−9

τT [s] 4.5 0.05 5×10−9 5×10−14 1×10−13 3×10−12

Z 0.5 3×10−3 8×10−5 0.05 1×10−4 2×10−3

Table 1: Thermal parameters for sand [8], biological living (Bio) tissue [53], phonons in solid

He4 at 0.6 K and 54.2 atm [19], electrons in Bi2Sr2CaCu2O8 (BiSCCO) at 20 K, spins in

the iridates Sr2IrO4 and Na2IrO3 [33] and phonons in graphite at 80 K (refer to the main

text for the extimation of the graphite thermal parameters). The values of BiSCCO and

Sr2IrO4/Na2IrO3 are representative for the general cases of copper oxides superconductors

(COSCs) and magnetically frustrated iridates (MFI) respectively. Z values have been rounded

to the first significant figure for sake of simplicity.

perature wave-like oscillations. Although still a debated issue [54], signatures

of temperature wave-like oscillations were reported for instance in cast sand

[8] and biological living tissues considered as non-homogeneous fluid-saturated

porous media [55, 53, 56, 57]. Starting from the thermal parameters reported in

Table 1, we calculated the pass-band filter characteristics for the temperature

pulse propagation, see Table 2. For the case of sand, a value of Z ∼ 0.5 yields a

Q(kQmax) ∼ 1 for a thermal wavelength λQmax
∼ 7 mm. Although λQmax

> L,

the characteristic dimension L being the sand grain size (L < 1 mm), the filter

pass-band width approaches zero making it hard to detect any signature of tem-

perature oscillations. The situation is better off indeed for the case of biological

living tissues. Z ∼ 10−3 allows for a fully developed pass-band of band-width

(BW) ∼105 m−1, where the BW is defined as BW=kQ=1,hi − kQ=1,lo. A value

of Q(kQmax
) ∼ 20 is obtained for λQmax

∼ 500 µm, and λQmax
� L, where

L ∼ few µm is the living tissue pore dimension. The optimal thermal oscillation

angular frequency is ω1(kQmax
) ∼ 1 rad/sec, thus setting the relevant time-scale

to observe oscillations in the range ∼ 1−100 seconds (i.e. in between the oscil-

lation period and Q times its value).
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We now analyse the band-pass characteristics for the phonon temperature of

solid He4 at 0.6 K and 54.2 atm [3]. The thermal parameters for the present case,

see Table 1, yield Z ∼ 8× 10−5. The bandpass filter has outstanding character-

istics, see Table 2. A Q(kQmax
) ∼ 100 is obtained for a λQmax

∼ 600 µm, a value

orders of magnitude in excess with respect to L= 0.3 nm, the unit cell dimension,

the phonon thermal wavelength should not in fact be smaller than the minimum

phonon wavelength. The oscillation angular frequency ω1(kQmax
) ∼106 rad/sec

yields a period of ∼ 3 µs, setting the time-scale for the observation of temper-

ature oscillations in the range 3−300 µs (i.e. in between the oscillation period

and Q times its value). The BW ∼ 106 m−1, exceeding kQmax
by almost two

orders of magnitude, allows to excite thermal wavelengths down to the 10 µm

range with a Q-factor ∼ 3. However interesting under a scientific stand-point,

He4 is not suited for potential thermal device applications.

Turning to quantum materials, strongly-correlated oxides have recently been

proposed as potential candidates to observe temperature wave-like oscillations

via ultrafast optical techniques [33]. The intrinsic anisotropy, together with

strong correlations, grant a value of Z � 1/2 at above liquid helium tem-

peratures, see Table 1. Furthermore, these solid-state systems are amenable

to nano-structuring. These peculiarities makes them potential candidates for

thermal device concepts based on temperature wave oscillations, operating on

ultra-fast time scale and nanometer space-scale. For instance Bi2Sr2CaCu2O8

(BiSCCO), the paradigmatic high-temperature superconductor, with a super-

conducting transition temperature as high as 100 K, behaves, at a lattice tem-

perature of 20 K, as a passband for the electronic temperature. The filter,

which salient figures are summarised in Table 2, is characterised by a maximum

Q-factor ∼ 4, indicating that the temperature oscillations are potentially ac-

cessible on the ultrashort time, 2π/ω1(kQmax
) ∼ 1 ps, and space, λQmax

∼ 1

nm, scales. The value of λQmax
is of the order of L, here taken as the crystal

unit-cell dimension along the the c-axis.

Magnetic materials are another class of quantum materials where these con-

cepts apply and are foreseen to be fruitful in terms of applications. In this case
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the wave-like temperature propagation refers to the spin temperature, which can

decouple from the lattice and electronic temperatures in out-of-equilibrium con-

ditions. Exploitation of coherent propagation of spin temperature opens inter-

esting opportunities for spintronic-based nanodevices and for the use of magnetic

materials exhibiting spontaneous magnetic nanotexturing. We here address the

case of magnetically frustrated iridates. These materials undergo an antiferro-

magnetic phase transition at a Néel temperature TN , whereas, above TN , main-

tain short range magnetic correlations up to a temperature Tcorr � TN . For

instance, Na2IrO3 undergoes a zig-zag magnetic transition at TN=15 K , while

short range correlations are retained at temparetures as high as Tcorr ∼100

K [58, 59]. The characteristic L is now dictated by the spin-spin correlation

length. The interplay of the thermal parameters, see Table 1, gives Z=10−4,

thus leading to potential oscillations. Their passband filter characteristic, see

Table 2 for a paradigmatic example, is characterised by a Qmax∼100 occurring

at a λmax∼10 pm, a value much smaller than any physically sound L. Never-

theless, the BW is wide enough to allow achieving Q∼2.5 for λ=1.5 nm, that

is of the order of L for the case of Na2IrO3. The fact that L decreases in the

temperature range TN < T < Tcorr allows to reduce λ (increase k) so as to

achieve higher Q-values at temperatures above TN . The exact scaling of the

correlation length with temperature in these iridates is yet under investigation,

nevertheless, assuming values for the coherence length down to 3 Å [58], results

in a λ∼L yielding a Q factor in excess of 10 with an oscillation angular frequency

ω1∼6×109 rad/sec. The time scale to observe temperature oscillation thus falls

in the 1−10 ns range (i.e. in between the oscillation period and Q times its

value) with thermal wavelengths in the nm range.

We now turn to the rationalisation, in the frame of the outlined theoretical

approach, of phonons temperature oscillations in graphite at 80 K, as recently

measured by Huberman et al. in their seminal work [2] via the TTG technique.

In a nutshell, two short laser pulses (temporal duration ≤ 60 ps) were crossed at

the surface of the sample, providing a transient spatially sinusoidal heat source

of period P set by the optical interference pattern. The explored periodicities
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Sand Bio Solid COSCs MFI Graphite

tissue He4

Q(kQmax) 1 20 100 4 100 20

kQmax
900 1×104 1×104 6×109 3×1011 4×106

[1/m]

λQmax[m] 0.007 5×10−4 6×10−4 1×10−9 2×10−11 2×10−6

ω1(kQmax)
0.1 1 2×106 4×1012 1×1011 1×1010

[rad/s]

BW [1/m] 0 3×105 2×106 3×1010 4×1013 1×108

Table 2: Temperature wave bandpass filter salient characteristics for the ω ∈ C and k ∈ R case,

i.e. spatial temperature pulse: best oscillating modes Q-factor, Q(kQmax), and corresponding

wave vector kQmax, wavelength λQmax = 2π/kQmax, angular frequency ω1(kQmax) and

filter bandwidth BW for sand, biological living (Bio) tissues, phonon temperature in solid

He4 at 0.6 K and 54.2 atm, electronic temperature in Bi2Sr2CaCu2O8 (BiSCCO) at 20 K,

spin temperature in the Sr2IrO4 and Na2IrO3 iridates and phonon temeprature in graphite

at 80 K. The values of BiSCCO and Sr2IrO4/Na2IrO3 are representative for the general

cases of copper oxides superconductors (COSCs) and magnetically frustrated iridates (MFI)

respectively. The values have been rounded to the first significant figure for sake of simplicity.

were P={24.5, 21, 18, 13.5, 10, 7.5} µm. In so doing the authors launched

temperature oscillations of thermal wave-vectors k=2π/P and detected the cor-

responding oscillation angular frequencies ω1, as encoded in the time-dependent

diffraction of a continuous-wave probe laser beam. The experiment thus falls in

the ω̃ ∈ C and k̃ ∈ R case. The experimental ω1 vs k dispersion is reported as

blue full circles in Figure 7. We pinpoint that no oscillations were reported for

the two smaller k values of 2.5×10−5 m−1 and 3×10−5 m−1, indicated by blue

dashed vertical lines in Figure 7.

We argue that, for graphite at cryogenic temperatures, the identifications

τT=τN and τQ=τU hold, where τN and τU are the average phonon scattering

times for Normal (N) and Umklapp (U) processes, respectively. Microscopi-

cally, N processes lead to a momentum-conserving phonon distribution. This

allows defining a local phonon temperature, hence, the onset of a temperature
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Figure 7: (a) ω1 (left axis, blue color) and Q-factor (right axis, black color) vs k (horizontal

axis) for the in-plane temperature oscillations in graphite at 80 K. The vertical axis are in

lin scale, whereas the horizontal axis is in log scale. The full circles represent the oscillation

angular frequencies measured by Huberman et al. [2] with the TTG technique. The full line

plots are calculated via Equation 15 (blu color) and Equation 16 (black color) (i.e. for the case

ω̃ ∈ C and k̃ ∈ R) upon insertion of the optimal fitting parameters, τQ=1.8 ns and τT = 3 ps,

to Huberman et al. data and resorting back to dimensional variables. The two vertical dashed

blu lines indicate two additional k values, in principle excited in Huberman et al. experiments,

for which no temperature oscillations were actually detected. The k range has been chosen

to display the entirety of the theoretically predicted oscillatory modes. (b) Expanded view

around the k range probed in Huberman et al. experiment. For sake of visualization, the

ratio of the maximum left and right axis range has been changed with respect to panel (a).

The black horizontal dashed line highlights Q=1.
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gradient at a time τN following the impulsive creation of the transient grating.

N processes do not contribute to heat transport, U processes rather being re-

sponsible for it [60, 52]. The onset of heat transport hence occurs at a time

τU after the impulsive creation of the transient grating. As for an estimate of

τT and τQ, we first note that, in their experiment, Huberman et al. trigger

in-plane heat transport in graphite. This fact legitimates, in the present con-

text, exploitation of temperature dependent data available for graphene [52] as

van der Waals interactions, effective among graphite layers, do not drastically

affect the lattice dynamics of individual graphene layers. Figure 8 shows τU

(black curve, left axis) and τN (emerald curve, right axis) in the temperature

range 100-300 K, here estimated as τN,U=1/< ΓN,U >, where < ΓN,U > are

the average line-widths, in Hz, for U and N processes reported in Figure 2,

panel a) of Reference [52]. What emerges is that, around 100 K, Z �1/2, hence

allowing for the observation of temperature wave-like behaviour. Despite the

fact that the data for τN and τU are available down to 100 K only, whereas

Huberman et al. experiment is performed at 80 K, Figure 8 clearly suggests

that Z �1/2 should also hold at 80 K (vertical red-dashed line). In fact, as the

temperature is lowered, U scattering events become more rare, hence increasing

τU . Upon lowering the temperature in the whereabout of 100 K, the increase

of τU is steeper with respect to the increase of τN , allowing to foresee a further

reduction of Z at 80 K, thus resulting in an even better condition to observe

temperature-wave like oscillations.

Having shown that it is sound to rationalize temperature oscillations in

graphite in the frame of our approach, we then fit the the experimental data of

Huberman et al. via the ω1 vs k dispersion given by Equation 15 (i.e. with the

dispersion relation for the case ω̃ ∈ C and k̃ ∈ R) with dimensional variables

restored and τT and τQ as fitting parameters. In the process of resuming dimen-

sional variables, the thermal diffusivity at 80 K is set to4 α=1.83×10−2 m2/s.

4The value of α is obtained as the ratio between the in plane thermal conductivity for

graphite, kT =4300 W/mK [61], and its volumetric heat capacity C=2.35×105 J/m3K, both
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Figure 8: Average phonon scattering time for Umklapp (black curve, left axis) and Normal

(emerald curve, right axis) processes as a function of the temperature (horizontal axis) in

graphene. The plots are derived from the data reported in Figure 2 of Reference [52], as

discussed in the main text. The scattering times are not available for temperature below 100

K (shaded region). The red dashed line indicates the temperature of 80 K, at which Huberman

et al.[2] reported observation of temperature waves.

The best fit values are found to be τT= 3 ps and τQ=1.8 ns, which are lined up

with the order of magnitude values that may be foreseen at 80 K by inspecting

Figure 8, and yield Z=1.7×10−3. The theoretical ω1 vs k dispersion, with the

optimal fit parameters inserted, is plotted as a full blue line (left axis, blue color)

in Figure 7, panel a and b. In the same figure we also plot the Q vs k curve

(right axis, black color), derived from Equation 16 upon insertion of the same

delay times. The theoretical ω1 vs k dispersion very well fits the experimental

one. We emphasize that the optimal fit values τT and τQ are consistent with

the values that may be expected assigning τT=τN and τQ=τU extrapolated at

80 K, see Figure 8. The calculated temperature wave group velocity is rather

constant over the set of the experimentally explored k values (see Equation 21

upon introduction of the optimal delay times) and reads vg=3300 m/s, depart-

ing from the experimental value of ∼ 3200 m/s [2] by only 3%. Furthermore,

the Q vs k dispersion also suggests why in Huberman et al. experiment no os-

taken at 80 K. C is calculated as ρCp, where ρ=2260 kg/m3 [62] and Cp=104 J/kgK [63] are

graphite’s density and heat capacity per unit mass at 80 K, respectively.
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cillations were reported for the two smaller k values of 2.5×105 m−1 and 3×105

m−1, from now on addressed as “dark” modes, see blue dashed vertical lines in

Figure 7. In the experimentally explored k range, Q is a monotonously increas-

ing function of k, see Figure 7, panel b, making it easier to detect high k values

modes. For the two “dark” modes we find Q(k = 2.5×105 m−1) = 2.7 and

Q(k = 3×105 m−1) = 3.3, as shown by the intersection of the vertical dashed

blue lines with the Q-factor dispersion (black curve, right axis). Despite the

fact that the former two modes still remain underdamped, the smaller Q values

might practically hinder, in conjunction with the TTG set-up sensitivity issues,

their experimental detection.

Besides accounting for Huberman et al. results, our analytical approach

suggests the optimal conditions to observe temperature wave-like behaviour in

TTG experiments. Specifically, the temperature pass-band filter characteristic

for graphite at 80 K reaches its maximum value Qmax=25 for kQmax
=4.3×106

m−1, see Figure 7, panel a (black curve right axis), corresponding to a thermal

wavelength λQmax
=1.5 µm�L∼0.3 nm, the system’s characteristic length scale,

L, being graphite’s unit-cell dimension in the ab plane. The angular frequency

is ω1(kQmax
)=14×109 rad/s, a value within reach of the detection capabilities of

time-resolved spectroscopies. The time scale to observe the optimal temperature

oscillation thus falls in the 0.4−10 ns range (i.e. in between the oscillation period

2π/ω1(kQmax) and Qmax times its value). In order to impulsively trigger the

best oscillating temperature mode, a transient grating with P=2π/kQmax
= 1.5

µm is thus required, a figure within reach of present TTG spectroscopy [64, 65].

The above discussed thermal parameters and pass-band filter characteristics are

summerized, rounded to the first significant figure, in Table 1 and 2, respectively.

Reasoning on the same footing, and upon inspection of Figure 7 for k values in

excess of kQmax
, but always within the band-pass filter BW, it emerges that it is

possible to trigger sub-µm temperature wavelengths in the hypersonic frequency

range.

This case study shows that our theoretical frame allows inspecting, by a

simple and intuitive analytical mean, temperature-wave oscillations in graphite.

30



The fact that our analysis was carried out inserting delay times as derived from

a fitting procedure is actually accidental. The fit values are in fact compatible

with the delay times that may be expected at 80 K, meaning that, if such delay

times were actually available from first principle or experiments, our prediction

would not have relied on any fitting parameter. All the same, temperature

waves in graphene and other 2D technologically relevant materials could be

tackled analysing their band-pass filters characteristics.

For the sake of theoretical comparison we report in Table 3 the filter char-

acteristics also for the case of the forced temperature oscillation in time. A

detailed analysis may be derived, mutatis-mutandis, from the dispersion rela-

tion and Q-factor of the k ∈ C and ω ∈ R case. The numbers for the cases

characterised by an high enough Q-factor almost match the one reported in

Table 2, confirming, in practical cases, the theoretical explanations objects of

Figures 5 and 6, not so for oscillations with lower Q-factors where the response

is indeed quite different as detailed throughout Section 4 and 5.

We wind up this overview with an outlook on nanoscale granular materials.

In perspective, nanogranual materials, schematized as two-phase composite me-

dia, may be good candidates where to apply the present formalism seeking for

temperature oscillations [66, 67]. Specifically, the value of Z may be tailored

tuning the density and thermal conductivity of each phase, the effective cross

thermal conductivity of the two phases and their volume fractions [68]. Control

of these parameters is within reach of current technology. For instance, gas

phase deposition allows achieving nanoporous scaffolds [69, 70] with tailored

volume fraction [71]. As for the densities and thermal parameters they may

be tailored by engineering the materials to be deposited [72] and/or tuned by

infiltrating the porous nanoscaffold with fluids [70].

7. Conclusion

This work provides a straightforward, easy-to-adopt, analytical means to in-

spect the optimal conditions to observe temperature wave oscillations. The the-
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Sand Bio Solid COSCs MFI Graphite

tissue He4

Q(ωQmax) 1 20 100 4 100 20

k1(ωQmax)
700 1×104 1×104 6×109 3×1011 4×106

[1/m]

λQmax [m] 9×10−3 6×10−4 6×10−4 1×10−9 2×10−11 2×10−6

ωQmax
0.2 1 2×106 4×1012 1×1011 1×1010

[rad/s]

Table 3: Temperature wave bandpass filter salient characteristics for the ω ∈ R and k ∈ C

case, i.e. forced temperature oscillation in time: best oscillating modes Q-factor, Q(ωQmax),

and corresponding wave vector k1(ωQmax), wavelength λQmax = 2π/k1(ωQmax) and angular

frequency ωQmax for sand, biological living (Bio) tissues, phonon temperature in solid He4

at 0.6 K and 54.2 atm, electronic temperature in Bi2Sr2CaCu2O8 (BiSCCO) at 20 K, spin

temperature in the Sr2IrO4 and Na2IrO3 iridates and phonon temeprature in graphite at 80 K.

The values of BiSCCO and Sr2IrO4/Na2IrO3 are representative for the general cases of copper

oxides superconductors (COSCs) and magnetically frustrated iridates (MFI) respectively. The

values have been rounded to the first significant figure for sake of simplicity.

oretical frame relies on the macroscopic DPL model in its first-order formulation.

It parallels the approach successfully employed in solid state physics and optics

to investigate electronic wavefunction and electromagnetic wave propagation in

solid state devices. The complex-valued dispersion relation is investigated for

the cases of a localised temperature pulse in space and of a forced temperature

oscillation in time, respectively. A modal quality factor is introduced as the key

parameter to access the temperature propagation regime. For the case of the

temperature gradient preceding the heat flux, the quality factor allows mimick-

ing the material as a frequency and wavelength filter for the temperature wave.

The bandpass filter characteristics are achieved in terms of the relevant delay

times entering the DPL model. Previous reports of temperature oscillations,

arising in different physical contexts, are here revised at the light of the present

formulation. Furthermore, the possibility of observing temperature wave-like
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oscillations in quantum materials at the nanoscale and on the ultra-fast time

scale is addressed, based on the specific material’s bandpass filter characteristics

for temperature oscillations. Engineering temperature wave-like propagation in

solid-state condensates and spin-temperature oscillations in magnetic materials

will open the way to all-solid state thermal nanodevices, operating well above

liquid helium temperature and tacking advantage of a wealth of excitations -

i.e electrons, phonons and spins - and, possibly, of their mutual interplay. As a

timely case study, recent experimental evidence of wave-like temperature oscil-

lations in graphite, as measured via thermal transient gratings spectroscopy, is

rationalized based on the graphite bandpass filter traits for temperature oscil-

lations, the thermal wavelength and time period spanning in the µm to sub-µm

and ns range, respectively. This adds a tool for the investigation of temperature

wave propagation in graphine and other technologically relevant 2D materials.

The same approach can be extended mutatis-mutandis to mass transport

in the frame of the generalised Fick’s law stemming from the first-order DPL

model. With the due substitutions, the present results remain in fact valid with

respect to mass density wave-like oscillations.

The present formulation allows investigating, on the same footing, systems

with relevant time-scales spanning from seconds to hundreds of femtoseconds

and space scales ranging from millimetres to nanometers. This work will hence

be beneficial toward designing thermal devices architectures where temperature

waves may play a role as, for instance, in heat-spreading materials technology

and ultra-fast laser assisted processing of advanced materials.
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