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Abstract 

Raman spectroscopy is undoubtedly the most frequently used technique for universal 

characterization of graphene and related materials. Quantification of parameters like disorder or 

strain is possible through analysis of particular Raman bands. However, under certain conditions, 

such evaluation can be jeopardized by – sometimes hidden – convolution of more overlapping 

effects. In this work graphene functionalization by the common nitrobenzene diazonium salt under 

simultaneous biaxial tensile deformation induced by substrate swelling was investigated by Raman 

spectroscopy. As expected, the disorder-related D band appeared in the spectra documenting the 

covalent attack on the graphene lattice. However, the strain-induced shift of the graphene bands 

exposed additional peaks, masked at exactly the same positions as the unstrained graphene bands. 

The new bands were assigned to vibrations of the diazonium molecule and its decomposition 

products adsorbed on top of the functionalized graphene. The external strain thus provided means 

for more correct quantification of the lattice disorder.  
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Introduction 

Graphene attracts enormous research efforts due to its unique physical properties, such as high 

carrier mobility, superior thermal conductivity, high optical transparency and extreme 

mechanical properties.1 However, many of graphene’s foreseen applications will rely on its 

precisely controlled electronic structure, modified to meet the needs of the particular utilization. 

The modifications can span from controlling and fine tuning of the local pools with different 

charge carrier concentrations, the so-called charge puddles, to altering the band structure 

altogether and opening a band-gap. Several approaches have been used up-to-date to achieve the 

latter goal, namely 1D confinement into nanoribbons,2 chemical functionalization,3 or 

mechanical strain.4-5 Naturally, chemical functionalization of graphene through covalent 

bonding,6-10 i.e. rehybridization from sp2 to sp3 character of the carbon atoms, leads in most cases 

to decrease in conductivity, and eventually to an insulating state, as in fluorographene.11 On the 

other hand, controlled chemical functionalization of the 2D materials is vital for applications in 

(electro)catalysis or sensing.12-13 The functionalized regions can be simply designed by 

masking,14 but the concentration of the attached molecules on graphene’s surface is a complex 

function of the standard reaction conditions (temperature, reactant concentration, solvents, 

duration etc.) and the state of graphene itself, as one of the main reactants in the process.15-16 

Herein, the substrate below graphene seems to play one of the crucial roles through an 

interwoven effect of charge puddles and local strain fields.17-18 The mutually interconnected 

triangle of strain, electronic structure and functionalization thus represents a difficult puzzle to 

disentangle. However, when fully understood, these three degrees of freedom give us an 

immense variety of manipulating the innermost properties of graphene. 

Aryl radical addition from diazonium precursors is a classical route for a simple chemical 

functionalization of graphene (and other sp2 carbon materials).6-10, 14, 19-22 These so-called 

Meerwein arylation proceeds via an electron transfer from graphene to the diazonium cation, 

followed by the loss of nitrogen to form the reactive aryl radical, which can consequently attack 

the graphene lattice.8 However, the overall reaction process is not as well understood as it might 

seem. Apart from the complicated substrate effects,17-18 even the same reaction under the 

apparently same conditions conducted by the same group can yield very different degrees of 

modification of the graphene lattice, as shown e.g. by Koehler and coworkers in refs 23 and 24. 
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There might be several reasons for this variation, ranging from the formation of dendritic 

polymers25 to the influence of an impurity layer after lithographic processing.23  

In this letter, we have investigated the process of functionalization of graphene by 4-

nitrobenzene diazonium tetrafluoroborate (NBD) under continuous biaxial tension reaching up to 

0.7% of strain. The mechanical deformation was achieved by swelling of the polymeric graphene 

support (SU8 on poly(methylmetacrylate), PMMA) in methanol:water (1:1) solution. While no 

perceptible influence of strain on the functionalization level could be discerned, the strain-

induced shifts of the Raman bands of graphene revealed additional Raman bands originating 

from the vibrations of NBD and its decomposition products.   

Experimental Methods 

Graphene samples were prepared by mechanical exfoliation from Kish graphite and deposited 

onto poly(methylmetacrylate) (PMMA) slabs covered with ~500 nm spin-coated SU8 2000.5 

(MicroChem). The samples were soft-baked at 65 °C for 30 min. For swelling experiments, the 

samples were immersed in methanol:water solution (1:1) and the evolution of the graphene was 

monitored by Raman spectroscopy. For tests with the diazonium salts, the samples were 

immersed in a 10 mM solution of 4-nitrobenzenediazonium tetrafluoroborate (Sigma-Aldrich) in 

1:1 methanol:water. Before the Raman measurements, the samples were removed from the 

reaction bath and washed with the pure solvent mixture.  

Raman spectra were measured using LabRAM HR (Horiba) microspectrometer, with laser 

excitation wavelengths of 488, 633 or 785 nm. If not stated otherwise, the presented results were 

obtained using 633 nmn excitation. 600 l/mm grating was used, providing 1.8 cm-1 point-to-point 

spectral resolution for 633 nm excitation. Typical accumulation time was 40 seconds for one 

spectral window in the mapping procedures, and 60 seconds in single-spot measurements. For 

peak analysis, first, the spectra were divided to two parts (1200-1800 cm-1 and 2400-2700 cm-1), 

followed by subtracting a linear background and normalizing to the intensity of the PMMA 

~1450 cm-1 band. After that, pure polymer spectra, measured at the start of the experiment, were 

subtracted. The peaks were then fitted with Lorentzian lineshapes. AFM images of the graphene 

with the deposit layer were measured in the tapping mode with a Dimension Icon microscope 
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(Bruker Inc.). Images were captured using Bruker SCANASYST-AIR probes (k = 0.4 N/m, f0 

=70 kHz, nominal tip radius = 2 nm), 

Results and Discussion 

The evolution of graphene with immersion time of the graphene-SU8-PMMA stack is depicted 

in Figure 1. Raman G and 2D band were monitored to assess the strain and/or potential charge 

doping levels. During the experiments, no D band appearance was observed indicating no defects 

were caused by the treatment. Typical Raman spectra before data treatment (for details, see the 

Experimental details in Supporting information) are plotted in Figure S1 (Supporting 

Information). Optical image of one of the monolayer graphene flakes is shown in Fig. 1d with 

the drawn rectangle marking the area where Raman mapping was conducted. Figure 1f shows the 

correlation plot of the G and 2D band frequencies, which is used to separate and potentially 

quantify the effects of strain and doping.26-27 Most of the data points fall onto lines with fitted 

slopes of 1.52 ± 0.24 (0 min), 2.20 ± 0.07 (10 min) and 2.32 ± 0.04 (20 min). At 0 min, i.e. 

before the start of the experiment, the slope of 1.52 indicates heterogeneity in the flake caused by 

both strain and doping. With the soaking, the spread of the points increases towards lower 

wavenumbers both for G and 2D band and is largely dominated by effects of strain – the slope 

for biaxial strain is in the range of 2.2 to 2.45.26, 28-29 As a control experiment, graphene 

monolayer on Si/SiO2(300 nm) substrate was immersed for a prolonged time (100 min) in the 

same solvent mixture. Figure S2 (Supp. Info) shows the evolution of selected G and 2D fitted 

parameters. Apart from minor variations (2-3 cm-1 over the 100 min span) in band positions as 

well as linewidths, no significant changes were observed. 

The strain level was quantified using the 2D band shift, with the recent reported rate for 

polymer-supported graphene of -148.2 cm-1/%.28 Apart from the highest achieved strain levels 

around 0.7%, the attained tension was confirmed using the G band shift. At the highest strain 

levels, the G band is sometimes shadowed by the intense bands of the polymer substrate. The 

maps and profiles of the induced tension (Fig. 1a-c and e) demonstrate the stress being built up 

from the edges towards the flake’s interior. This is reminiscent of the behavior of graphene 

loaded via beam bending experiments, where the interfacial stress transfer increases from the 

edge as well and follows the shear-lag theory.30-32 Another example is shown in Figure S3 (Supp. 
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Info). We propose the biaxial strain is caused by swelling of SU8, which is a known 

phenomenon, and can reach high values depending on the post-deposition treatment – the more 

crosslinked, the less swelling can be induced.33 In our case, the relatively low soft-baking 

temperature allows for SU8 volume expansion of at least 0.7% (the strain level reached in 

graphene).  

 

Figure 1. Evolution of the Raman spectral features of monolayer graphene on PMMA/SU8 
substrate subjected to swelling in methanol:water solution. (a-c) maps of biaxial strain quantified 
from the 2D band shift at 0, 10 and 20 minutes of soaking. (d) optical image of the flake with the 
black rectangle marking the mapped area shown in a-c. (e) 2D band shift (left axis) and biaxial 
strain (right axis) profiles extracted along vertical dashed lines in a-c. (f) correlation of 2D and G 
band frequencies for 0, 10 and 20 min soaking. The color coding in e and f is the same: black – 0 
min, blue – 10 min, red – 20 min. The mapping step was 2 µm in each direction. 

For the reactivity experiment, the samples were prepared and monitored in the same way, only 

10 mM 4-nitrobenzenediazonium tetrafluoroborate solution in the same solvent mixture was 
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employed. Figure 2 shows treated Raman spectra of graphene at 0, 90, 180 and 240 minutes (the 

raw spectra are plotted in Figure S4, Supporting Information). As can be seen, the Raman G and 

2D bands were downshifting as in the case of the ‘pure swelling’, however, additional bands 

appeared in the spectra. Most notably a broad feature emerges between 1300 and 1340 cm-1, 

which, especially at shorter time intervals from the start (cf. 90 min in Fig. 2), could be 

tentatively assigned as the D band caused by the progressive bonding of the aryl radical onto the 

graphene lattice.8 The extent of the functionalization would in such a case be assessed by the 

D/G intensity ratio, as is common.34 However, as the experiment progresses, so does the swelling 

of the supporting polymer and the graphene’s lattice is expanding along. The deformation causes 

the D band to shift at approximately half the shift rate of the 2D band. As the D band moves to 

lower wavenumbers, an additional band located very close to its theoretical original position at 

~1330 cm-1 is revealed, increasing in intensity with time. The frequency of the additional band is 

not changing over time. In other words, the band does not originate directly from the vibrations 

of the graphene lattice. Similarly, another band appeared at ~1600 cm-1, clearly revealed by the 

downshifting G band.   
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Figure 2. Examples of spectra of monolayer graphene treated with 10 mM NBD in 
methanol:water 1:1 solution for an indicated time, measured in the approximate center of the 
flake. The original spectra are plotted as black point, individual Lorentzian shapes as green or 
red dashed lines and their sum as solid blue lines. The Raman intensity of the 2D band was 
divided by 2.8 for better comparison. The top curve is the differential spectrum of the treated 
polymer without graphene measured at 240 and 0 minutes, as an experimental control. 

 

 

Figure 3. Evolution of selected parameters of the peaks fitted to the Raman spectra of graphene 
treated with 10 mM NBD in methanol:water. The error bars are the 1st and 3rd quartile of the 
fitted values, the symbol being the median of 9 measurements at different spots at the sample, 
acquired at approximately regular steps along a line profile across the center of the flake. 

 

Figure 3 depicts various parameters of the fitted bands. We note that the deconvolution of the ‘D 

band envelope’ into two bands is very inaccurate in the first half of the experiment (till ~ 120 

min) because of (i) the noise in the spectra, and (ii) proximity and large width of the two 

components. Nevertheless, thanks to the number of measurements, the statistical evaluation 
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shows clear trends in the behavior of bands also in the early stages. The real D band downshifts 

with time, while the unknown band remains stable (Fig. 3a and c). The D band seems to appear 

quickly and its intensity is stable afterwards, while the unknown band’s intensity increases 

steadily with time (Fig. 3b). There might be an initial influence of doping on the Raman shift of 

the G and 2D band, cf. the evolution of the first three data points in Fig. 3e and f, but the main 

cause of the G and 2D band shifts is the strain. The correlation of the 2D and G frequencies (Fig. 

3d) shows the slope of 2.57 ± 0.09. Only at the start of the experiment (data in the top right 

corner of Fig. 3d) the evolution of the 2D and G frequencies reflects the changes caused by the 

covalent bonding of the molecule.  

 

Figure 4. Possible pathways in prolonged NBD reaction with graphene in methanol:water 
mixture.  

 

The origin of the bands should be looked for in the NBD molecule. The most probable 

assignment for the ~1330 cm-1 band is the symmetric stretching vibration of the nitro group, ν(-

NO2), which is known to be very strong and between 1320-1360 cm-1 when on an aromatic 

ring.35 The band at ~1600 cm-1 is most likely the C=C stretching vibration, ν(C=C), of the 

aromatic ring in NBD or its decomposition products. Both band assignments have been verified 

by means of Density Functional Theory (DFT) calculations (see Section 2 in the Supporting 

Information). The possibility of substrate reactivity was considered but experimentally ruled out 

through measurements of the polymer next to the studied graphene flakes. The top curves in Fig. 
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2 are differential spectra between the polymer after 240 min in the reaction mixture and the 

polymer at time zero - only noise can be discerned in the spectra. Given the stagnant intensity of 

the D band and the increasing intensity of the ν(-NO2) and ν(C=C) bands, we can propose a 

scenario depicted in Figure 4. The reaction between NBD and graphene is typically very fast, 

reaching a steady state in the order of minutes.24, 36-38 However, NBD is slowly decomposing in 

polar protic media,39 such as in our case the methanol:water mixture, forming the corresponding 

4-nitrophenol or 4-nitroanisol. In these products, the strongly deactivating effect of the nitro 

groups is to large extent compensated by the activating character of the hydroxy- or methoxy- 

substituent. Thus, the consequent Meerwein arylation with the excess of NBD can proceed to 

form biphenyl and terphenyl derivatives, which can feature strong adsorption enthalpy to the 

graphene surface. Formation of such adlayers is then responsible for the emerging ν(-NO2) and 

ν(C=C) vibration bands in the Raman spectra. 

Without strain - in the particular case of the NBD - the ν(-NO2) band would be continuously 

enhancing the apparent D band intensity, while the ν(C=C) band would appear as an increasing 

shoulder to the G band, where, commonly, the intra-valley defect-induced D’ peak appears.  The 

average defect distance, LD, can be estimated by the following equation:40 

𝐿 1.8 0.5 10 𝜆        (1) 

where λL is the Raman excitation wavelength and (ID/IG) the ratio of Raman intensities. We note 

that eq. 1 is primarily derived for defects created by ion bombardment and the particular 

multiplier values may differ slightly for other types of defects. However, the dependence of LD 

on the (ID/IG) intensity ratio should still follow the same trend. In our case, after 240 min reaction 

time, LD determined from the strain-separated D and G peaks yields ~ 19 nm. If the D band 

would not be shifted by strain and thus overlapping with the ν(-NO2) band, the resulting LD 

would amount to ~ 15.5 nm, i.e. with close to 20% error.     

Conclusions 

In summary, we have shown a simple method to exert biaxial tensile deformation on graphene 

supported by a polymer (SU8), which is swelling in an appropriate solvent. The attained strain 

levels were up to 0.7%. In the same time, the experimental procedure can be easily adapted to 
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carry out chemical functionalization of graphene by a diazonium salt during the ongoing 

deformation. Raman spectroscopy was used to monitor the process. The appearance of the D 

band confirmed the successful functionalization of graphene, however, the simultaneous strain-

induced downshift of the graphene Raman bands uncovered the presence of additional bands 

originating from the nitrobenzene diazonium molecule and/or its decomposition products. The 

intensity evolution of the D band and of the new bands allowed to discuss the possible reaction 

mechanism involved. In particular cases, such as the one presented here, attention has to be paid 

to possible non-graphene Raman bands, which may influence the results of the commonly used 

quantification of the functionalization degree in graphene.    

 

Supporting Information. Raw (untreated) Raman spectra; additional experiment examples; 

AFM images, DFT calculation of the Raman vibrations of NBD and its terphenyl derivative. 

Acknowledgment 

This work was funded by Czech Science Foundation (GACR 17-18702S). We also acknowledge 

the support by European Regional Development Fund; OP RDE; Project: "Carbon allotropes 

with rationalized nanointerfaces and nanolinks for environmental and biomedical applications" 

(No. CZ.02.1.01/0.0/0.0/16_026/0008382) and the project Pro-NanoEnviCz (Reg. No. 

CZ.02.1.01/0.0/0.0/16_013/0001821) supported by the Ministry of Education, Youth and Sports 

of the Czech Republic and the European Union - European Structural and Investments Funds in 

the frame of Operational Programme Research Development and Education. 

References 

1. Novoselov, K. S.; Falko, V. I.; Colombo, L.; Gellert, P. R.; Schwab, M. G.; Kim, K., A 

Roadmap for Graphene. Nature 2012, 490, 192-200. 

2. Li, X. L.; Wang, X. R.; Zhang, L.; Lee, S. W.; Dai, H. J., Chemically Derived, 

Ultrasmooth Graphene Nanoribbon Semiconductors. Science 2008, 319, 1229-1232. 

3. Niyogi, S.; Bekyarova, E.; Itkis, M. E.; Zhang, H.; Shepperd, K.; Hicks, J.; Sprinkle, M.; 

Berger, C.; Lau, C. N.; deHeer, W. A., et al., Spectroscopy of Covalently Functionalized 

Graphene. Nano Lett. 2010, 10, 4061-4066. 



 12

4. Levy, N.; Burke, S. A.; Meaker, K. L.; Panlasigui, M.; Zettl, A.; Guinea, F.; Neto, A. H. 

C.; Crommie, M. F., Strain-Induced Pseudo–Magnetic Fields Greater Than 300 Tesla in 

Graphene Nanobubbles. Science 2010, 329, 544-547. 

5. Bissett, M. A.; Tsuji, M.; Ago, H., Strain Engineering the Properties of Graphene and 

Other Two-Dimensional Crystals. Phys. Chem. Chem. Phys. 2014, 16, 11124-11138. 

6. Park, J.; Yan, M., Covalent Functionalization of Graphene with Reactive Intermediates. 

Acc. Chem. Res. 2013, 46, 181-189. 

7. Huang, P.; Jing, L.; Zhu, H.; Gao, X., Diazonium Functionalized Graphene: 

Microstructure, Electric, and Magnetic Properties. Acc. Chem. Res. 2012, 46, 43-52. 

8. Bekyarova, E.; Sarkar, S.; Wang, F.; Itkis, M. E.; Kalinina, I.; Tian, X.; Haddon, R. C., 

Effect of Covalent Chemistry on the Electronic Structure and Properties of Carbon Nanotubes 

and Graphene. Acc. Chem. Res. 2012, 46, 65-76. 

9. Georgakilas, V.; Otyepka, M.; Bourlinos, A. B.; Chandra, V.; Kim, N.; Kemp, K. C.; 

Hobza, P.; Zboril, R.; Kim, K. S., Functionalization of Graphene: Covalent and Non-Covalent 

Approaches, Derivatives and Applications. Chem. Rev. 2012, 112, 6156-6214. 

10. Paulus, G. L. C.; Wang, Q. H.; Strano, M. S., Covalent Electron Transfer Chemistry of 

Graphene with Diazonium Salts. Acc. Chem. Res. 2012, 46, 160-170. 

11. Nair, R. R.; Ren, W.; Jalil, R.; Riaz, I.; Kravets, V. G.; Britnell, L.; Blake, P.; Schedin, 

F.; Mayorov, A. S.; Yuan, S., et al., Fluorographene: A Two-Dimensional Counterpart of Teflon. 

Small 2010, 6, 2877-2884. 

12. Kim, G.; Kawazoe, Y.; Lee, K.-R., Controlled Catalytic Properties of Platinum Clusters 

on Strained Graphene. J. Phys. Chem. Lett. 2012, 3, 1989-1996. 

13. Bottari, G.; Herranz, M. Á.; Wibmer, L.; Volland, M.; Rodríguez-Pérez, L.; Guldi, D. M.; 

Hirsch, A.; Martín, N.; D'Souza, F.; Torres, T., Chemical Functionalization and Characterization 

of Graphene-Based Materials. Chem. Soc. Rev. 2017, 46, 4464-4500. 

14. Koehler, F. M.; Luechinger, N. A.; Ziegler, D.; Athanassiou, E. K.; Grass, R. N.; Rossi, 

A.; Hierold, C.; Stemmer, A.; Stark, W. J., Permanent Pattern-Resolved Adjustment of the 

Surface Potential of Graphene-Like Carbon through Chemical Functionalization. Angew. Chem., 

Int. Ed. 2009, 48, 224-227. 

15. Plšek, J.; Kovaříček, P.; Valeš, V.; Kalbáč, M., Tuning the Reactivity of Graphene by 

Surface Phase Orientation. Chem. Eur. J. 2017, 23, 1839-1845. 



 13

16. Sun, Z.; Pint, C. L.; Marcano, D. C.; Zhang, C.; Yao, J.; Ruan, G.; Yan, Z.; Zhu, Y.; 

Hauge, R. H.; Tour, J. M., Towards Hybrid Superlattices in Graphene. Nat. Commun. 2011, 2, 

559. 

17. Wang, Q. H.; Jin, Z.; Kim, K. K.; Hilmer, A. J.; Paulus, G. L. C.; Shih, C.-J.; Ham, M.-

H.; Sanchez-Yamagishi, J. D.; Watanabe, K.; Taniguchi, T., et al., Understanding and 

Controlling the Substrate Effect on Graphene Electron-Transfer Chemistry Via Reactivity 

Imprint Lithography. Nat. Chem. 2012, 4, 724-732. 

18. Fan, X.; Nouchi, R.; Tanigaki, K., Effect of Charge Puddles and Ripples on the Chemical 

Reactivity of Single Layer Graphene Supported by Sio2/Si Substrate. J. Phys. Chem. C 2011, 

115, 12960-12964. 

19. Bekyarova, E.; Itkis, M. E.; Ramesh, P.; Berger, C.; Sprinkle, M.; de Heer, W. A.; 

Haddon, R. C., Chemical Modification of Epitaxial Graphene: Spontaneous Grafting of Aryl 

Groups. J. Am. Chem. Soc. 2009, 131, 1336-1337. 

20. Sharma, R.; Baik, J. H.; Perera, C. J.; Strano, M. S., Anomalously Large Reactivity of 

Single Graphene Layers and Edges toward Electron Transfer Chemistries. Nano Lett. 2010, 10, 

398-405. 

21. Lim, H.; Lee, J. S.; Shin, H.-J.; Shin, H. S.; Choi, H. C., Spatially Resolved Spontaneous 

Reactivity of Diazonium Salt on Edge and Basal Plane of Graphene without Surfactant and Its 

Doping Effect. Langmuir 2010, 26, 12278-12284. 

22. Criado, A.; Melchionna, M.; Marchesan, S.; Prato, M., The Covalent Functionalization of 

Graphene on Substrates. Angew. Chem., Int. Ed. 2015, 54, 10734-10750. 

23. Koehler, F. M.; Jacobsen, A.; Ihn, T.; Ensslin, K.; Stark, W. J., Chemical Modification of 

Graphene Characterized by Raman and Transport Experiments. Nanoscale 2012, 4, 3781-3785. 

24. Koehler, F. M.; Jacobsen, A.; Ensslin, K.; Stampfer, C.; Stark, W. J., Selective Chemical 

Modification of Graphene Surfaces: Distinction between Single- and Bilayer Graphene. Small 

2010, 6, 1125-1130. 

25. Menanteau, T.; Dias, M.; Levillain, E.; Downard, A. J.; Breton, T., Electrografting Via 

Diazonium Chemistry: The Key Role of the Aryl Substituent in the Layer Growth Mechanism. J. 

Phys. Chem. C 2016, 120, 4423-4429. 



 14

26. Mueller, N. S.; Heeg, S.; Peña-Alvarez, M.; Kusch, P.; Wasserroth, S.; Clark, N.; 

Schedin, F.; Parthenios, J.; Papagelis, K.; Galiotis, C., et al., Evaluating Arbitrary Strain 

Configurations and Doping in Graphene with Raman Spectroscopy. 2D Mater. 2018, 5, 015016. 

27. Lee, J. E.; Ahn, G.; Shim, J.; Lee, Y. S.; Ryu, S., Optical Separation of Mechanical Strain 

from Charge Doping in Graphene. Nat. Commun. 2012, 3, 1024. 

28. Androulidakis, C.; Koukaras, E. N.; Parthenios, J.; Kalosakas, G.; Papagelis, K.; Galiotis, 

C., Graphene Flakes under Controlled Biaxial Deformation. Sci. Rep. 2015, 5, 18219. 

29. Zabel, J.; Nair, R. R.; Ott, A.; Georgiou, T.; Geim, A. K.; Novoselov, K. S.; Casiraghi, 

C., Raman Spectroscopy of Graphene and Bilayer under Biaxial Strain: Bubbles and Balloons. 

Nano Lett. 2012, 12, 617-621. 

30. Gong, L.; Kinloch, I. A.; Young, R. J.; Riaz, I.; Jalil, R.; Novoselov, K. S., Interfacial 

Stress Transfer in a Graphene Monolayer Nanocomposite. Adv. Mater. 2010, 22, 2694-2697. 

31. Anagnostopoulos, G.; Androulidakis, C.; Koukaras, E. N.; Tsoukleri, G.; Polyzos, I.; 

Parthenios, J.; Papagelis, K.; Galiotis, C., Stress Transfer Mechanisms at the Submicron Level 

for Graphene/Polymer Systems. ACS Appl. Mater. Interfaces 2015, 7, 4216-4223. 

32. Androulidakis, C.; Koukaras, E. N.; Frank, O.; Tsoukleri, G.; Sfyris, D.; Parthenios, J.; 

Pugno, N.; Papagelis, K.; Novoselov, K. S.; Galiotis, C., Failure Processes in Embedded 

Monolayer Graphene under Axial Compression. Sci. Rep. 2014, 4, 5271. 

33. Wouters, K.; Puers, R., Diffusing and Swelling in Su-8: Insight in Material Properties and 

Processing. J. Micromech. Microeng. 2010, 20, 095013. 

34. Malard, L. M.; Pimenta, M. A.; Dresselhaus, G.; Dresselhaus, M. S., Raman 

Spectroscopy in Graphene. Phys. Rep. 2009, 473, 51-87. 

35. Vandenabeele, P.; Moens, L.; Edwards, H. G. M.; Dams, R., Raman Spectroscopic 

Database of Azo Pigments and Application to Modern Art Studies. J. Raman Spectrosc. 2000, 

31, 509-517. 

36. Kovaříček, P.; Vrkoslav, V.; Plšek, J.; Bastl, Z.; Fridrichová, M.; Drogowska, K.; Kalbáč, 

M., Extended Characterization Methods for Covalent Functionalization of Graphene on Copper. 

Carbon 2017, 118, 200-207. 

37. Bouša, D.; Jankovský, O.; Sedmidubský, D.; Luxa, J.; Šturala, J.; Pumera, M.; Sofer, Z., 

Mesomeric Effects of Graphene Modified with Diazonium Salts: Substituent Type and Position 

Influence Its Properties. Chem. Eur. J. 2015, 21, 17728-17738. 



 15

38. Lomeda, J. R.; Doyle, C. D.; Kosynkin, D. V.; Hwang, W.-F.; Tour, J. M., Diazonium 

Functionalization of Surfactant-Wrapped Chemically Converted Graphene Sheets. J. Am. Chem. 

Soc. 2008, 130, 16201-16206. 

39. Kasprzak, A.; Zuchowska, A.; Poplawska, M., Functionalization of Graphene: Does the 

Organic Chemistry Matter? Beilstein J. Org. Chem. 2018, 14, 2018-2026. 

40. Cançado, L. G.; Jorio, A.; Ferreira, E. H. M.; Stavale, F.; Achete, C. A.; Capaz, R. B.; 

Moutinho, M. V. O.; Lombardo, A.; Kulmala, T. S.; Ferrari, A. C., Quantifying Defects in 

Graphene Via Raman Spectroscopy at Different Excitation Energies. Nano Lett. 2011, 11, 3190-

3196. 

 

 

 

 

 

 

 

 

TOC Graphic 

 

 



S1 
 

Supporting Information 

On the Suitability of Raman Spectroscopy to Monitor the 

Degree of Graphene Functionalization by Diazonium Salts 

Krishna Sampathkumar1,2, Valentin Diez-Cabanes1,3#, Petr Kovaricek1, Elena del Corro1,$, Milan 

Bouša1, Jan Hošek3, Martin Kalbac1, Otakar Frank1,* 

1 J.Heyrovsky Institute of Physical Chemistry of the CAS, v.v.i., Dolejskova 2155/3, 182 00 

Praha 8, Czech Republic 

2 Central European Institute of Technology (CEITEC), Brno University of Technology, Purkyňova 123, 

612 00 Brno, Czech Republic 

3 Faculty of Mechanical Engineering, Czech Technical University in Prague, Technická 4, 16 

607 Prague 6, Czech Republic 

# current address: Laboratory for Chemistry of Novel Materials, University of Mons, Place du Parc 

20, B-7000, Mons, Belgium. 

$ current address: Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and the 

Barcelona Institute of Science and Technology (BIST), Barcelona, Spain. 

Corresponding Author 

* otakar.frank@jh-inst.cas.cz, tel: +420 266053446 



S2 
 

 

Figure S1. Raw Raman spectra of monolayer graphene (red) on PMMA-SU8 substrate (black) dipped in 
1:1 methanol:water solution for increasing time, measured in the approximate center of the flake. The 
downshifting G and 2D bands are indicated by dashed lines. 

 

Figure S2. Blank experiment of 1L graphene on Si/SiO2(300 nm) substrate immersed in methanol:water 
(1:1) solution for an indicated time. Evolution of (a) the Raman G band (shift – left axis, FWHM – right 
axis) and (b) area(2D/G) ratio (left axis) and FWHM(2D) (right axis), shows only minor fluctuations in 
part due to inhomogeneities across the flake and in part due to doping originating probably from glue 
remnants from the exfoliation. The data points represent average from 9 measurements, with the error 
bars the standard deviation.   
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Figure S3. Evolution of the Raman spectral features of monolayer graphene on PMMA/SU8 substrate 
subjected to swelling in methanol:water solution. Maps of biaxial strain quantified from the 2D band shift 
at 0, 10, 20, 30 and 40 minutes of soaking and optical image of the flake with the mapped area at 0 and 10 
minutes (marked red), and 20, 30 and 40 minutes (white). The mapping step was 2 µm in each direction. 
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Figure S4. Evolution of Raman spectra measured at two different spots of monolayer graphene on 
SU8/PMMA treated with 0.01M solution (1:1 water:methanol) of 4-nitrobenzene diazonium 
tetrafluoroborate for 0 to 240 minutes (from top to bottom). The D, G and 2D band are marked by dashed 
black lines (from left to right), the ν(-NO3) vibration by solid black line. The spectra in the top panel were 
acquired in the approximate center of the flake, the spectra in the bottom panel approximately at half the 
distance between the center and the edge of the flake. 
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Figure S5. AFM images and extracted height profiles of monolayer graphene on SU8/PMMA treated 
with 0.01M solution (1:1 water:methanol) of 4-nitrobenzene diazonium tetrafluoroborate for 30 minutes 
(left) and 60 minutes (right). The total covered area increases from 53 to 81%, i.e. by a factor of ~1.5. The 
average height difference between the covered and uncovered area is the same in both cases: 1.4 nm. 

 

Theoretical section 

Geometrical optimizations of 4-nitrobenzene diazonium compound (1) and its terphenyl derivative 

(2) (see Figure S6) were carried out at Density Functional Theory (DFT) level within the Becke, 

3-parameter, Lee–Yang–Parr (B3LYP) functional1 and 6-311G(d,p) basis set. The calculation of 

the Raman spectra was done with the same functional and basis set. In the case of the terphenyl 

reaction product, the vibrational properties of this compound are independent of the group attached 



S6 
 

to the central phenyl ring: hydroxy- vs methoxy- substituent (see Figure S7). For that reason, in 

the following discussion we consider only the first case.  

 

Figure S6. Chemical structures of the compounds under study. 

 

Figure S7. Calculated Raman spectra of compound 2 with hydroxy- (grey) and methoxy- (black 
line) substituents on the central rings as depicted in Figure S6. Note that the range of frequencies 
plotted (1050-1750 cm-1) has been chosen in order to show the modes which are overlapping the 
G and D bands from garphene, whereas no important contributions to the spectra were found in 
the range of frequencies for graphene 2D band. 

The solvent effects were introduced into our calculations by means of the Polarizable Continuum 

Model (PCM).2 The calculated Raman spectra for both methanol and water solvents are identical, 

while a shift of ~15 cm-1 is induced when adding the solvent effects compared to the spectra 

calculated in the gas phase for both compounds (see Figure S8). This fact evidences the need of 
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including solvent effects for a proper description of the normal modes frequencies. All theoretical 

calculations were performed within Gaussian16 package program,3 whereas the Raman intensities 

were estimated for an excitation wavelength of λ= 633nm and temperature T=300K by using 

GaussSum 3.0 plot program.4 

 

Figure S8. Calculated Raman spectra for compounds 1 (top) and 2 (bottom) for the calculations 
performed in gas phase (black), water (blue) and methanol (red) solvents. 

The calculated Raman spectra for compounds 1 and 2 are presented in Figure S9. The spectrum of 

compound 1 in the region of interest is dominated by two normal modes centered at 1368 and 1625 

cm-1. If we compare this spectrum with the band signatures which are appearing in the measured 

spectra (Fig. 3, main text) as a consequence of the functionalization with NBD, we can easily 

attribute the above mentioned calculated modes to the ν(-NO2) and ν(C=C) vibration bands 

described in the main text. The small discrepancies in the absolute frequencies (the calculated 

spectra are ~25 cm-1 red-shifted with respect to the experimental frequencies) can be attributed to 
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the facts that (i) neither the interactions with the polymer/graphene substrate nor with the 

neighboring molecules were included in our theoretical model and (ii) the measurement was 

performed on dry samples (the calculation in a solvent, which has an obvious effect on the 

frequencies, see above). On the other hand, the calculated spectrum of compound 2 presents the 

same features as the spectrum from compound 1. In this case, the normal modes mentioned before 

are degenerated due to the effect of two additional nitrobenzene groups, whereas a new normal 

mode is appearing at 1332 cm-1 close to the bands attributed to the ν(-NO2) signatures. 

 

Figure S9. Calculated Raman spectra for compounds 1 (top) and 2 (bottom) in water solvent. The 
vertical bars represent the normalized amplitude of the Raman intensities for each normal mode. 

In order to get a deeper understanding of the vibrational modes attributed to the ν(-NO2) and 

ν(C=C) bands, we have plotted the normalized force vectors for the calculated normal modes 

described in the previous paragraph (see Figure S10). The vibrational mode of ν(-NO2) in 

compound 1 is based on the stretching mode of C-N bond for the nitro- group, which is centered 

at 1368 cm-1. The same stretching mode is also dominating the spectra of compound 2, in this case 

centered at 1364 cm-1. The rest of contributions to the ν(-NO2) band in compound 2 are attributed 
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to the stretching vibration of the N-O atoms from the nitro- group as it is the case for the normal 

modes centered at 1351 and 1368 cm-1; and to the bending vibration of the methoxy- group which 

dominates the normal mode centered at 1372 cm-1. In the case of the band ν(C=C) band, the E2g 

mode of the benzene core is the dominant vibration for both compounds 1 and 2. Interestingly, for 

compound 2 the edge phenyl ring vibrations (centered at 1634, 1635 and 1637 cm-1) present larger 

Raman intensities than the central ring mode (centered at 1618 cm-1). Finally, we have analyzed 

the force vectors of normal mode which is appearing at 1332 cm-1 in compound 2 (Figure S11). 

This vibration is a combination of several modes of the benzene cores, from which we can 

highlight the A2g   mode of the edge phenyl rings. 
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Figure S10. Normalized force vectors of the vibrational modes attributed to the ν(-NO2) and 
ν(C=C) bands for compounds 1 (top) and 2 (bottom). The numbers inset represent the frequencies 
and Raman intensities (in a.u. and parenthesis) for each vibrational mode.  
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Figure S11. Normalized force vectors of the vibrational mode appearing at 1332 cm-1 for 
compound 2. The numbers inset represent the frequencies and Raman intensities (in a.u. and 
parenthesis). 

 

References 

(1)  Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. J. 
Chem. Phys. 98, 5648-5652 (1993). 

(2) Tomasi, J.; Mennucci, B.; & Cammi, R. Quantum mechanical continuum solvation 
models, Chem. Rev. 105, 2999-3093 (2015). 

(3) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. 
R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; 
Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; 
Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, 
F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, 
V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, 
R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; 
Throssell, K.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. 
J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, 
J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; 
Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; 
Morokuma, K.; Farkas, O.; Foresman, J. B.; & Fox, D. J. Gaussian 16, Revision B.01, 
Gaussian, Inc., Wallingford CT (2016). 

(4) O'Boyle, N. M.; Tenderholt, L. A. & Langner, K. M. cclib: A library for package-
independent computational chemistry algorithms. J. Comput. Chem. 29, 839–845 (2008). 


