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Abstract Climate engineering (CE) measures are increasingly discussed when dealing with the
adverse impacts of climate change. While much research has focused on individual methods, few studies
attempt to compare and rank the effectiveness of these measures. Furthermore, model uncertainties are
seldom acknowledged and lesser still, estimated when CE scenarios are assessed. In this work, we quantify
the variance in outcomes due to poorly constrained model parameters under several idealized CE
scenarios. The four scenarios considered are (1) warming under the high emission scenario Representative
Concentration Pathway 8.5 without CE applied and the same emission scenario with (2) afforestation,
(3) solar radiation management, and (4) artificial ocean alkalinization. By considering the parametric
uncertainty in model outputs, we demonstrate the problems with comparing these scenarios using a single
parameter setting. Using statistical emulation, we estimate the probability distributions of several model
outcomes. Based on such distributions, we suggest an approach to ranking the effectiveness of the
scenarios considered according to their probability of avoiding climate thresholds.

Plain Language Summary Various intervention techniques have been proposed to manipulate
the climate system at a large scale to combat the adverse effects of climate change. While many studies have
focused on specific techniques, relatively little has been done to compare and rank the effectiveness of
these methods within a single model. Furthermore, the uncertainties arising from the use of climate
models are seldom acknowledged or assessed. In this work, we analyze the uncertainty in the model's
simulated outcomes caused by poorly constrained model settings under four idealized future scenarios,
with and without climate interventions. Our results highlight the importance of taking into account the
model's uncertainty when analyzing or communicating the simulated outcomes. Moreover, we suggest an
approach to ranking the effectiveness of the interventions considered based on goals of societal importance.

1. Introduction
Dramatic reductions in anthropogenic greenhouse gas emissions are required to reduce the risk of danger-
ous climate change (Allen et al., 2009; IPCC, 2014; Meinshausen et al., 2009). However, the gap between
the reductions needed and the national pledges made in the Paris Agreement is large (UNEP, 2017). On
top of that, studies have suggested that even if the warming would stop once carbon dioxide emissions are
halted (Gillett et al., 2011), elevated temperatures would persist for a long time (Eby et al., 2009; Matthews &
Caldeira, 2008; Plattner et al., 2008). As a result, climate engineering (CE), or the deliberate manipulation of
the climate system at a large scale, has been gaining attention as a possible means to limit some or all effects
of anthropogenic climate change. CE measures can be classed as greenhouse gas removal methods, which
act to actively remove greenhouse gases from the atmosphere, or as radiation management methods, which
aim to reduce the amount of incoming solar radiation or increase the amount of outgoing longwave radia-
tion. More detailed descriptions of available methods can be found in Vaughan and Lenton (2011), Caldeira
et al. (2013), and National Research Council (2015).

If CE should ever become an option that is to be considered seriously, it is crucial to inform society and
the decision makers on the potential impacts and side effects of CE measures along with those of other
possible mitigation and adaptation scenarios. While many studies have focused on assessing individual CE
methods, only a few have attempted to assess them comparatively. Niemeier et al. (2013) and Crook et al.
(2015) looked at the responses of temperature and precipitation to different radiation management schemes
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while Keller et al. (2014) and Sonntag et al. (2018) compared a range of climate indicators under several CE
methods, including solar radiation management (SRM) and land- and ocean-based carbon dioxide removal,
using Earth system models (ESMs).

ESMs are simplified mathematical representations of the Earth climate system. Due to insufficient compu-
tational power and our lack of understanding of actual processes, approximations of the real world have
to be made, and thus, models are inevitably imperfect. Model imperfection, together with internal climate
variability and the uncertainties in forcing scenarios, means that model projections are likely to be system-
atically different from the true state of the climate system. Therefore, a model's projection of the impacts of
climate change or CE should be accompanied by an assessment of the uncertainty contained in those pre-
dictions. As there are a multitude of societal issues competing for limited resources, likelihood statements
based on rigorous probabilistic uncertainty assessment of models are crucial for the public and policymakers
to make informed decisions on the most pressing matters (Reilly, 2001; Schellnhuber et al., 2006).

Model imperfection can be roughly divided into parametric uncertainty and structural uncertainty. A
description of various types of uncertainty in computer models can be found in Kennedy and O'Hagan
(2001). In this work, we focus on parametric uncertainty. A computer model, although a simplification of
reality, can be very complex with hundreds of input parameters that represent underlying features of the
system. In many cases, these parameters are poorly constrained physical constants or artifacts of the sim-
plification of a complex physical process, referred to as parameterization. These free parameters are often
estimated from “tuning” exercises; that is, uncertain parameters are varied and “best inputs” are identified
based on how close the model outputs are to observation. Since both the models and observations contain
errors, there is not a unique set of “best inputs” (Murphy et al., 2004; Stainforth et al., 2005). This lack
of knowledge about the “true values” of the parameters propagates through the algorithm and results in
uncertainty about the real value of the output.

The objective of this paper is to quantify the variance in the model's outputs as a result of uncertain input
parameters in three representative CE scenarios and a no-CE scenario under the high CO2 emissions Rep-
resentative Concentration Pathway (RCP8.5) scenario using the University of Victoria Earth system climate
model (UVic ESCM) of intermediate complexity. The CE measures were chosen with each focusing on
one of the three major components of the Earth climate system: afforestation (AF) as a terrestrial method,
SRM as an atmospheric method, and artificial ocean alkalinization (AOA) as an oceanic method. For con-
ceptual simplicity, we restrict our analysis to globally and annually averaged properties. However, the
methodology presented here could be extended to deal with higher-dimensional outputs such as time series
(Mcneall, 2008; Wilkinson, 2010; Williamson et al., 2012) or high-dimensional spatial output fields (Holden
& Edwards, 2010; Lee et al., 2012; Tran et al., 2019).

To quantify parametric uncertainty, we adopt a probabilistic framework utilizing a perturbed parameter
ensemble (PPE) and Gaussian process (GP) emulation (O'Hagan, 2006; Santner et al., 2003). The analysis
provides not only the mean and confident interval of the desirable outputs but also their estimated prob-
ability density functions for each CE scenario. Based on such results, we propose an approach to rank
the effectiveness of potential CE scenarios. Throughout the work, we also highlight the importance of
uncertainty quantification in comparing the impact of future projections and in communicating modeling
results.

In the remainder of this paper, section 2 describes the experiment design, which includes a description of
the UVic model, the PPE sampling plan, and the CE measures; section 3 introduces the statistical techniques
used and the framework of our analysis; section 4 summarizes the model outputs; and section 5 discusses
the results of the uncertainty analysis. Finally, we discuss our findings and provide suggestions for future
improvements in section 6.

2. Experiment Design
2.1. UVic ESCM
The model used is the UVic ESCM Version 2.9 (Eby et al., 2013; Weaver et al., 2001), comprising a fully
dynamic ocean circulation model (Pacanowski, 1996) coupled to an energy-moisture balance atmosphere
(Fanning & Weaver, 1996), a dynamic-thermodynamic sea ice model (Bitz & Lipscomb, 1999), and a land
surface and terrestrial vegetation model (Meissner et al., 2003). Ocean biogeochemistry is based on a simple
nutrient-phytoplankton-zooplankton-detritus model (Keller et al., 2012; Schmittner et al., 2005). UVic has
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been extensively used in model intercomparison studies (Eby et al., 2013; Flato et al., 2013; Weaver et al.,
2012; Zickfeld et al., 2013), showing comparable responses to other models under the same CO2 emission
forcing.

UVic has been used to investigate the potential of CE measures, individually (Matthews & Caldeira, 2007;
Oschlies, Pahlow et al. 2010; Oschlies, Koeve et al. 2010) and comparatively (Keller et al., 2014). UVic is
a suitable choice in this study since it includes a prognostic global carbon cycle, allowing us to quantify
the carbon cycle response to CE. Being a model of intermediate complexity, UVic is efficient enough to
produce PPEs to explore its high-dimensional parameter space. The trade-off is that UVic's atmospheric
component is a simple energy-moisture balanced model that does not capture dynamic circulations and the
model resolution is coarse (spherical grid resolution of 3.6◦ by 1.8◦ and 19 vertical levels in the ocean).

To conduct the uncertainty analysis, we first generated a perturbed ensemble of preindustrial climate. In
this ensemble, each simulation was spun up for 5,000 yr under historical atmospheric and astronomical
boundary conditions. From 1850 to 2000, the simulations follow historical fossil fuel and land use forcing.
From the Year 2000 to 2020, all model runs were under forcings specified by the RCP8.5 scenario. Starting
from 2020, the ensemble branches into four future ensembles, all remain under RCP8.5 forcing. The four
future ensembles correspond to four scenarios, one without CE and three with CE applied. All simulations
end in 2100.

In the AF scenario, soil moisture in North Africa and the Australian Outback are forced to have a constant
value of 360 kg/m2 to simulate irrigation, allowing vegetation to grow and thereby remove CO2 from the
atmosphere. Ocean alkalinization to enhance the oceanic uptake of atmospheric CO2 was achieved by sim-
ulating the addition of 10 Pg/yr of Ca(OH)2 evenly to the surface water between 70◦N and 60◦S. SRM was
performed by reducing the incoming shortwave radiation in such a way that the surface air temperature
(SAT) reaches and remains at levels corresponding to an atmospheric CO2 concentration of 400 ppm. More
details on each method and the justification for the applied intensity can be found in Keller et al. (2014)
and references therein. Our measures are applied identically to those in Keller et al. (2014) except for SRM
where we limit global mean SAT to levels obtained if atmospheric CO2 concentration was 400 ppm instead
of 280 ppm.

Model outputs are numerous, and while some are of particular interest to climate scientists, they might not
be the most useful ones for decision makers who need to consider societal objectives. The choice of model
outputs or indicators used to assess the CE-induced changes in the Earth system remains an active subject
of discussion (Oschlies et al., 2016). In this work, we decided to investigate six outputs chosen from differ-
ent components of the ESCM: SAT, precipitation, atmospheric CO2 concentration, vegetation net primary
productivity (NPP), ocean oxygen content, and ocean surface Ω aragonite. SAT and precipitation are impor-
tant indicators of the climate system and also have strong and direct influences on society. Atmospheric CO2
concentration, vegetation NPP, and ocean oxygen help us understand changes in the carbon cycle due to
the contributions of the ocean and land surface. Ocean oxygen highlights the extent of hypoxia, which rep-
resents physiological stresses for marine aerobic organisms (Pörtner & Farrell, 2008). Ocean Ω aragonite, or
the level of calcium carbonate saturation in seawater, is an indicator of the potential for biotic calcification,
for example, of molluscs, crustaceans, and corals. Ocean acidification could lead to undersaturation and
dissolution of calcium carbonate in parts of the surface ocean during the 21st century, which might have
detrimental effects on marine ecosystems (Orr et al., 2005).

2.2. Uncertain Parameters
The design of a PPE depends on the scenarios being investigated and the outputs of interest. Different CE
measures can introduce uncertainties that are specific to the individual method and may be different from
the uncertainties related to climate change. Thus, the most sensitive input parameters may differ for the
different scenarios. We decided on a small number of model parameters to focus our analysis on since it is
too expensive to analyze all of the uncertain parameters simultaneously. Ideally, the selection of parameters
should be based on how sensitive the output of interest is to changes in each of the uncertain parameters.
However, in the lack of a probabilistic sensitivity analysis (Saltelli et al., 2000) to establish the most sensitive
parameters formally, we rely on expert judgment following earlier analyses.
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Figure 1. Histograms of the eight outputs used to constrain the parameter space. The acceptable ranges as described in
Table 2 are indicated by the vertical solid lines. The rejected and accepted simulations are in red and blue, respectively.

The first group of perturbed parameters are those controlling the physical behavior of the system. Not only
do they have direct effects on the climatic response but they also influence ocean biogeochemistry and ter-
restrial processes. The meridional diffusive moisture transport in the UVic atmosphere is latitude dependent
with highest values at midlatitudes to represent actions of transient eddies. The meridional moisture diffu-
sivity scaling parameter (A_diff in Table 1) controls the strength of water vapor transport in the Southern
Hemisphere. Altering the moisture transport has a substantial impact on the hydrological cycle and deep
water formation (Saenko & Weaver, 2003; Schmittner et al., 2005). To explore the uncertainty in ocean mix-
ing, we varied the Gent-McWilliams parameterization's isopycnal tracer mixing coefficient (ahisop) and
isopycnal thickness diffusivity (athkdf) (Gent & Mcwilliams, 1990) and the ocean background thickness dif-
fusivity (𝜅h) (Schmittner et al., 2005). The two isopycnal mixing parameters ahisop and athkdf are set to the
same value to reduce the number of perturbed parameters. Ocean mixing parameters have been shown to
have significant impacts on climate, ocean meridional circulation, ocean heat uptake, and the ocean carbon
budget (Ehlert et al., 2017; Goes et al., 2010; Olson et al., 2012; Schmittner et al., 2009; Weaver et al., 2001).
Ocean oxygen content and the extent of marine suboxia are also shown to be sensitive to the strength of back-
ground vertical mixing (Duteil & Oschlies, 2011). To capture the uncertainty in the temperature-longwave
radiation feedback, we perturb a parameter (vcsfac), which was designed to alter the equilibrium climate
sensitivity (Zickfeld et al., 2009). The range given in Table 1 for this vcsfac corresponds to the equilibrium
climate sensitivity observed when other model parameters are kept at default values. We decided to keep
the upper bound of vcsfac at 8◦C based on an exploratory ensemble in which all simulations with climate
sensitivity above this value were rejected by the metrics displayed in Figure 1.
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Beyond uncertainties in the response of the physical system, land carbon-climate feedbacks remain among
the largest sources of uncertainty in current ESMs (Arora et al., 2013; Friedlingstein et al., 2014; Todd-Brown
et al., 2014). A significant contribution to this uncertainty is the effects of rising temperatures and atmo-
spheric CO2 on the physiology and growth of vegetation. Another factor contributing to the uncertainty
in terrestrial carbon uptake is the variations in respiration (Konings et al., 2019). Here, we vary the tem-
perature sensitivity of soil respiration (q10_soil) and plant photosynthesis via the temperature-dependent
maximal rate of carboxylation (q10_veg). The carbon dioxide sensitivity of photosynthesis, that is, the CO2
fertilization effect, and transpiration are investigated by perturbing co2_fert_scal and sens_fact parameters,
respectively (Matthews & Caldeira, 2007; Mengis et al., 2015). These four parameters dictate how climate
change affects the biomass production of terrestrial ecosystems and the land's carbon sequestration poten-
tial. Furthermore, Fyfe et al. (2013) suggested that biogeochemical processes are as important as radiative
processes in influencing the hydrological cycle.

The oceanic contribution to the carbon cycle is also highly uncertain, especially under CE scenarios.
We varied six parameters controlling the phytoplankton maximum growth rate (abio), nutrient uptake
(k1n, k1p), detritus sinking speed (wd0), the initial slope of the light response curve (alpha), and the O2:N
ratio (Keller et al., 2012; Schmittner et al., 2008). While both the solubility pump and the biological carbon
pump are strongly affected by parameters controlling the ocean circulation and physics, only the biologi-
cal pump is affected directly by the biological parameters. Apart from their vital roles in the distribution
and cycling of carbon in the ocean, perturbing the biological parameters also affects the simulated marine
ecosystems through the cycling of nutrients such as nitrogen and phosphorus, as well as oxygen-dependent
remineralization processes.

While the chosen parameters are expected to have some impacts on the climate and carbon uptake under
all scenarios, their roles might vary significantly in each case. It is likely that terrestrial parameters, such as
co2_fert_scal and sens_fact, will be more influential under AF, while ocean biogeochemical parameters will
have stronger influences under AOA. The specific contributions, however, depend on the complex interac-
tions between all components of the Earth system. The uncertainty analysis let us quantify the uncertainties
induced by these parameters for each scenario.

Even though many of the parameters chosen here have been the subject of previous sensitivity studies, prob-
ability density functions estimated using observational constraints were only available for the equilibrium
climate sensitivity factor and the ocean mixing coefficients (Olson et al., 2012). We did not use these esti-
mates as our prior since we use a newer version of the UVic model and a different mixing scheme. Despite
the fact that UVic is an efficient model capable of performing large PPEs, most sensitivity analyses so far
were done by perturbing a single parameter to a few higher and lower values than the standard one (Duteil
& Oschlies, 2011; Ehlert et al., 2017; Kvale & Meissner, 2017; Mengis et al., 2015) or only perturbing a small
number of parameters using a factorial design (Ross et al., 2012). Since little is known quantitatively of the
behavior and interactions of these parameters across the whole parameter space, we assume uniform dis-
tribution across the defined range for all but one parameter, the background diapycnal mixing which has a
log-uniform distribution. The references for the ranges used are provided in Table 1. While it is ideal to asso-
ciate a joint probability distribution with all the uncertain parameters, in practice, this requires knowledge
of the correlation structure between the parameters, which is not available in our case. Thus, we associate
a single probability distribution with each parameter as usually done in similar cases (Haylock, 1997).

3. Statistical Framework
The structure of our work is illustrated in Figure 2. Most methods for assessing the effect of uncertain inputs
on the output have the same basic structure, that is, sampling from subjective prior distributions that repre-
sent the uncertainty on each input, evaluating the output of the model many times, and calculating output
sample statistics. The first task of parameter selection was described in section 2.2.

Once the choice of perturbed parameters has been made, a training set, or a set of carefully designed sim-
ulations, is generated to inform the GP emulators. Because ESMs are computationally expensive, we want
a design that is capable of exploring interactions between parameters and is valid across the whole range
of the input parameter space using a minimum amount of simulations. Thus, a Latin hypercube sampling
plan (McKay et al., 1979) with the maximin space-filling criteria (Morris & Mitchell, 1995) was employed.
We followed the general suggestion from Loeppky et al. (2009) to have 10 simulations for each perturbed
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Figure 2. A schematic of the procedure in this study. The gray and brown boxes indicate the simulated and emulated
ensemble, respectively. The CE and the control scenarios are color coded. The same color code is used throughout this
paper.

parameter, giving us 130 spin-up simulations. In total, we ran 130 spin-up simulations and 130 × 4 future
simulations for the four scenarios.

To ensure that model outputs are meaningful and do not include unphysical climate states, we define a set
of eight plausibility metrics describing various aspects of the Earth system. While it is a common practice
to tune the model by minimizing the misfit between model outputs and observations, there are inherent
limitations in treating tuning as an optimization problem (Williamson et al., 2016). Therefore, we do not
weight our ensemble members based on how close they are to observations. Our choice of metrics (section
4.1) represents the acceptable range of Earth system variables based on measurement ranges (to take into
account observation errors) combined with multimodel ensemble ranges (to encompass the potential struc-
tural uncertainty range). We reject parameter choices where the model fails to remain within the acceptable
ranges. Only parameter configurations fulfilling all these criteria are used in the uncertainty analysis.

The traditional uncertainty and sensitivity analyses as described in Saltelli et al. (2000) demand a substan-
tial number of model runs. As climate models are computationally expensive, we employ GP emulators as
surrogates of the ESM. An emulator is a statistical approximation of the input-output relationship of the
model. Once constructed, the emulator can provide estimates of the model outputs at untried input config-
urations at a low computational cost. More information on GP emulator can be found in Appendix A. Here
we utilize the GPy toolbox for Python (GPy, since 2012). GP emulators have been used in the past to conduct
uncertainty and sensitivity analyses (Johnson et al., 2015; Lee et al., 2011; Oakley & O'Hagan, 2002, 2004a),
calibration (Kennedy & O'Hagan, 2001), and history matching (Craig et al., 2001; Williamson et al., 2013).

In the approach that we followed we consider the model as a function 𝑓 (x), where x is a vector of input
parameters. In such a probabilistic framework, the input parameters are treated as random variables X. The
two important uncertainty measures we are interested in are the uncertainty mean, M = E[𝑓 (X)], and the
variance due to parametric uncertainty, V = Var[𝑓 (X)]. Since we do not know the value of 𝑓 (x) at all possible
points in the plausible parameter space, there remains an uncertainty in the output, termed code uncertainty
(Kennedy & O'Hagan, 2001). When estimating 𝑓 (.) with a GP emulator, we get a probabilistic estimation
of 𝑓 (.) described by a mean function, m1(·) and a covariance function, v1(·, ·). When using the emulator's
predictions instead of simulation outputs, the uncertainty mean, variance due to uncertain parameters, and
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Table 2
Seven Preindustrial and One Present-Day Plausibility Metrics

Quantity Observations Metric range
Global mean surface air temperature (◦C) ∼14 (Jones et al., 1999) 12 to 16
Global mean precipitation (mm/yr) 942 to 1,139 (Rudolf & Rubel, 2005) 1,000 to 1,100
Global soil carbon (GtC) 850 to 2,400 (Bondeau et al., 2007) 750 to 2,500
Global vegetation carbon (GtC) 450 to 650 (Bondeau et al., 2007) 300 to 800
Maximum Atlantic overturning (Sv) ∼19 (Kanzow et al., 2010) 10 to 30
Southern Hemisphere sea ice area (million km2) ∼7 (Cavalieri et al., 2003) 5 to 15
Global ocean averaged dissolved O2 (μmol/kg) ∼170 (Conkright et al., 2002) 120 to 220
Atmospheric CO2 in 2005 (ppm) 378 (Keeling et al., 2005) 353 to 403

variance due to code uncertainty become E ∗ [M], E*[Var], and Var*[M], respectively, with the E ∗ [.] and
Var*[.] denote the operations with respect to the emulator. These three quantities can be computed using
m1(x) and v1(x, x′) following Oakley and O'Hagan (2002) and are described in Appendix A.

Each of the emulators constructed is first validated to ensure that they perform sufficiently well. Since we
did not have a separate ensemble for validation, leave-one-out cross validation was used. This process con-
sists of leaving out one of the training runs, building the emulator with the remaining runs, and predicting
the simulated output of the left out simulation. This process is then repeated for every member of the train-
ing ensemble. To measure how close the emulator's predicted means are to the simulated values, we plot
the to quantities against each other, calculate the root mean square error and the coefficient of determina-
tion, r-squared. The emulator's variances are evaluated by computing the fraction of training points where
the emulator correctly predicts the simulated value, within the 66th, 95th, and 99th inner quantiles of the
distribution. The validation results are provided in supporting information Text S1.

The uncertainty analysis using GP emulation is performed in two main steps, using the Monte Carlo sim-
ulation approach with emulator outputs in place of simulator outputs. In the first step, we constructed
emulators of the eight variables corresponding to the plausibility metrics. Two of the metrics turn out to
be uninformative in terms of constraining the prior parameter distributions, as all simulator outputs lie
within the plausibility range (global vegetation and soil carbon, Figure 1), leaving six emulators in the
analysis (section 4.1). Then we apply a rejection sampling method known as approximate Bayesian compu-
tation where new parameter combinations are drawn randomly from the prior input distributions but only
accepted when the emulators predict they are within all the plausibility ranges. This process resulted in a
sample of 4,000 plausible input parameter combinations.

In the second step, four sets of six emulators were constructed for each of the six outputs of interest under
four scenarios. These are then used to estimate the model projected outcomes under the future scenarios
for each of the 4,000 accepted input parameter sets generated in Step 1. Both steps are shown in Figure 2.
We then calculate the uncertainty measures using the emulated outcomes of the 4,000 input settings.

4. Model Outputs
4.1. Spin-Up Ensemble
Figure 1 shows the eight metrics used to constrain the ensemble. The solid vertical lines denote the accept-
able ranges listed in Table 2. Model outputs outside of the ranges are indicated in red. The eight metrics
defined to reject implausible climate states are global mean SAT, precipitation rate, the strength of the
meridional overturning circulation, Antarctic sea ice area, vegetation carbon, soil carbon, ocean oxygen, and
atmospheric CO2 concentration. Seven of the metrics are applied to the preindustrial climate at the end of
the spin-up stage, while the atmospheric CO2 metric is applied to simulations forced by historical forcings
until the Year 2005.

By perturbing 13 parameters at the same time, the individual effect from each input and the interactions
between them can lead to very diverse climatic outcomes. For example, while most simulations exhibit a
vigorous overturning circulation, several simulations show a significant slow down of the meridional over-
turning circulation (eight simulations have the maximum overturning circulation strength below 5 Sv).
Based on a multimodel ensemble of coupled climate models, it is suggested that the preindustrial Atlantic
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meridional overturning circulation strength ranges from 13.4 to 30.0 Sv (Roberts et al., 2013), while the
present-day observations are around 17.2 Sv (McCarthy et al., 2015) or 19 Sv (Kanzow et al., 2010). Thus,
we conclude that simulations with very weak (below 10 Sv) or very strong (above 30.0 Sv) preindustrial
meridional overturning circulation are unrealistic and should be excluded in the final analysis. Similarly,
other metrics are defined to constrain the model outcomes to those that cannot be ruled out by current
observational constraints and modeling studies.

Some of the metrics tend to reject very low (sea ice area and ocean oxygen content) or very high values
(precipitation rate), while others do not discard any simulations at all (vegetation carbon and soil carbon).
On the one hand, this demonstrates the vast range of uncertainty associated with these quantities. On the
other hand, this indicates that the prior range of input parameters cannot produce model outputs covering
the whole plausibility ranges for the terrestrial carbon budget. While this could be due to structural model
errors, that is, the lack of some key physical processes, in our case it is also likely due to the limited number
of parameters varied. Among the 13 perturbed parameters, those with the most significant influences on the
terrestrial carbon budgets are the CO2-dependent (sens_fact and co2_fert_scal) and temperature-dependent
(the two q10 parameters) parameters. These parameters lead to diverse output ranges under transient forcing
with increasing atmospheric CO2 concentration and rising temperature. However, in spin-up simulations
where the atmospheric CO2 concentration is fixed and is the same across the ensemble, they do not have
an influence. Thus, the diverse simulated vegetation and soil carbon only manifest in the transient phase
and not in the preindustrial phase used in the metrics. We progress with this limitation in mind and will
incorporate this information into future ensemble design.

Since the two terrestrial carbon budget metrics do not constrain the ensemble, they are not considered in the
uncertainty analysis. The remaining six metrics are later applied to all emulated outputs, and only parameter
sets passing all six constraints are used in the uncertainty analysis.

Overall, 106 out of 130 simulations finished successfully, that is, without numerically induced model crashes.
All failed simulations feature very high values of ocean isopycnal diffusivity, ahisop, and isopycnal thick-
ness diffusvity, athkdf. The number of simulations that are consistent with all the metric ranges is 24 or
approximately 23% of the successful runs and 18% of the PPE input parameter sets.

4.2. Future Projections
The model outputs under the four transient scenarios extended from the 24 simulations that fulfill all criteria
defined in the previous section are shown in Figure 3. The solid lines indicate the mean and the shaded
areas denote the range of the 24 simulations for each of the color-coded scenarios. The evolution of the six
outputs of interest under the four different scenarios is shown. For SAT, we look at the anomaly with respect
to the historical mean between 1986 and 2005.

Here, we compare our RCP8.5 runs (the noCE scenario) with other models. The simulated global mean
warming from the reference period (the 1986 to 2005 mean) to the end of this century (the 2081 to 2100 aver-
age) is 3.4 ± 0.2 ◦C, which is comparable to the multimodel average of 3.9 ± 0.9 ◦C in CMIP5 (Friedlingstein
et al., 2014) and the 1.6–4.1 ◦C range from an Earth system models of intermediate complexity intercompar-
ison study (Zickfeld et al., 2013), albeit with a lower standard deviation. For precipitation, some simulations
show a global increase, while others show a decrease. However, the changes throughout the entire transient
period are small, ranging from −0.6 to 0.6%/K. This is smaller than the global increase of 1–3%/K seen in
most models (Allen & Stainforth, 2002; Held & Soden, 2006). Keller et al. (2014) reported a global decrease
of 0.3%/K in UVic precipitation due to a large reduction in terrestrial precipitation. Our ensemble shows
that this behavior is parameter dependent and UVic is capable of producing both drier and wetter climates
under the RCP8.5 scenario, in agreement with a previous study (Mengis et al., 2015). The simulated atmo-
spheric CO2 concentration in 2100 is 1,017 ± 35 ppm, which is on the higher end of the CMIP5 range of 985
± 97 ppm (Friedlingstein et al., 2014). The CMIP5 mean ocean oxygen content in 2090–2099 compared to
the 1990–1999 mean is −6.13 ± 0.78 mmol/m3 or −3.45 ± 0.44%. Our constrained ensemble show a larger
change as well as a larger standard deviation of −6.9 ± 2.3 mmol/m3 or −4.6 ± 1.8%. Overall, our ensemble
compares well with the CMIP5 multimodel ensemble.

In comparison with the previous CE comparison study by Keller et al. (2014), apart from the difference in the
SRM scenario, we started the historical forcing from 1850 instead of 1765. For all scenarios, we note similar
trends in all model outputs. We observe smaller changes in SAT and precipitation by the Year 2100 in the
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Figure 3. The simulated changes in globally averaged annual SAT (relative to the 1986–2005 average), precipitation, atmospheric CO2, vegetation NPP, ocean
oxygen, and Ω aragonite for model runs which fulfilled all metrics. The CE period starts in 2020 and extends to the end of the simulations in Year 2100.
Emulators are constructed for the average outputs over the period from 2081–2100, which is indicated by the vertical gray shaded area in this figure. For each
scenario, the solid line shows the ensemble mean and the shaded area shows the range of the remaining 24 model runs. The upper and lower edges of each
range are marked with dash-dotted lines of the same color. The ranges in the Year 2100 are shown as brackets on the right side of the plots.

SRM scenario due to the smaller applied reduction in incoming shortwave radiation. For all but vegetation
NPP, the results in Keller et al. (2014) fall within the range shown in Figure 3. In the case of vegetation
NPP, our ensemble lower bounds are slightly higher than the outputs seen in Keller et al. (2014). This could
be a result of the different initial condition of the spin-ups (using atmospheric CO2 concentration from
1850 instead of 1765). We briefly summarize the main features of the CE results below. For a more detailed
discussion, the readers are referred to Keller et al. (2014) and the references therein.

Regarding the surface temperature, AOA leads to a small reduction in warming while AF leads to more
warming due to changes in regional surface albedo as the desert is replaced by less reflective vegetation. SRM
significantly reduce surface warming by reducing the incoming shortwave radiation. All CE scenarios lead
to a sizeable reduction in atmospheric CO2 compared to when no CE is used. Even though SRM does not
directly target atmospheric CO2, changes in the oceanic and terrestrial carbon sink lead to a lower increase
in atmospheric CO2 concentration. For precipitation, the changes are small under the AOA scenario. SRM
leads to a significantly drier climate because of less evapotranspiration and evaporation. Global precipitation
under the AF scenario is on average higher than under all other scenarios due to more water being added to
the hydrological cycle. The increasing atmospheric CO2 concentration increases plant productivity due to
the fertilization effect. Under AF, terrestrial productivity increases further due to more water from irrigation
and rainfall. On average, all scenarios show ocean deoxygenation throughout the 80 years of simulation.
However, in some SRM simulation, oxygen content by the end of the century is higher than the historical
reference period (1986–2005). Global warming leads to the loss of dissolved O2 due to O2 being less soluble
in warmer water and because of the resulting increased upper ocean stratification causing a reduction in
the O2 supply to the ocean interior. The cooling effect of SRM works to combat this deoxygenation trend.
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Ocean Ω aragonite decreases to a dangerously low level in all scenarios, with average surface Ω aragonite
being close to 1.0 in many simulations. The use of AOA appears to alleviate the problem somewhat, while
AF has a smaller impact and SRM results in almost no change compared to noCE.

In all cases, we can see that the outcomes of the four scenarios overlap significantly and might not be sta-
tistically different. The common practice for comparing CE measures is to compare a single realization for
each method, using the same parameter setup. Without properly communicating that these realizations are
drawn from different probability distributions, there is a risk of sending the wrong message to the policy-
makers. The reader might falsely conclude that one measure outperforms others, while in reality, when
model uncertainty is considered, the probability distributions of the outcomes of two scenarios may be
indistinguishable. We will revisit this point in section 5.

Another feature of the ensemble is that for precipitation and ocean oxygen, the uncertainty range is enor-
mous compared to the magnitude of change in the corresponding quantity. It is crucial to identify the
factors contributing the most to the variations in these two outputs if we aim to achieve more meaningful
projections.

Due to the small number of simulations available (24 simulations for 13 perturbed parameters), we subse-
quently employed GP emulation to perform the probabilistic uncertainty quantification shown in the next
section. We now construct the emulators of the average outputs (2081–99), except for SAT (2081–99 relative
to 1986–2005).

5. Results
The emulator construction is described in section 3 and Appendix A, and validations are detailed in the
supporting information. Each emulator was used to calculate the three uncertainty measures described in
section 2.

We compare the output variance due to code uncertainty (Var*[M]) with the variance due to uncertain
parameters (E ∗ [V]) to justify the use of the emulators. Table S1 in the supporting information shows the
comparison between the two types of variance for all emulated outputs under the four scenarios. For all out-
puts, the uncertainties due to emulation is small compared to the parametric uncertainty due to perturbed
parameters. The only emulator that contributes appreciably to the overall output variance is that of ocean
oxygen, with code uncertainty being greater than 1% of parameter uncertainty. The code uncertainties for
atmospheric CO2 emulators are the second largest. Emulator validation shows that for all four CO2 emu-
lators, there is an excessive amount of simulations (75%) predicted correctly within one standard deviation
compared to the expected 68%. However, the percentage of simulations correctly predicted within two or
three standard deviations is very close to what we expect. This means that the emulators are slightly overesti-
mating the variance of atmospheric CO2 concentration and thus overestimating the code uncertainty. Thus,
we could treat the estimated code uncertainty as an upper bound of the real value. For the emulators to be
considered reliable, the code uncertainties need to be small compared to the parametric uncertainties. Here,
since the upper bound of the code uncertainties remain quite small compared to parametric uncertainty, we
are satisfied with the emulators.

Figure 4 shows the uncertainties in the six global averaged annual mean outputs. The distributions vary
between outputs and scenarios. All distributions are unimodal but display different levels of skewness.
Ocean oxygen content and Ω aragonite have the highest skewness. In such cases, by focusing only on
the ensemble means, low probability extreme events are not considered despite their substantial potential
impacts on human life and the ecosystem. Thus, the likelihood of avoiding a dangerous threshold might be
of more interest to society and policymakers.

For SAT, SRM induces a very narrow distribution due to the way this CE method is implemented in UVic.
The radiative forcing is not the same for all SRM simulations and also is not constant during the 80-year
deployment to adjust SAT to a predefined goal, that is, to return SAT to the level seen when atmospheric
CO2 concentration was 400 ppm. As a result, the SAT is constrained to a narrow range compared to the other
methods or when no CE is used.

While the ensemble spread due to parametric uncertainty is large for all scenarios, the distributions of ocean
oxygen appear to be insensitive to CE. This could be due to the short duration of the simulations, which does
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Figure 4. The uncertainty in globally averaged annual SAT (relative to a historical period), precipitation, atmospheric CO2, vegetation NPP, ocean oxygen, and
Ω aragonite for the four scenarios. The quantities are averaged over the last 10 years of the simulations. The boxplot shows the emulated distribution for each
quantity. The mean and standard deviations are shown under each boxplot. The right panel of each plot shows the kernel density estimated PDFs (Appendix B).

not allow the ocean to equilibrate. Thus, changes in the ocean might be limited to the surface and have not
reached greater depth. Another possible explanation is that the global annual mean quantity masks opposing
regional changes. Regional responses of surface oxygen might be more sensitive to the same perturbations.
The poorer performance of oxygen emulators compared to others could be a result of this apparent insensi-
tivity. If reducing ocean deoxygenation is a key goal in adopting CE measures, then our result suggests that
it is not possible to identify the best method given the large parameter uncertainty.

Figure 4 again highlights the fact that the distributions of the results of the four scenarios overlap and
in many cases are unlikely to be statistically different. Comparing the ensemble means does not ensure a
reliable assessment of the relative impacts of the CE scenarios. For example, while AOA leads to a lower
atmospheric CO2 CO2 concentration on average, the ensemble spread is larger than that of the SRM sce-
nario, meaning that under AOA, it is possible to end up with a higher atmospheric CO2 concentration in
2100 than under SRM. To demonstrate this point further, we compare the ranking of the four scenarios for
each of the 4,000 parameter combinations used in the uncertainty analysis. For each parameter combina-
tion, the emulators provide the estimated outputs for each scenario. For an output, the scenario producing
the minimum value out of the four is ranked 1, while Rank 4 corresponds to the scenario with the maximum
output value. We then compute the frequency of each CE scenario achieving each rank. Figure 5 shows that
SRM consistently leads to lowest global mean SAT for all parameter combinations, followed by AOA, noCE,
and AF. AF leads to a consistently higher air temperature largely due to the changes in surface albedo.
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Figure 5. The probability of achieving a certain ranking for each CE measure. For each output of interest, the outcome
from the four scenarios are ranked from 1 to 4 with 1 being the lowest.

For the remaining outputs, the ranking depends on the parameter settings. For example, while AOA is the
most likely to lead to the lowest atmospheric CO2 concentration, for over 20% of the parameter settings,
SRM or AF can outperform AOA.

The highest precipitation rate under AF is observed consistently throughout the parameters space due to
more water being added to the hydrological cycle through irrigation. The lowest precipitation happens when
SRM is implemented as found in other studies. AOA is more likely to produce slightly higher precipitation
than when no CE measure is used. However, the difference between these two scenarios are often very small
(less than 0.01 mm/day). Thus, AOA essentially leads to no meaningful change in precipitation.

All three CE measures reduce the atmospheric CO2 concentration compared to when none is employed. The
ranking appears to depend on the parameter controlling the atmospheric moisture transport and the ocean
diffusivity coefficients. The ocean mixing coefficients have a large effect on ocean carbon uptake, while the
moisture transport has an effect on both the terrestrial carbon uptake via changes in terrestrial productivity
and on the ocean carbon uptake as a result of changes in the ocean circulation.

Ω aragonite experience the lowest decrease when AOA is implemented as expected. AF also manages to
keep the saturation states of aragonite higher than when no CE is applied. This is due to a reduction in the
ocean carbon inventory in response to a large increase in the terrestrial inventory, with respect to the noCE
scenario.

Overall, the ranking of the outputs is often complex and requires further investigation into the model's
behavior. For example, the difference in vegetation NPP under the four scenarios is due to a combination of
CE's effects on the hydrological cycle, the amount of atmospheric carbon being removed, and the uncertain
terrestrial parameters.
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Figure 6. The probability of crossing the surface air temperature (left) and Ω aragonite (right) threshold for the four CE measures. The vertical dashed lines
indicate the thresholds.

We propose that a more appropriate way to rank the scenarios would be based on the probability of avoiding
a dangerous threshold. For illustrative purpose, we define thresholds for SAT and Ω aragonite (Figure 6).
SAT is the most frequently used climate indicator when assessing climate change and CE. The thresholds
for SAT are chosen to be 1.5 and 2 ◦C above the preindustrial value, following to the Paris agreement. The
2 ◦C threshold is a goal beyond which many believe substantial irreversible climate change would occur.
Under the parametric uncertainty considered and the CE scenarios as we defined, it is not possible to reach
either temperature goals using AF, AOA, or by noCE. SRM has a 0% and 88.8% chance of achieving the 1.5
and 2 ◦C goals, respectively. It is not surprising that SRM is the most successful in terms of temperature
reduction considering that the method was designed to stabilize SAT to the same level when atmospheric
CO2 concentration was 400 ppm.

For surface Ω aragonite, we set two thresholds of 1.5 and 3.0. Studies have shown that no prominent
present-day coral reefs exist in environments with Ω aragonite below 3.0 (Guinotte et al., 2003; Kleypas et
al., 1999). Thus, we follow Meissner et al. (2012) and Feng et al. (2016) in choosing this value as a criti-
cal threshold for coral habitat. The 1.5 threshold has been used previously to signify water with carbonate
chemistry stressful to larvae of shellfish such as oysters (Ekstrom et al., 2015; Gimenez et al., 2018). For Ω
aragonite values below 1.5 marine organisms are believed to have trouble forming shells during the first
few days of their life (Waldbusser et al., 2015). This significantly lowers their life expectancy and can have
a severe effect on the wealth being of marine ecosystems. In all four cases, the surface annual average Ω
aragonite stay below the 3.0 threshold. While the means of the distribution for all four cases are above the
1.5 threshold, the probability of crossing this limit is not negligible, that is, 37%, 28.2%, 38.3%, and 13.8% for
noCE, AF, SRM, and AOA, respectively.

Other thresholds that might be relevant are the mass balance of Antarctica, the strength of the Atlantic
Meridional Overturning Circulation, sea ice area, or sea level rise extent. Detailed investigations on these
quantities are beyond the scope of this exploratory study.

6. Conclusions
There are many studies focused on the effectiveness and potential unintended outcomes of existing CE
methods conducted in different modeling framework (Schäfer et al., 2015). A study comparing several CE
measures in UVic ESCM allows quantitative assessments of their relative impacts and side effects (Keller
et al., 2014). We further contribute to such comparison studies by considering the often overlooked para-
metric uncertainty of the ESM used. Of the three CE scenarios considered here, only SRM could limit the
warming to the targeted 2 ◦C. However, this measure could lead to significant unintended changes in the
hydrological cycle and does not tackle the problem of ocean acidification. AOA manages to alleviate ocean
acidification but only has a small impact on reducing air temperature. While the simulated changes depend
strongly on the modeling framework and the forcing scenarios, our work supports the conclusion drawn
from many previous studies that CE is not an alternative to mitigation (Lawrence et al., 2018; The Royal
Society, 2009; Vaughan & Lenton, 2011). However, they could be considered as complementary to mitigation
efforts to alleviating the adverse effects of climate change on the ecosystem. Since there are many individual
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CE measures and it might be desirable to combine any number of these measures with mitigation to form
specific portfolios, an assessment of the magnitude and the probability of both intended and unintended
consequences of proposed portfolios should be conducted.

In this study, we limit ourselves to estimating the variance in projected outcomes due to poorly constrained
parameters in UVic. Using a PPE and GP emulation, we demonstrated the significance of parameter uncer-
tainty in the model projected outcomes; that is, their magnitude can be comparable to multimodel ensemble
variance such as in the case of ocean oxygen presented here. Through the use of a PPE, we have demon-
strated the importance of considering probability distributions when comparing outcomes from different CE
scenarios. The standard deviations and skewness of the estimated probability density functions showed that
the use of a single projection or the mean of an ensemble fails to address the likelihood of an outcome and
neglects low probability high-risk events. Therefore, a probabilistic uncertainty analysis such as presented
here could be more valuable to decision makers who need to weigh the benefits of CE measures against their
side effects and their costs.

To summarize our assessment, we ranked the four scenarios considered in terms of their probability of
achieving a desirable goal, for example, limiting the mean global warming since preindustrial times to 2 ◦C
or less and maintaining the saturation state of aragonite to above 1.5. The goal of CE or mitigation is unlikely
to be a single target but a combination of multiple targets including those specific for individual regions.

The distributions of the uncertainty in the six outputs emulated show that they are different for differ-
ent outputs/processes. While only uncertainty is investigated in this work, the PPE and the constructed
emulators allow probabilistic sensitivity analysis to be conducted, providing further insights into the pro-
cesses driving the outcomes. Thus, major contributors to uncertainties can be identified, guiding future
model development efforts and observational or experimental studies, which could constrain uncertain
parameters.

Our methodology demonstrated using UVic could be further develop to tackle uncertainty in more compu-
tationally expensive ESMs. The topic of transferring uncertainty information between models of different
spatial resolutions and/or timescales is relatively new and has gained more attention in the last few years.
There are already several works on extending the emulation method to cope with more computationally
expensive models. For example, Sexton et al. (2019) used statistical emulation to investigate the link between
model errors that develop in the relatively high resolution the HadGEM3 GA4 model (1.875◦ longitude ×
1.25◦ latitude) on a short (5-day) and a longer (5-year) timescales and concluded that the short forecast can
be used to filter out implausible parameter combinations. This can significantly lighten the computational
cost required to explore the parameter space. There are also different approaches such as using multilevel
emulation techniques, which relate the “inexpensive” information from a lower complexity model to the
“expensive” information from a more complex model. The foundation of such techniques can be found
in Kennedy and O'Hagan (2000) or Forrester et al. (2008). Applications of multilevel emulation in climate
science are presented in Williamson et al. (2012) and Tran et al. (2019).

This study is currently limited to global annual mean quantities, which cannot guarantee a sensible distribu-
tion in space and time and are not very meaningful when regional or extreme events are of interest. Average
outputs are also known to hide opposing spatial or temporal effects. Future work is planned to extend the
presented statistical technique to address regional climate. There are examples where dimension reduction
techniques can be employed to reduce the cost of emulating high-dimensional outputs such as the use of
principal components analysis (Holden et al., 2010; Wilkinson, 2010), P-splines (Williamson et al., 2012),
and wavelets (Bayarri et al., 2007). It is also possible to compute representative quantities for predefined
geographical regions and apply the same methodology here.

The parameter uncertainty discussed in this work is only one of the contributions to the overall uncertainty.
The uncertainty in ESM results could originate from structural deficiencies due to our lack of understanding
of the Earth system, the inability to model processes due to the limit on temporal and spatial resolution,
the inadequate observations used to calibrate the models, and the uncertainty in CE forcings. While we
attempted to deal with observation and structural uncertainty by incorporating them into our metrics, this
treatment is far from perfect. Technical difficulties remain an obstacle in addressing the uncertainty in ESM
projections satisfactorily.
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The result obtained in this work, as well as in a previous comparison study (Sonntag et al., 2018), shows
that the outcomes depend heavily on the emission scenario and the specific intensity of CE measures used.
Here, we are using highly idealized scenarios to assess near-maximum effects. Practical realities of deploy-
ment should be taken into account in future comparison works. There is a need to quantify the outcome's
sensitivity to difference forcing/scenarios.

Structural uncertainties due to the underlying assumptions of the model are vital to our ability to infer
real-world probabilities from model outcomes. Multimodel ensembles such as those from GeoMIP (Kravitz
et al., 2011) or CDRMIP (Keller et al., 2018) provide central estimates of potential outcomes under a different
modeling frameworks, illuminating the differences and similarities due to different modeling assumptions
under common forcings. However, such studies do not provide robust insights into the causes. The use of
PPEs such as ours provides information on the distributions, which contain those central estimations and
could identify the underlying processes that lead to structural discrepancies. Ultimately, it is desirable to
combine information from both multi-model ensemble and perturbed parameter ensemble studies to obtain
a better picture of uncertainty in ESM projections.

While the specification of structural uncertainty or model discrepancy is crucial to an uncertainty assess-
ment, this step is not address in this paper due to its complexity. Brynjarsdóttir and O'Hagan (2014) have
shown that neglecting structural uncertainty could lead to bias or overconfidence in predictions and the
inclusion of genuine prior information about model discrepancy could greatly improve model predic-
tion. The difficulties arise when we have to deal with complex model with a very high dimensional input
space and multivariate outputs. Specifying structural error in such cases becomes far less straightforward,
especially when considering components which rely less on fundamental physical laws.

There are also issue of identifiability, that is, whether a discrepancy comes from structural or parametric
uncertainty. The precipitation in our ensemble exhibits a smaller change and a smaller standard deviation
compared to the CMIP5 ensemble. This could mean that our model is incapable of producing the larger
range or that we have not included all important parameters. In this case, we believe that model discrepancy
certainly plays a role. We have perturbed parameters that control SAT and vegetation response to changing
temperature and CO2. While these are not an exhaustive list of parameters, they are likely to be the most
prominent drivers of precipitation. A previous study (Mengis et al., 2015) that perturbed the response of tran-
spiration to CO2 over a broader range than we considered here showed that UVic can cover the CMIP5 range
of precipitation over land but fails to do so for global precipitation change. This is perhaps a consequence of
the simple 2-D energy and moisture balance model of the atmosphere.

The model's inability to cover the specified metric ranges for soil and vegetation carbon could be attributed
to unaccounted for parametric uncertainty, model discrepancy, or indeed, observational uncertainty. Many
processes in the Earth system, such as the biological aspects and the carbon cycle response, are not yet well
constrained by observations. The estimations for the soil and vegetation carbon budgets used are very broad
due to the wide range in observations and model estimations. There is also a need to identify robust mea-
surements, which could be used to constraint the physiological response of vegetation to rising temperature
and CO2 concentrations.

Given these difficulties, we decided to deal solely with parametric uncertainty to avoid misspecifying
structural uncertainty. In future works, multiwave history matching technique (Andrianakis et al., 2015;
Williamson et al., 2016) could be used in conjunction with second or third maximum implausibility (Vernon
et al., 2010) to guard against wrongly rejecting good parameter sets and provide a more robust assessment of
both parametric and structural uncertainty. The work presented will serve as a foundation to further explore
the model uncertainties in UVic.

Appendix A: Emulation and Uncertainty Measures
For a model with input x = (x1, … , xp), where p is the dimension of the input space, a single output 𝑦
can be treated as the value of a scalar function 𝑓 evaluated at x. ESMs are expensive simulators; therefore,
we approximate 𝑓 by a cheaper statistical surrogate model. Since x is uncertain, we can can consider it to
be a random vector X with a probability distribution g(x). Consequently, the output Y = 𝑓 (X) is a random
variable. The uncertainty about the Y can be represented using a GP emulator.
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Y (x) is multivariate normally distributed such that

Y (x) ∼  (m0,V0) (A1)

where m0 and V0 are the prior mean and covariance function, respectively. The prior mean of the GP is given
by:

m0 = hT(x)𝛽, (A2)

where h(·) is a (s × 1) vector of known regression functions with unknown coefficients 𝛽. In this work,
h(x)T = 1, making 𝛽 the unknown overall mean. Other mean functions could be used to express expert belief
about the form of 𝑓 (·).

The prior covariance function is given by:

V0(x, x′) = 𝜎2C(x, x′), (A3)

in which, 𝜎2 is an unknown variance of the GP and C(·, ·; 𝜃) is a positive-definite correlation function (with
unknown correlation length parameters, 𝜃) which decreases as |x − x′| increases. Popular choices of the
covariance structure are the squared exponential, Matérn and exponential functions.

The prior does not depend on the training data but specifies the assumptions we've made about the function
𝑓 (.). Then, the training data from n simulations are incorporated, allowing us to update the prior to the
posterior GP. The predictor is taken to be the mean of the posterior process conditional on 𝜎2, 𝛽 and 𝜃:

m1(x) = hT(x)𝛽 + T(x)A−1(y − H𝛽) (A4)

The variance of the posterior process is:

V1(x, x′) = 𝜎̂2

n − s − 2
[c(x, x′) − T(x)A−1TT(x′) + P(x)(HTA−1H)−1PT(x′)], (A5)

where H is the regression matrix of the training points, H = hT(x), and A is the training points correlation
matrix, A = Ψ(x, x′); T(x) is the correlation vector between x and the training set, that is, (T(x))i = Ψ(x, xi)
and P(x) = hT(x) − T(x)A−1H. The estimated values of 𝜎2 and 𝛽 are indicated as 𝜎̂2 and 𝛽, respectively. A
standard non-informative prior is assumed for 𝛽.

More detailed descriptions of GP emulation can be found in Haylock (1997) and Rasmussen and Williams
(2006).

The goal of uncertainty analysis is then to characterize the distribution of 𝑓 (X) that is induced by the distri-
bution of X. Since Y is a random variable, any summary of Y is also a random variable. For more on random
variables, Sudret (2007). Here we are interested in the mean, M = E[f(X)], and variance, V = Var[f(X)], of the
simulator's uncertainty distribution due to uncertainty about input parameters. Another measure of interest
is the variance in the mean of the uncertainty distribution due to code uncertainty,

We can now approximate 𝑓 (x) by m1(x). Thus, we use E*[.] and Var*[.] to denote the operations of expec-
tation, variance and covariance computed using emulator. The estimates of M and V are now E*[M] and
E*[V] respectively, while code uncertainty in these estimates are Var*[M] and Var*[V]. In this work, we do
not compute Var*[V].

E∗[M] = ∫ m1(x)dg(x) (A6)

Var∗[M] = ∫ ∫ V1(x, x′)dg(x)dg(x′) (A7)

These measures can be evaluated using Monte Carlo computation with pairs of values sampled from g(x).

The mean of V

E∗[V] =

[
∫ m∗(x)2dg(x) −

{
∫ m∗(x)dg(x)

}2
]
+
[
∫ v∗(x, x)dg(x) − ∫ ∫ v∗(x, x′)dg(x)dg(x′)

]
(A8)
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We employ a general approach which make no assumptions about the form of the distribution of the input
g(X), correlation function C(X,X'), and regression function h(X). Full derivation can be found in O'hagan
2011. For different special cases, more computationally efficient methods are available (Haylock1997,
O'hagan2011).

Appendix B: Kernel Density Estimation
Kernel density estimation (KDE) is a statistical tool, which is used to approximate the probability density
function g(·) of a random variable X . Given a sample of independent observations (x1, x2, … , xn) from the
random variable X , the kernel density estimator is as follows:

g∗(x) = 1
nh

n∑
i=1

K
(x − xi

h

)
, (B1)

where K represents the nonnegative kernel function, which is controlled by the bandwidth parameter h > 0.

Each sample point is replaced by a curve, whose shape is determined by the kernel function, centered at
that value. Then, KDE sums over all these curves to compute the value of the density at each point in the
support grid. A region with many observations will yield a large value, while regions with few observations
will result in a low value. The bandwidth of the KDE controls how “smooth” the resulting curve is. We use
a Gaussian kernel but other choices are available. The resulting curve is then normalized so that the area
under it is equal to 1.
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