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Loss of Microbial Diversity exacerbates the Spread of 

Antibiotic Resistome in Soil



Abstract: Biodiversity loss is considered as a major threat because of its importance 1 

for ecosystem processes and services on which society depends. Natural ecosystems 2 

show variable resistance to invasion by alien species, and this resistance can be related 3 

to the microbial diversity in the system. For centuries, little has been known regarding 4 

the role of soil microbial diversity in the biological barrier against microbial invasion. 5 

The increasing prevalence of antibiotic resistant bacteria is one of the most serious 6 

threats to public health in the 21st century. Here we explore whether reductions in soil 7 

microbial diversity have consequences on the dissemination of antibiotic resistance. By 8 

using a dilution-to-extinction approach coupled with a high-capacity quantitative PCR 9 

arrays, we investigated the relationship between soil microbial diversity and the barrier 10 

effect against antibiotic resistance invasion. We observed a negative correlation 11 

between microbial diversity and the abundance of antibiotic resistance genes (ARGs), 12 

and this correlation was maintained even when accounting simultaneously for other 13 

drivers (incubation time, microbial abundance). Our results demonstrated that higher 14 

microbial diversity can act as a biological barrier against antibiotic resistance spread. 15 

Together with previous work, our results fill a critical gap in understanding the role of 16 

soil microbial diversity in ecosystem health17 



Introduction 18 

It is well documented that biodiversity is the foundation of the maintenance of 19 

ecosystems, i.e. a large species pool is required to sustain a health ecosystem since they 20 

play a key role in multiple ecosystem functions and services simultaneously, including 21 

earth’s biogeochemical cycling, primary production, litter decomposition as well as 22 

climate regulation 1-4. The rapid and continued development of molecular biology and 23 

genomic techniques has unveiled immense microbial diversity in soil and ocean 5-8. 24 

However, the roles of microbial diversity and associated traits in controlling ecosystem 25 

functioning remain unclear 9-11. 26 

In recent years, a few studies have shown that anthropogenic activities (such as 27 

agricultural intensification, land use and nitrogen enrichment), and climate change may 28 

reduce microbial diversity, a response that will likely impact ecosystem functions 12-15. 29 

There is an extensive debate about relationships between microbial diversity and 30 

ecosystem functioning 16, 17. Currently there are three different views about the 31 

relationships. It has been proposed that soil microorganisms are key components that 32 

determine life supporting functions, but functional redundancy in soil microorganisms 33 

are prevalent, therefore an initial loss in microbial diversity is unlikely to substantially 34 

affect ecosystem functions16, 18, 19. Studies have also demonstrated that the relationships 35 

between microbial diversity and ecosystem functions are saturated 20, suggesting losses 36 

of a few species at high richness levels could have minimal consequences on the 37 

ecosystem functioning 21. For instance, microbial decomposer communities often 38 



exhibit high redundancy for a single function, such as microbial respiration and biomass 39 

production 20, 22. However, if the function of concern was more specific than general 40 

functions, such as pesticide degradation are known to be limited to only a few 41 

specialized functional groups23, the relationship between biodiversity and ecosystem 42 

functioning is more linear than saturating 24. Moreover multifunctional redundancy was 43 

generally lower, i.e. the degree of multiple functional dependence on diversity was 44 

higher than single-functional redundancy 25. Therefore, the buffering capacity of 45 

ecosystem functions against biodiversity loss may be limited that a moderate loss of 46 

diversity may substantially impair key specialized functions 23. Additionally, Jung et al., 47 

observed that genes related to the nitrogen cycling was significantly reduced, 48 

contradictory results have also been obtained that the efficiency of diesel 49 

biodegradation was increased in the low-diversity community 26. These results 50 

indicated that the relationship between microbial diversity and ecological function 51 

involves trade-offs among ecological processes, and should not be generalized as a 52 

positive, neutral, or negative relationship 26. Each point of view sound reasonable, and 53 

this could be, at least partly, the reason why the consequences of decline in biodiversity 54 

for ecosystem processes and functioning have long been of considerable interest27-30. 55 

Resistance to invasion by alien species represents a major life support function of 56 

terrestrial ecosystems31, 32. The biological invasion, developed in the 1950s, which 57 

indicated that ecosystems that contain a higher level of biodiversity are less vulnerable 58 

to disturbances 33-35. Whether this theory can be applied to microbiology level remains 59 



largely unresolved. To answer this question, some pioneering studies have investigated 60 

the relationship between invasibility and the microbial diversity of ecosystems, by 61 

manipulating the microbial community 19, 30, 36-38. For example, van Elsas et al., 62 

observed that a positive correlation between the inoculant survival rate of Escherichia 63 

coli O157:H7 and the soil fumigation depths; additionally, by using a dilution–64 

reinoculation approach they obtained a similar result that a negative correlation between 65 

the soil microbial diversity and survival of the invader 36, 37, 39. An inverse relationship 66 

was also found between the survival rate of the inoculant and the degree of microbial 67 

diversity with respect to Pseudomonas aeruginosa, Ralstonia solanacearum and 68 

Listeria monocytogenes39-41. These results shed lights on the complexity–invasiveness 69 

relationship within microbial communities. However, with investigating limited species, 70 

we still lack a sound evidences to achieve a universal phenomenon. To address this 71 

question in an alternative way, we focus on the relationship between invasibility and 72 

microbial diversity at gene-level. 73 

Antibiotic resistance genes (ARGs) were chosen as the invaded genes. On one hand, 74 

antibiotic-treatment failure is typically attributed to the “weapon-shield” role that ARGs 75 

played in clinical settings 42. On the other, the pace of development of novel antibiotics 76 

is now alarmingly low 43. Now the emergence and spread of antibiotic resistance has 77 

become a global health threat 44-47. Nevertheless, factor in regulating the environmental 78 

pathways of antibiotic resistance, especially the biotic factors, have not yet been 79 

directly addressed. This hampers our ability to predict changes and risks in antibiotic 80 



resistance under anthropogenic activities and global environmental change. 81 

The main objective of this study was to investigate if, as proposed by the theory of 82 

biological invasion, soil microbial species diversity could act as a biological barrier 83 

preventing invasion by antibiotic resistance. In other words, we addressed the 84 

consequences of soil diversity loss on the fate of antibiotic resistance genes in the soil 85 

environment. Pig manure was used as the source of ARGs, and microbial diversity was 86 

manipulated by employing a dilution–reinoculation approach (i.e. inoculating sterile 87 

soil microcosms with serial dilutions of a soil microbial suspension) (Figure S1). To 88 

test our hypothesis, we characterized bacterial communities and antibiotic resistome 89 

using Illumina Miseq profiling of 16S ribosomal genes and high-capacity quantitative 90 

PCR arrays with 296 primer sets targeting almost all major classes of ARGs 48, 49. Our 91 

study provides empirical evidence that that microbial diversity negatively relates to 92 

invasibility of antibiotic resistance in soil ecosystems; and further suggests that the loss 93 

in microbial diversity will likely facilitate the spread of antibiotic resistance94 



Results and Discussion 95 

Microbial community assembly and diversity 96 

After the OTUs were classified according to the Ribosomal Database Project (RDP) 97 

database 50, the soil microbial community assemble into 17 phyla (Figure 1A) and 98 

dominated by Actinobacteria, Firmicutes, Proteobacteria, Bacteroidetes, 99 

Planctomycetes and Chloroflexi, which are common bacterial phyla observed in soils 100 

worldwide 12, 51. Firmicutes were significantly depleted along with the time, which is 101 

contrasted with Actinobacteria and Bacteroidetes. Compared with the impact of time, 102 

minor differences in the dominant bacterial phyla were observed when assessing 103 

differences among the dilution depths. Nevertheless, Proteobacteria are significantly 104 

(P < 0.01) enriched after high dilution.  105 

Rarefaction curves were constructed for each individual sample showing the number of 106 

observed OTUs (Figure 1B), defined at a 97% sequence similarity cut-off in QIIME 52, 107 

53. To assess the sequencing depth, we calculated Good’s coverage scores (Figure 1B) 108 

and they were highly comparable for all samples ranging from 94.25 to 98.51% 109 

indicating that the sequencing depth was adequate to reliably describe the bacterial 110 

microbiome. As expected, rarefaction curve confirmed that the dilution treatment had 111 

resulted in progressively decreasing species richness and diversity, which indicated that 112 

dilution-to-extinction method applied here is one of the few available methods to 113 

manipulate microbial biodiversity of complex natural ecosystems such as the soil 38. 114 



Furthermore, the impacts of incubation time exhibited a higher degree of variation in 115 

the shape of their rarefaction curves as compared to the dilution treatments. The 116 

observed OTUs (richness) and diversity of OTU were significantly depleted with the 117 

increasing incubation time (Figure S2). Similarly, principal coordinates (PCoA) 118 

analysis of weighted UniFrac distances between samples revealed (Figure S3) that 119 

microbial communities clustering together according to their initial dilution levels 120 

along with PC2 which explained 10.41% of the total variations. Whereas microbial 121 

communities of different incubation time are separated along with PC1 (explained 122 

53.55% of the total variations). The bacterial abundance was also measured using Real-123 

time Quantitative PCR (qPCR) based on the 16S rRNA gene. The results showed that 124 

in the first ten days, the bacterial abundance was decreased in treatment of S and D0 125 

(which had a relatively higher diverse native microbiota), whereas, to a lower extent, a 126 

slighted increase was observed in rest of treatments (which had a relatively lower 127 

diverse native microbiota). After 10 days inoculation, the bacterial abundance was 128 

stable over time in all constructed microcosms, being similar between treatments. These 129 

findings are consistent with those from studies showing that some of manure-derived 130 

bacteria could not thrive in soil environment, and gradually decreased after manure 131 

treatment, which can be attributed to the competition with resident soil bacteria and the 132 

differences in environmental conditions between soil and animal gut 54-56. Competition 133 

for nutrients is an important mechanism that may limit invasions in highly diverse 134 

communities 57. Based on the resource-based niche theories, the establishment of 135 



invading species is dependent on the amount of (limiting) resources that are left 136 

unconsumed by native species, as well as by the rate at which native and invader species 137 

consume the existing resources 58. Additionally, most of the gut microbiota from 138 

animals and humans are restricted to growth under anaerobic conditions 59, which are 139 

highly different from the aerobic conditions in our microcosms. Although competition 140 

for resources and shifting in oxygen condition likely affect the fate of manure-borne 141 

microbiota in soil, they are only pieces of the puzzle. Other mechanisms i.e. predation 142 

and negative species interactions, might also alert the survival of manure-borne species 143 

37.144 



 

 

 

 

 

 

 

 

 

Figure 1 A: Phylum distribution of the OTUs (relative sequence abundance of bacterial phyla); B: Average Good’s coverage estimates (%) and 

rarefaction curves of different dilution treatments. Good’s coverage estimates represent averages of 20 replicates ± standard deviation.



Antibiotic resistance genes and correlation with microbial diversity  

HT-qPCR was performed to investigate the abundance and diversity of ARGs. A total 

of 195 genes including 186 unique ARGs, class 1 integron-integrase gene and 8 

transposase genes, were detected (Figure S?). The numbers of ARGs detected in each 

samples ranged from 47 to 116. The normalized abundance of ARG was ranging 

between 0.05 and 1.18 copies per 16S rRNA gene. As expected, the dilution treatment 

affected ARG abundance, with abundance of ARG increasing as dilution increased 

(Figure 2). At the begging of incubation (Day 0), because of treatments of S and D0 

had a higher bacterial abundance (Figure S?), which were proposed to caused a lower 

normalized abundance of ARG. While the normalized abundance of ARGs between 

treatments became evident since day 10 and these differences were attribute to the effect 

of dilution, because of the bacterial abundance become stable and showed no significant 

different between treatments.



 

 

 

 

 

 

 

 

 

Figure 2. Normalized abundance of ARG associated with the six dilution treatments during the 90 days incubation. Box plots display the first 

(25%) and third (75%) quartiles, the median and the maximum and minimum observed values within each data set.



The biggest obstacle to understanding of the importance of microbial biodiversity for 

the functioning of ecosystems is the lack of sound experimental approaches to make 

directed and predictable changes in the diversity of microbial communities in soil 38. 

Both the present and prior studies demonstrated that dilution-to-extinction method was 

an effective way to manipulate the soil microbial community to achieve a gradient in 

microbial diversity and species richness 30, 37. By using ordinary least-squares (OLS) 

regression model, to our knowledge, we first explored the relationship between 

microbial diversity, estimated with the Inverse Simpson diversity indices and the spread 

of antibiotic resistance evaluated using the ARG abundance. Loss in microbial diversity 

(P = 0.0003, R2 = 0.1043) were linearly associated with increase in ARG abundance 

(Figure 3). We also found biodiversity components such as phylogenetical diversity (P 

= 0.0003, R2 = 0.0946) and species richness (P = 0.0016, R2 = 0.0810) were also highly 

and negatively related to the dissemination of antibiotic resistance. In contrast, 

nonsignificant relationship between evenness and ARG abundance was found (P = 

0.8122, R2 = 0.0005). Further analyses provided evidence that Inverse Simpson 

diversity was positively and strongly related to phylogenetical diversity (P < 0.0001, 

R2 = 0.7227) and species richness (P < 0.0001, R2 = 0.4264). Additionally, 

phylogenetical diversity was also positively related to the species richness, whereas, 

evenness, was an exception, had no significant correlation with Inverse Simpson 

diversity or any of biodiversity components (Figure s?). Albeit our results are 

correlative in nature, and thus, the results reported here are cannot be taken as a 

definitive proof of causation, nevertheless, these findings are consistent with those from 



theoretical and experimental studies showing that a higher diverse soil microbial 

communities can act as a biological barrier against invasion 32, 39, 60, 61 . For example, a 

recent study showed that a significant negative correlation was detected between the 

survival rate of Listeria monocytogenes L9 and the Inverse Simpson metric (ρ = -0.817, 

P < 0.05) and suggested that erosion of microbial diversity may have damaging effects 

regarding circulation of pathogenic microorganisms in the soil environment 39. Our 

results provide the first empirical evidence at gene-level to show that natural 

ecosystems could show variable resistance to invasion by aliens, and this resistance was 

relate to the species diversity in the system. Finally, our results support the hypothesis 

that microbial diversity is the foundation for the maintenance of ecosystems 1. Although, 

functional redundancy in soil microorganisms are considered prevalent, and has been 

thought to overwhelm any type of diversity–function relationship, i.e. initial loss in 

microbial diversity was unlikely to substantially affect ecosystem functions 19, 37. 

However, if we take the biological barrier effect of microbial diversity into 

consideration, the functional redundancy could be overestimated in the previous studies.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 Ordinary least squares (OLS) regression model showing the relationships 

between ARG abundance, and microbial diversity, biodiversity components and 

evenness. The solid blue lines indicate statistical significance for the relationships, 

while the dashed lines indicate no statistical significance for the relationships. The 

shaded areas show the 95% confidence interval of the fit. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Relationships between ARG abundance and incubation time. The solid lines 

represent the fitted OLS model and the shaded areas show the 95% confidence interval 

of the fit. Box plots display the first (25%) and third (75%) quartiles, the median and 

the maximum and minimum observed values within each data set (n=24). 

 



 

In addition to the impact of dilution treatment on ARG abundance, we also found that 

ARG abundance depleted with the increasing of incubation time (P<0.0001) (Figure 4). 

To further investigate the direct and indirect effects of dilution treatment and incubation 

time on profile of ARG, we generated structural equation models (SEMs) based on the 

known effects and relationships. Besides, SEM is an a priori approach offering the 

ability to separate multiple pathways of influence and take them as a system, and is 

useful to explore the complex networks of relationships found in ecosystems 62. Except 

for bacterial diversity and abundance (16S rRNA copies), MGEs was also included in 

our models, given their effects on profiles of ARG. Our model explained 86% of the 

variance found in the patterns of ARGs. Incubation time and dilution treatment can 

directly impact the patterns of ARGs or indirectly by strongly affecting the diversity 

and abundance of bacteria and abundance of MGEs. Bacterial diversity posed 

significant directly effect on ARG (ρ=0.09, P < 0.05), and indirectly impacted the 

patterns of ARGs by strongly affecting the MGEs abundance (ρ=-0.07, P < 0.05). While 

bacterial abundance on the other hand showed non-significant directly impacts on ARG 

(ρ=0.02, P > 0.05). Despite these results, the standardized effects from SEMs revealed 

that MGEs abundance had a direct positive effect on the pattern of ARG and was the 

major contributors to this model, which was align with field studies 63, indicating that 

MGEs were the most dominant factor altering the ARG profiles. Both the direct and 

indirect effects of dilution treatment showed a positive correlation with ARG abundance, 

and the indirect effect (through affecting the diversity and abundance of bacteria and 



abundance of MGEs) contributing larger than the direct effect. The incubation time had 

a negative effect on the pattern of ARG and the decrease in microbial diversity and 

MGEs abundance were the major driver. Compared with bacterial abundance, the 

diversity had a higher impacts in shaping the ARG profiles, although these impacts was 

much smaller than MGEs, dilution treatment and incubation time. 



 

 

 

 

 

 

Figure 5. Structural equation models showing the direct and indirect effects of dilution treatment, time, bacterial abundance, bacterial diversity, 

and MGEs on the ARG patterns. Black and red arrows indicate positive and negative relationships, respectively. Continuous and dashed arrows 

indicate significant and nonsignificant relationships, respectively. Numbers adjacent to arrows are path coefficients, and width of the arrows is 

proportional to the strength of path coefficients. R2 denotes the proportion of variance explained. Significance levels are indicated: *P < 0.05, **P 

< 0.01, and ***P < 0.001. Standardized effects (total ,direct, and ndirect effects) derived from the structural equation models. The hypothetical 

models fit our data well, as suggested by χ2 = 0.49, P = 0.48, df=1, GFI =0.99, and RMSEA = 0.00. 



Conclusions 

The provisioning of ecosystem services essential for human development heavily relies 

on the diversity of soil microorganisms. By using the microcosm model, our results 

provide empirical evidence that loss in microbial diversity will likely facilitate the 

proliferation and spread of antibiotic resistance. Our results fill a critical gap in our 

understanding the role of microbial diversity and provide additional insights that soil 

microbial communities can act as a biological barrier against invasion and the erosion 

of diversity may alert the circulation of antibiotic resistance genes in the environment. 

Altogether, ecosystems might have a limited buffering capacity of multiple ecosystem 

functions against biodiversity loss. 



Materials and Methods 

Microcosms and Experimental Setup 

Surface soil (0 to 20 cm) was collected from a cropland used for planting rice in Jiaxing, 

Zhejiang, south China (30°50′7.7″ N, 120°43′5.7″ E). Pig manure was obtained from a 

local commercial pig farm. Soil and pig manure properties are described in Table S1.  

The soil was sieved to < 2mm, part of the soil was sterilized by γ irradiation (35 kGy), 

and then 3600g irradiated soil were divided into 120 flasks (200-ml) as matrix of soil 

microcosms, whereas the rest of soil was used, in the dilution-to-extinction experiment, 

as an inoculum. To test the sterility 0.5 g of irradiated soil was spreading onto tryptic 

soy broth (TSB) and potatodextrose agar (PDA) media []. No bacterial and fungal 

growth on agar plates was observed after six days. An initial soil suspension was 

prepared by mixing 30g soil with 50 ml autoclaved demineralized water using a 

ultraviolet-sterilized blender at the maximum speed for 5 minutes[], equivalent 0.6g 

soil/ml approximately. Totally, four levels of dilution of the soil suspension were used 

as inocula to create a diversity gradient of soil microorganisms ranging from undiluted 

(D0) to diluted 10−2 (D1), 10−4 (D2) and 10−8 (D3) suspensions, and 5ml of suspension 

was subsequently inoculated into 200 ml flasks containing 30 g dry of sterile soil, 

equivalent to 10−1, 10−3, 10−5, 10−9 g of non-sterile soil/g sterile soil. Additionally, a 

positive control and negative control by using non-sterile soil (S) and sterile soil (SS) 

were also performed. For each treatment, four replicates were established. At last, 1.2 

g pig manure as the source of antibiotic resistance was added to each flask. The flasks 

were then closed with sterile lids and the inoculated microcosms incubated at 20 °C, 



moisture content was maintained at 70% water-holding capacity (WHC), by addition 

of autoclaved demineralized water. At days 10, 20, 30, 60, and 90 four replicates of 

each combination of soil type were collected for analysis of total bacterial abundance, 

diversity and composition, and determination of antibiotic resistance.



 

 

 

 

 

 

 

 

 

 

 

 

 



 

Assessing microbial diversity  

For each replicate microcosm from each dilution treatment, total DNA was extracted 

from 0.5g soil using a FastDNA®Spin Kit for soil according to the supplier's manual 

(MP Biomedical, Santa Ana, California, USA). The quality of the DNA was checked 

by using ND-1000 spectrophotometer (NanoDrop Technology, Wilmington, DE, USA). 

The concentration of DNA was determined using QubitTM dsDNA HS Assay kit 

through a fluorometer (QubitTM 3.0, USA). PCR was performed using 1μl of each 

forward (515F) and reverse (907R) bar-coded primers, 25μl of 2x ExTaq polymerase 

(TAKARA BIO INC, Japan) and 1μl of sample DNA as the template and 22 ul nuclease-

free PCR-grade water in a total volume of 50 μl with the following PCR program of 

95 °C for 5 min, followed by 30 cycles each of 95 s for 30 s, 58 °C 30 s, 72 °C for 30 

s. To detect any contamination during PCR preparation, negative controls (template 

DNA was replaced with water) were included for all PCR reactions. PCR products of 

each subsample from the bar-coded primers were generated in four replicates and 

purified using the Wizard SV Gel and PCR Clean-Up System (TIANGEN Biotech, 

Beijing, China). The purified PCR products that were quantified and pooled at the same 

concentration, and then submitted to Illumina Hiseq2500 platform (Novogene, Beijing, 

China) for sequencing.  

To guarantee the quality of downstream analysis, raw pair-end reads were filtered to 

discard raw reads containing three or more ambiguous nucleotides, or with a low (< 20) 

average quality score, or with a short (< 100 nt) length, and barcode to generate clean 



joined reads capturing the complete V4-V5 region of the 16S rRNA gene by Novogene. 

The generated high quality sequences were processed and analyzed using QIIME 

pipeline []. The operational taxonomic unit (OTU) was identified using the UCLUST 

algorithm (Edgar, 2010) with a phylotype defined at the 97% sequence similarity level. 

Chimeric sequences, chloroplast and mitochondrial OTUs (around 1%), and singleton 

OTUs were discarded from the final OTU table. Taxonomic classification and 

quantification of OTUs were aligned against the Ribosomal Database Project database. 

Raw sequences were deposited in the National Center for Biotechnology Information 

(NCBI) Sequence Read Archive (SRA) under the access number SRP108158. 

Assessing antibiotic resistance genes 

A total of 296 primer sets were used to interrogate the soil DNA, these primers have 

been used, and validated in a previous study, which targeted resistance for all major 

classes of antibiotics (285 primer sets), transposase genes (8 primer sets), the universal 

class 1 integron-integrase gene (intI1), the clinical class 1 integron-integrase gene 

(cintI1) and the 16S rRNA gene (Supplementary Data 2). Before amplification with 

Wafergen SmartChip Real-time PCR system, all soil DNA was diluted to 50 ng μl−1 

using sterile water. Amplification was conducted in a 100 nL reaction system and all 

qPCR reactions were conducted in triplicate and for each primer set, a non-template 

negative control was included. A more detailed description about the experimental 

procedure can be found in previous studies. 

HT-qPCR data was analyzed using SmartChip qPCR software (V 2.7.0.1). Reactions 

with poor melting curve analysis and reactions with amplification efficiency beyond 



the range (90%-110%) were discarded. Then screened with conditions that (1) a 

threshold cycle (CT) must be < 29 and (2) positive samples should have three replicates 

simultaneously. Relative copy number was calculated according to methods described 

in ref. 43: relative gene copy number =10(29−CT)/(10/3), where CT refers to quantitative 

PCR results and 29 refers to the detection limit.  

To differentiate the variations in the bacterial abundance, absolute 16S rRNA copy 

numbers were quantified by the standard curve (SC) method with Roche 480 system 

(Roche Inc., USA). Each 20 μl qPCR mixture consisted of 10 μl 2× LightCycle 480 

SYBR Green I Master (Roche Applied Sciences), 0.5 μg μl–1 bovine serum albumin 

(BSA), 1 μM each primer, 1 ng μl–1 DNA as template and 6 μl nuclease-free PCR-grade 

water. The thermal cycle was set according to the previous descriptions (). A plasmid 

control containing a cloned and sequenced 16S rRNA gene fragment (1.18 × 1010 copies 

per microlitre) was used to generate eight-point calibration curves from ten-fold 

dilutions for standard calculation. All qPCRs were performed in technical triplicates 

with non-template negative controls. 

Statistical analysis 

By using ordinary least squares (OLS) regression models we explored the relationships 

between pattern of antibiotic resistance and microbial diversity estimated with the 

Inverse Simpson diversity, evenness and biodiversity components including 

phylogenetical diversity and species richness. OLS regression was conducted with R 

and visualized with package of “ggplot 2”. We used Structural equation model (SEM) 

(ref. 32) to evaluate the direct and indirect relationships between dilution treatments, 



incubation time, bacterial diversity, bacterial abundance, MGEs abundance, and pattern 

of antibiotic resistance. SEM is an a priori approach offering the capacity to visualize 

the casual relationships between variables by fitting data to the models representing 

causal hypotheses. Thus, the first step in SEM requires establishing an a priori model 

based on the known effects and relationships among the drivers shifting antibiotic 

resistance. The theoretical model assumptions were as follows (Figure S?): (i) Dilution 

treatment and incubation time might have direct influences on MGEs and the ARG 

patterns; (ii) and also they could indirectly influence the patterns of MGEs and ARGs 

by changing the bacterial abundance and diversity; (iii) bacterial abundance and 

diversity might have direct influences on ARG patterns and they could indirectly 

influence the patterns of ARGs by changing the MGEs abundance and detected number. 

Before modeling, we examined the distributions of all of our variables and tested their 

normality. All data was standardized and using Z-score in the downstream analysis. 

Bivariate correlation was performed to examine the pairwise correlations among these 

variables using SPSS 20 (IBM, Armonk, NY, USA), and the covariance matrix was 

imported into AMOS 21 (SPSS Inc., Chicago, IL, USA) for SEMs construction using 

the maximum-likelihood estimation (MLE) method. We parameterized our model using 

our dataset and tested its overall goodness of fit. There is no single universally accepted 

test of overall goodness of fit for SEMs, so we used multiple goodness-of-fit criteria. 

We used the chi-square (χ2) test (the model has a good fit when χ2 is low and P - value 

is high, traditionally P > 0.05), the root mean square error of approximation (RMSEA; 

the model has a good fit when RMSEA is near 0 and the probability is high, traditionally 



P > 0.05), high goodness-of-fit index (> 0.90) and low Akaike information criteria 

(AIC). With a reasonable model fit we were free to interpret the path coefficients of the 

model and their associated P-values. A path coefficient is analogous to a partial 

correlation coefficient and describes the strength and sign of the relationships between 

two variables. The solid and dot line represent a significant (P < 0.05) and 

nonsignificant correlation (P > 0.05), respectively. And we used black and red line to 

display the positive and negative correlation. Additionally, SEM is capable to partition 

direct and indirect effects that one variable may have on another and estimate the 

strengths of these multiple effects. To aid final interpretation in light of this capability 

of SEM, we calculated the standardized direct, indirect and total effects of dilution 

treatment, incubation time, bacterial abundance, bacterial diversity, and abundance of 

MGEs. The net effect of one factor upon another was calculated by summing all direct 

and indirect pathways between the two factors. If the model fits the data well, the total 

effect should approximate the bivariate correlation coefficient for that pair of factors
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