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StopGap: elastic VMs to enhance server consolidation

Vlad Nitu*,†, Boris Teabe, Leon Fopa, Alain Tchana and Daniel Hagimont

IRIT-ENSEEIHT, Toulouse, France

SUMMARY

Virtualized cloud infrastructures (also known as IaaS platforms) generally rely on a server consolidation 
system to pack virtual machines (VMs) on as few servers as possible. However, an important limitation of 
consolidation is not addressed by such systems. Because the managed VMs may be of various sizes (small, 
medium, large, etc.), VM packing may be obstructed when VMs do not fit available spaces. This 
phenomenon leaves servers with a set of unused resources (‘holes’). It is similar to memory fragmentation, 
a well-known problem in operating system domain. In this paper, we propose a solution which consists in 
resizing VMs so that they can fit with holes. This operation leads to the management of what we call elastic 
VMs and requires cooperation between the application level and the IaaS level, because it impacts manage-
ment at both levels. To this end, we propose a new resource negotiation and allocation model in the IaaS, 
called HRNM. We demonstrate HRNM’s applicability through the implementation of a prototype compati-
ble with two main IaaS managers (OpenStack and OpenNebula). By performing thorough experiments with 
SPECvirt_sc2010 (a reference benchmark for server consolidation), we show that the impact of HRNM on 
customer’s application is negligible. Finally, using Google data center traces, we show an improvement of 
about 62.5% for the traditional consolidation engines. 

KEY WORDS: cloud computing; cooperation; resource management

1. INTRODUCTION

Nowadays, many organizations tend to outsource the management of their physical infrastructure 
to hosting centers, implementing the cloud computing approach. The latter provides two major 
advan-tages for end-users and cloud operators: flexibility and cost efficiency [1]. On the one hand, 
cloud users can quickly increase their hosting capacity without the overhead of setting up a new 
infras-tructure every time. On the other hand, cloud operators can make a profit by building 
largescale datacenters and by sharing their resources between multiple users. Most of the cloud 
platforms fol-low the Infrastructure as a Service (IaaS) model where users subscribe for virtual 
machines (VMs). In this model, two ways are generally proposed to end-users for acquiring 
resources: reserved and on-demand [2]. Reserved resources are allocated for long periods of time 
(typically 1–3 years) and offer consistent service, but come at a significant upfront cost. On-
demand resources are pro-gressively obtained as they become necessary; the user pays only for 
resources used at each time. However, acquiring new VM instances induces instantiation 
overheads. Despite this overhead, on-demand resource provisioning is a commonly adopted 
approach because it allows the user to accurately control its cloud billing.

In such a context, both customers and cloud operators aim at saving money and energy. They 
generally implement resource managers to dynamically adjust the active resources. At the end-user 
level, such a resource manager (hereinafter AppManager) allocates and deallocates VMs according
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Figure 1. Resource wasting due to holes in a public Eolas cluster (a cloud operator) composed of 35 physical
machines (PMs). Holes are aggregated and represented as entire wasted PMs. We can observe that an average

of 6 PMs are misspent every day.

to load fluctuations [3]. Tools like Cloudify [4], Roboconf [5], Amazon Auto-scaling [6], and
WASABi [7] can play that role. At the cloud platform level, the resource manager (hereinafter IaaS-
Manager) relies on VM migration [8] to pack VMs atop as few physical machines (PMs) as possible.
Subsequently, it leaves behind a number of ‘empty’ PMs which may be turned-off. This process is
known as server consolidation [9]. Tools like OpenStack Neat [10], DRR/DPM from VMware [11],
and OpenNebula [12] can play that role.

Although VM consolidation may increase server utilization by about 5–10%, it is difficult to actu-
ally observe server loads greater than 50% for even the most adapted workloads [2, 13, 14]. Because
of various customer needs, VMs have different sizes (e.g., Amazon EC2 [15] offers more than 30
VM sizes) which are often incongruous with the hosting PM’s size. This incongruity obstructs con-
solidation when VMs do not fit available spaces on PMs. The data center will find itself having a set
of PMs which operate with long-term unused resources (hereinafter ’holes’). The multiplication of
such situations raises the issue of PM fragmentation (illustrated in Section 2), which is a source of
significant resource waste in the IaaS. Figure 1 presents the waste observed in a public Eolas [16]
cluster‡ composed of 35 PMs. The datacenter holes are aggregated and represented as entire wasted
PMs. We can observe that an average of six PMs are misspent every day.

Virtual machines which consume a low amount of resource (hereinafter ‘small’ VMs) lead some-
times to a more efficient consolidation compared with VMs which consume a high amount of
resource (‘big’ VMs). In order to take advantage of this fact, we introduce StopGap, an extension
which comes in support to any VM consolidation system. It dynamically replaces (when needed)
‘big’ VMs with multiple ‘small’ VMs (seen as VM split) so that holes are avoided. StopGap imposes
a novel VM management system that deals with elastic VMs (i.e., VMs whose sizes can vary dur-
ing execution). However, current IaaS managers handle only VMs whose sizes are fixed during
execution, thus we need to extend the traditional IaaS management model. To this end, we intro-
duce a novel management model called Hybrid Resource Negotiation Model (HRNM), detailed in
Section 4.

The main contributions of this article are the following:

1. We propose HRNM, a new resource allocation model for the cloud.
2. We propose StopGap, an extension which improves any VM consolidation system.
3. We present a prototype of our model built atop two reference IaaSManager systems (Open-

Stack [17] and OpenNebula [12]). We demonstrate its applicability with SPECvirt_sc2010
[18], a suite of reference benchmarks.

‡Eolas is our cloud computing partner.



4. We show that StopGap improves the OpenStack consolidation engine by about 62.5%.

5. We show that our solution's overhead is, at worst, equivalent to the overhead of First Fit

Decreasing algorithms [19] underlying the majority of consolidation systems.

The rest of the paper is organized as follows. In Section 2, we introduce some notations, we 

motivate our new resource management policy, and we present its central idea. Section 3 defines 

the application type on which we tested our model. Section 4 presents in detail HRNM and its 

application to our reference benchmark. Section 5 presents StopGap while Section 6 evaluates both 

its impact and benefits. The paper ends with the presentation of related works in Section 7 and our 

conclusions in Section 9. 

2. MOTIVATIONS AND MAIN IDEA

2.1. Not ations and definitions 

A data center is potentially wasting resources at a given time t if the following assertion is verified: 

Assertion 1 

where 

3k s.t.Vx E {CPU,mem ory, bandwidth}, 

m� n 

L bookedx(VMj , Pk) � L freex(Pi)
j=l i=l,i#k 

: total number of physical machines in the data center 

: VM number j 

: PM numberk 

m pk : total number of VMs on Pk 

bookedx (VMj , Pk) : the amount ofresource oftypex booked by VM1 on Pk 

freex (Pz) : the amount of resource of type x which is unbooked on Pz 

(1) 

In other words, a data center is wasting resources when there is at least one PM whose sum of 

booked resources by its VMs can be provided by the sum of the other PMs' holes. Figure 2 presents 

two states (top and bottom) of a data center with three PMs. According to our definition, in the first 
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Figure 2. Illustration of resource waste in a data center: two states of the same data center are presented 

(a and b). VM, virtual machine. [Colour figure can be viewed at wileyonlinelibrary.com] 



state, the data center wastes resources (k may be 1, 2 or 3). In the second case, we consider that the
data center does not waste resources because Assertion 1 is not verified for CPU and memory.

2.2. Motivations

Resource waste is a crucial issue because of the tremendous energy consumed by today’s data cen-
ters. Addressing this issue is beneficial on the one hand to cloud operators (about 23% of the total
amortized costs of the cloud [20]). On the other hand, it is environmentally beneficial for the planet,
as argued by Microsoft [21] (which proposes the 10 best practices to move in the right direction).
Several research have investigated this issue, and the large majority of them [22, 23] rely on VM
consolidation. The latter consists in dynamically rearranging (via live migration) VMs atop the min-
imum number of PMs. Thus, empty PMs are suspended (e.g., in sleep mode) or switched to a low
power mode for energy saving.

Even if VM consolidation has proven its efficiency, it is not perfect for two main reasons: (i) VM
consolidation is an nondeterministic polynomial time (NP)-hard problem; and (ii) in some situations,
VM relocation is not possible even if Assertion 1 is verified. For illustration, let us consider our data
center use case introduced in the previous section. We focus on the first state (Figure 2(a)) where
resources are potentially wasted. As mentioned in the previous section, if we aggregate the P2 and
P3 holes, we are able to provide the resources needed by all VMs which run on P1. Therefore, one
can think that by applying VM consolidation to this use case, P1 could be freed.

Assertion 2: The efficiency of any VM consolidation algorithm depends on two key parameters:
VM sizes and hole sizes.

Returning to our first data center state (Figure 2(a)), we may consider two VM configurations which
consume the same amount of resource on P1:

� In Figure 3(a), we consider two identical ‘small’ VMs (VM1 and VM2). Each of them con-
sumes 30% CPU, 35% memory, and 2.5% bandwidth from P1. In this case, VM consolidation
is able to migrate VM1 to P2 and VM2 to P3. At the end, P1 may be turned-off (Figure 3(b)).
� In Figure 3(c) we consider that P1 runs a single ‘big’ VM (VM 01). VM consolidation is no

longer efficient because neither P2 nor P3 is able to host VM 01. It cannot fit in the available
holes.

Such situations are promoted in a data center by the mismatch between VM sizes and holes. As
presented in Section 1, Figure 1 shows that this issue is present in a real data center. In this paper
we propose a solution which addresses this problem.

2.3. Basic idea

In the previous section, we exposed that the regular consolidation is difficult for ‘big’ VMs because
they require big holes. A solution to this limitation could be to aggregate the holes using a distributed
OS. However, the lessons learned from distributed kernels (such as Amoeba [24]) show that the
reliability of these solutions is problematic. In this paper, we opt for an alternative approach which
relies on two assumptions.

� (A1) the vertical scaling capability of VMs: this is the virtualization system’s capability to
resize a VM (add/remove resources) at runtime. For instance, Xen and VMware (two widely
used virtualization systems) provide this feature.
� (A2) the distributed behavior of end-user applications: this is an application’s capability to run

atop a changeable number of VMs (horizontal scaling). Such applications are called elastic
applications. They include the large majority of applications deployed within the cloud (e.g.,
internet services, MapReduce, etc.). For illustration, we focus in this paper on applications
which follow the master–slave pattern.

Relying on these two assumptions, we propose a cooperative resource management system in
which the end-user allows the cloud manager to dynamically resize (vertical/horizontal scaling) his
VMs so that a ‘big’ VM can be replaced by multiple small VMs without Service Level Agreement
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Figure 3. The efficiency of any virtual machine (VM) consolidation algorithm depends on two key parame
ters: VM sizes and hole sizes. From state (a), there is a possible VM consolidation which releases one PM; 
it is evidenced by the state transition (a)->(b). The consolidation is successful because of small VM sizes. 
In contrast, from state (c), VM consolidation is not possible because VMs are too big. [Colour figure can be 

viewed at wileyonlinelibrary.com] 

(SIA) violation. For illustration, we apply our solution to the 'big' VM case in Figure 3(c). Firstly, 

we instantiate a new VM (VM 1) on P1 • Its size will be half of the 'big' VM size. Secondly, we scale 

down the 'big' VM (vertical scaling) to half of its size, resulting VM2. Finally, we end up with the

case of Figure 3(a) having two identical 'small' VMs.

Virtual machine resizing is not a common practice in nowadays cloud. Therefore, we propose a 

novel resource allocation and management mode! for the cloud. Before describing this model, we 

first present an overview of the master-slave pattern, the application type considered in our solution. 

3. MULTI-TIER MASTER-SLAVE APPLICATIONS

As mentioned earlier, our solution is suitable for Multi-tier master-slave applications (hereinafter 

MTMSA). lt is important to specify that MTMSA is one of the most prevalent architecture among 

Internet services. For instance, most applications from SPECvirt_sc2010 [18] and CloudSuite 

[25], two reference benchmarks for cloud platforms, follow this pattern. In this application type 

(Figure 4), a tier is composed of several replica (also called slaves) which al! play the same role (e.g., 

web server, application server, and database). Each replica is executed by a single VM. In front of 

this set of slaves, lays a master VM, responsible for distributing requests to the slaves. The master 

is generally called loadbalancer because it implements a load balancing policy. 

The main MTMSA advantage (which justifies its wide adoption) is the high flexibility of a tier 

(i.e., add/remove VMs according to the workload). After any change in a tier structure, the applica

tion has to be reconfigured. This process is usually automated by an autonomie-manager component 

(i.e., the AppManager) deployed with the application. The AppManager is provided either by 

the Cloud (e.g., Amazon Auto-Scaling service), or by the customer (e.g., using an orchestration 
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Figure 4. The architecture of an Multi-tier master-slave applications. VM, virtual machine. [Colour figure 
can be viewed at wileyonlinelibrary.com] 

system like Cloudify [4] or Roboconf [5]). In this paper, we assume that the AppM anager is 
provided by the cloud. Generally, an AppM anager is responsible for: 

• detecting a tier overload/underload and deciding how many VMs to add/remove (by sending
instantiation/termination requests to the IaaSManager).

• invoking the loadbalancer reconfiguration in order to take into account a VM's
arrival/departure.

4. A HYBRID RESOURCE NEGOTIATION MODEL

This paper improves VM consolidation thanks to the basic idea presented in Section 2.3. Our solu
tion is complementary to any VM consolidation system. It requires a real collaboration between 

the AppManager (already provided by MTMSA) and the laaSManager. This section presents the 
cooperative resource management mode!, which we propose. It can be considered from different 
perspectives: an extension of a PaaS or a hybrid laaS-PaaS mode!. In this paper, we consider the 
latter case because it is the most general one. 

4.1. Description of the model 

In nowadays clouds, the resource negotiation mode! (between the customer and the provider) is 
based on fixed size VMs. We call it: the VM Granularity Resource Negotiation Model (hereinafter 
VGRNM). Figure 6 summarizes this model and illustrates its limitation in the perspective of VM 
consolidation. For instance, the sum of unused resources on PM_2 and PM_3 is greater than the 
needs of the large VM hosted on PM_ 4, but no consolidation system could avoid this waste. 

Our model overcomes these limitations. To this end, it allows the laaSManager to change both 
the number and the size of VMs, feature which is not provided by VGRNM. Thus, in addition to 
VGRNM, we need to define a new resource management mode! which allows resource negotia
tion at the granularity of an application tier. We call it: the Tier Granularity Resource Negotiation 
Mode! (hereinafter TGRNM). The HRNM (hybrid mode!) introduced earlier represents the aggrega
tion between the traditional model (VGRNM) and our new model (TGRNM). Figure 5 graphically 
represents the negotiation phases of HRNM. They are summarized as follows: 

• (1) Using VGRNM, the customer deploys and starts his AppManager, which exposes a web
service. Through it, the AppManager is informed about any resource changes (e.g., after a VM
resize). Finally, the customer registers the AppManager endpoint with the laaSManager.

• (2) The customer enters in what we call the 'subscription phase'. An application subscription
is formalized as follows: A = {ti(#cpu,#mem,#io)an d s trategyll � i � n}, where A
represents a request to the provider (see Figure 5 left), n is the total number of tiers, ti represents
the i th tier, (#cpu,#mem,#io) is the tier size, and strategy represents the allocation mode!

(TGRNM or VGRNM).
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Figure 6. The traditional functioning of a cloud platform. The resource negotiation model is based on fixed 
size virtual machines (VMs) (small, medium, large, etc.) requested by the end-user. The cloud operator has 
no information about the application type (its architecture) deployed within VMs. Furthermore, any modi
fication of the application is initiated by the AppManager (VM addition or removal) according to workload 
fluctuations. This inflexibility is at the heart of VM consolidation limitations: see resource waste on physical 

machine (PM)_2 and PM_3. [Colour figure can be viewed at wileyonlinelibrary.com] 

• (3) From these information, the laaSManager computes and starts the number of VMs needed

to satisfy each tier. The first advantage (resource saving) of our solution can be observed during

this step. lndeed, VM instantiation implies VM placement: which PMs will host instantiated

VMs. An efficient VM placement algorithm avoids resource waste. In comparison with the

traditional model in which VM sizes are constant and chosen by end-users, our model avoids

PM fragmentation (the multiplication of holes). For instance, PM_2 and PM_3 in Figure 6 (the
traditional model) have unused resources which would have been filled in our model (as shown

in Figure 5 right).

• ( 4) When VMs are ready, the laaSManager informs the AppManager about the number and

the size of VMs for each tier so that the application can be configured accordingly (e.g., load

balancing weights).

• (5) The AppManager informs back the laaSManager when the application is ready. Resource

changes are envisioned only after this notification.

As mentioned earlier, the traditional model (VGRNM) is still available in our solution because it 

could be suitable for some tiers. For instance, the MTMSA entry point (i.e., loadbalancer) needs a 

static well-known 1P address, thus a single VM. More generally, our solution is highly flexible in 

the sense that it is even possible to organize a tier in two groups so that each group uses its own 

allocation model (Section 6 presents a use case). The next section presents an application of our 

model to a well-known set of cloud applications. 

4.2. Application of the model 

SPECvirt_sc2010 [18) is a reference benchmark which bas been used for evaluating the perfor

mance of the most common cloud platforms. lt is composed of three main workloads which 

are the patched versions of more specific benchmarks: SPECweb2005 [26) (web application), 
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Figure 7. Architecture of E_SPECvirt. [Co Jour figure can be viewed at wileyonlinelibrary.com] 

Table 1. VGRNM and TGRNM: which model is appropriate to each 
E_SPECvirt tier? 

E_SPECweb 

VTGRNM HaProxy, InfraServer 
TGRNM Web 

E_SPECjAppserver E_SPECmail 

HaProxy, DAS 
Glassfish, MySQL 

Front, Mupdate 
Imapd 

SPECjAppserver2004 [27) (JEE application), and SPECmail2008 [28) (mail application). 

SPECvirt_sc2010 also provides a test hamess driver to run, monitor, and validate bench

mark results. We relied on SPEC-virt_sc2010 in order to target the most popular cloud 

applications. For the needs of this paper, we enhanced SPEC-virt_sc2010 by implementing 

the elasticity of each tier. This new version is called E_SPECvirt, and it is composed of 

E_SPECweb2005, E_SPECjAppserver2004, and E_SPECmail-2008. Figure 7 presents the new 

architecture. E_SPECweb2005 comprises one or more Apache [29) web servers with loadbalanc

ing assured by HaProxy[30]. E_SPECjAppserver2004 is composed of a Glassfish [31) cluster with 
loadbalancing archived by both HaProxy (for HITP requests) and Domain Administration Server 
(DAS) registry (for Internet Inter-Orb Protocol (IIOP) requests). HaProxy also provides loadbal
ancing for MySQL databases. To ensure consistency, all MySQL servers leverage a master-master 

replication [32). Update requests received by a MySQL server are replicated to the others in a cyclic 
way. E_SPECmail2008 is achieved by Cyrus IMAP [33). The latter provides three software types: 
a loadbalancer (called front), a database server, which contains information about the location of all 
mailboxes (called mupdate), and multiple imapd slaves which serve IMAP requests. 

Table I shows which HRNM submodel is suitable for each E_SPECvirt tier. VGRNM is used 
both for loadbalancers and for some software such as InfraServer, DAS, and Mupdate, which need 
to be known in advance throughout a unique static IP address (thus a single VM). Ali other tiers are 

provisioned using TGRNM. 

5. IMPLEMENTATION OF THE MODEL

In the cloud, a customer can request resources both at application subscription time or at runtime. 
There are two types of cloud actions at runtime: 

• (Ci ) the adjustment of both the number and the size of VMs while keeping the corresponding
tier to the same size.

• (C2) the adjustment of a tier size in response to workload variation.

C1 operation types are initiated by the laaSManager while C2 operation types are initiated by the 
AppManager. The 'subscription phase' can be seen as a C2 operation: increase the tier size start-



ing from zero. A runtime cloud action is taken only if the application performance insured by the
provider (i.e., the SLA) is respected. The procedure used to ensure the SLA is presented in the
succeeding text.

5.1. Service Level Agreement enforcement during virtual machine split

One of the main goals of a cloud operator is to save resources. Thus, every time Assertion 1 is
verified, it considers that there should be a better consolidation. In this respect, the IaaSManager
tries to restructure application tiers by replacing ‘big’ VMs with ‘smaller’ VMs (VM split). The
main objective of this operation is to improve VM consolidation (free as much PMs as possible).
On the other hand, the customer is rather interested in the performance of its application. There are
cases where even if Assertion 1 is verified, the provider cannot split a VM. These circumstances are
promoted by two main factors. First, there is often a non-linear dependence between the performance
and the amount of resource. For instance, a 2 GB VM may not perform two times better than a 1 GB
VM. Second, there is always an overhead introduced by VM’s operating system (OS) footprint. For
an accurate VM split, we need to find a metric which exposes well the application performance. A
suitable choice for our MTMSA seems to be the maximum application throughput (e.g., requests/sec
for a web server). Based on this metric, we can safely split the VM without affecting the customer.
For example, a customer will be satisfied with both, a single VM capable of 200 req/s or 2 VMs, each
one capable of 100 req/s, considering that the streams are aggregated by the loadbalancer. To convert
from resources to throughput, we introduce a function called s2ttier (size to throughput for a given
tier). It takes as input a hole (#cpu,#mem,#io) and returns the throughput that a corresponding VM
will deliver. The function is provided either by the customer§ or by the provider. If the customer does
not have such information, the provider (IaaSManager) computes the function by relying on Quasar
[2]. The latter dynamically determines application throughput based on performance monitoring
counters and collaborative filtering techniques. The estimation of s2ttier is beyond the scope of
this paper.

Figure 8. The StopGap algorithm. PM, physical machine; VM, virtual machine. [Colour figure can be
viewed at wileyonlinelibrary.com]

§Customers may have such information because they need to predict how their applications will perform in a given VM.



5.2. Resource management of type C1 

While HRNM can improve VMs' resource assignment at application subscription time, holes may 
also show up during runtime (e.g., a VM termination/migration). In order to address this issue, 
we introduce a VM consolidation extension called StopGap. Figure 8 presents in pseudo code the 
StopGap algorithm. lt is complementary to the consolidation system which already runs within the 
laaS. The only thing to do is to immediately invoke it after each VM consolidation round. For 
simplicity reasons, we are not presenting the pseudo code related to synchronization problems. In 

the real code version, we used locks to avoid holes contention (Section 6.1). Figure 9 illustrates the 

algorithm on a simple use case: the restructuring of the web server tier in Specvirt_sc2010. The 
StopGap algorithm is interpreted as follows. The reader can follow in parallel the illustration in 
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Figure 9. Illustration of StopGap on E_SPECweb2005. PM, physical machine; VM, virtual machine. 
[Colour figure can be viewed at wileyonlinelibrary.com] 

1 // decrease tierName by � 
281 ={PMs which run a VM belonging to the tierName} 
3thr a = s2ttier Na nie ( �) 
4decLabel: 
sLet v be "the smallest VM of tierName in S2" 
6thr., := s2tticrName(sizeOJ(v)) 
1if(thr,,=thra){ 
8 record v for terminatioo 
9}else if(thrv < thra){

10 record v for terminatioo 
Il thr a := thr a - thr,, 

12 remove P from S2 
13 goto decLabel 
14}else{ 
15 shrink v until s2tticrName(sizeO J(v)) == thr,, - ta 
16} 
11notify changes to the AppMaoager 
1swhen(ack is received ){ 
19 terminale recorded VMs 
20 free empty PMs 
21} 

Figure 10. Tier size decrease algorithm. PM, physical machine; VM, virtual machine. [Colour figure can be 
viewed at wileyonlinelibrary.com] 



Figure 11. Tier size increase algorithm. PM, physical machine; VM, virtual machine. [Colour figure can be
viewed at wileyonlinelibrary.com]

Figure 9: top-down. First, we choose the least charged PM (line 5) (noted P ). If the data center holes
are unable to provide the necessary throughput for P’s VMs (line 7), no application restructuring can
be done without performance loss. Otherwise, we take a VM v from P (line 9). We iterate over the
remaining PMs from S1 (line 12), and we start to reconstruct v in the holes(lines 20-21). If a VM of
the same tier exists on Pi , we prefer to enlarge it instead of instantiating a new VM. Each time, we
subtract the new VM’s throughput from the throughput of v (line 21). When we find a hole which
can provide the remaining throughput, we migrate v (lines 15–18). Notice that the reconfiguration
of the application during VM reconstruction is only performed once all generated VMs are ready.
By doing so, there is no wait time related to VM instantiation.

5.3. Resource management of type C2

Because of workload variations, the AppManager may request a change in a tier’s capacity/size.
Figures 10 and 11 present in pseudo code the algorithms to shrink/enlarge a tier. It works as follows.
The AppManager communicates to the IaaSManager the desired tier variation (�). Concerning the
tier downscale (Figure 10), the IaaSManager prioritizes VM termination (line 8, 10) rather than
shrinking a group of VMs (line 15). Thus, the overhead caused by VM’s OS footprint is minimized.
Regarding the tier enlargement (Figure 11), the priority is placed on resizing (vertical up-scaling)
the existing VMs. If at the end, the request is not completely satisfied, a set of VMs are instantiated
according to available holes (line 6). If all holes are filled up and the request is still not completely
satisfied, PMs are switched-on, and new VMs are instantiated atop them (line 10–11). The IaaS-
Manager always informs back the AppManager about the operations it has performed (i.e., new size
for old VMs, new VMs and their size, or terminated VMs). Subsequently, the AppManager answers
with an ACK message. The IaaSManager only terminates VMs upon receiving that message. This
prevents the termination of a VM which is still servicing requests.

6. EVALUATIONS

In order to test our approach, we performed two evaluation types. The first type evaluates our solu-
tion impact on customer applications, provided by SPECvirt_sc2010 [18] (presented in Section 4.2).
The second evaluation type focuses on VM consolidation improvements.

6.1. Experimental environment

The first type experiments were performed using a prototype implemented within our private IaaS.
It is composed of 7 HP Compaq Elite 8300, connected with a 1 Gbps switch. Each node is equipped
with an Intel Core i7-3770 3.4GHz and 8 GB RAM. One node is dedicated to management systems
(IaaSManager, NFS server, and additional networking services: Domain Name System, Dynamic



Host Configuration Protocol). The others are used as resource pool. To show the generic facet of our 

solution, the prototypes have been implemented for two reference laaSManger systems: OpenStack 

[17) and OpenNebula [12). Both systems are virtualized with Xen 4.2.0. The integration of our solu

tion with these systems is straightforward. We have implemented the resource negotiation mode! 

on top of both OpenStack and OpenNebula public APis. Concerning VM consolidation, OpenStack 

relies on OpenStack Neat [ 10). It is an external and extensible framework which is provided with 

a default consolidation system. Our solution requires a minor extension to OpenStack Neat. We 

only extended its 'global manager' component, which implements the consolidation algorithm. Two 

modifications were necessary: one Line of Code (LoC) at the end of the consolidation algorithm to 

invoke StopGap (Figure 8), and about 5 LoCs for locking PMs whose VMs are subject to resize. 

This prototype is used to evaluate the impact of our resource allocation mode!. Concerning Open

Nebula, it does not implement any dynamic VM consolidation module. However, it is built so that 

the integration of a consolidation engine is elementary. In OpenNebula, the single component which 

we patched is the 'Scheduler'. 

6.2. Impact on end-user's applications 

In our solution, two new operation types can impact the performance of end-user applications: 

• Vertical and horizontal scaling. By leveraging HRNM, the laaSManager may combine verti

cal scaling (VM size adjustment) and horizontal scaling (add/remove a VM) to dynamically

restructure an application tier. These operations are the basis for both VM split and VM

enlargement.

• Application reconfiguration: VM spliting and enlargement require the adapta

tion/reconfiguration of the application level (e.g., weight adjustment).

6.2.1. Impact of vertical and horizontal scaling. The influence of each operation is evaluated sepa

rately. Figure 12 presents the experiment results. In Figure 12(a), we can note that the time taken to 

instantiate or terminale VMs is quasi constant regardless the number of VMs (about 20 s to instanti

ate and 2 s to terminate). This is due to the parallel VM instantiation/termination. Notice that neither 

VM instantiation nor VM termination impact applications which run on the same machine because 

these operations do not require high amount of resource for completion. 

Concerning vertical scaling, we evaluated addition/removal of each resource type individually. 

We evaluated the time taken to make added resources (respectively removed resources) available 

(respectively unavailable) inside the VM. As reported in Figure 12(b), vCPU addition or removal 

time increases almost linearly with the number of vCPUs. This is explained by the fact that any 

adjustment in the number of vCPUs triggers the sequential execution of a set of watchers (according 

to the number of vCPUs). Notice that vCPU removal costs about 20 times more than addition. 

Similar results have been reported for the main memory. Its shrinking corresponds to the time 

taken by the VM to free memory pages. This operation is triggered by a balloon driver which resides 

within the VM. Concerning memory addition, it corresponds to the time taken by the hypervisor to 
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Table II. E_SPECvirt AppManagers reconfiguration algorithms. 

1 // AppServer: VM addition 
2Update haproxy.cfg and reload it 
3Update glassfish .env and reload it 
4 Start a new Glassfish node agent 
5 Start a new Glassfish server 
6// AppServer: VM removal 
7Update haproxy.cfg and reload it 
sUpdate glassfish . env and reload it 
9Update domain.xml and reload DAS 

1oStop Glassfish server 
11Stop Gla�sfish node agent 
12// AppServer: VM resize 
13Update haproxy.cfg and reload it 
14Update glassfish . env and reload it 
15 // web: VM addition/removal/ resize 
16Update haproxy.cfg and reload it 
11 //mail: VM addition 
18Update the front server 

1 Il DB: VM addition 
2 Start MySQL with specdb database 
3D8 pre-sync 
4Lock ail the active DBs 
sExecute the final rsync 
6Unlock the D8s 
1Update the circular relationship of MySQL slaves 
8Update haproxy.cfg and reload it 
9//DB: VM removal 

10Update haproxy. cfg and reload it 
t 1Update MySQL slaves relationship 
12//DB: VM resize 
13Update haproxy.cfg and reload it 
14//mail:VM removal 
1sMigrate mailboxes from the removed server 
16Update the front server 
11 Il mail: VM resiz.e 
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both acquire machine memory pages (which is straightforward in the context of our solution because
it uses holes) and update the memory page list used by the target VM. Last but not least, bandwidth
adjustment always implies a constant time. Because Xen does not manage bandwidth allocation, we
relied on tc [34], a Linux tool which quickly takes into account the bandwidth adjustment. Every
time a packet is sent or received, tc checks if the bandwidth limit is reached. Thus, a bandwidth
adjustment is immediately taken into account.

6.2.2. Impact of dynamic reconfigurations. The second set of experiments evaluate both the appli-
cation reconfiguration time and the consequences of this operation. The adopted impact indicator is
the number of lost requests during the reconfiguration (noted lr). For each experiment, the work-
load is chosen so that VMs are saturated. Table II presents in a pseudo-code the reconfiguration
algorithms we have implemented for each tier. Figures 13 and 14 report the results of this second set
of experiments, interpreted as follows. The number of lr is shown atop each pair of histogram bars.

� Application server tier (Figure 13(a)). Except the integration of a new VM, which takes some
time (the first two bars), the reconfiguration of the application server tier is straightforward.
During this operation, no request is lost. Our solution does not incur major issues for this tier.
� Database tier (Figure 13(b)). A new database integration within the application is relatively

expensive (the first two bars). During this operation, the database tier is out of service for a few
moments because of synchronization reasons. This is the only situation which leads to some
lost requests. Therefore, our solution could become negative for E_SPECj-Appserver2004 if
the addition of new MySQL VMs occurs frequently. This problem does not appear when
removing or vertically scaling a database VM because no synchronization is needed. In these
cases, only the loadbalancer needs to be reconfigured.
� Web tier (Figure 13(c)). The web tier reconfiguration is straightforward because it only requires

a loadbalancer update. Our solution does not impact this tier.
� Mail tier (Figure 14). The time taken at the application level to reconfigure the mail tier (Cyrus

IMAP) is almost the same regardless the reconfiguration option (Figure 14 bottom). In any
case, the same number of mail boxes needs to be migrated. Because of the mailbox live migra-
tion implemented by Cyrus, no request is lost during the reconfiguration. The migration time
increases almost linearly with the number of migrated mailboxes (Figure 14 top).

Impact of multiple reconfigurations. We tend to conclude from the aforementioned experiments
that the impact of a single reconfiguration is almost negligible. However, the multiplication of these
actions on a group of VMs belonging to the same application could be harmful. Figure 15 presents
the normalized performance of each specific benchmark when the number of reconfiguration oper-

Figure 15. Impact of performing several reconfiguration operations. Both E_SPECmail and E_SPECweb
are relatively little impacted by the multiplication of reconfiguration operations. In contrast,
E_SPECjAppserver’s performance starts to degenerate after about 20 reconfigurations. The degradation

comes from the synchronization of the data base tier, which requires a little downtime of the application.



ations varies. We can note that both E_SPECmail and E_SPECweb are relatively little impacted by
the multiplication of these operations. This is not the case for E_SPECjAppserver whose perfor-
mance starts to degenerate after about 20 reconfigurations. The number of additions of new database
VMs increases. To minimize this impact, the algorithm presented in Figure 8 has been improved for
fairness. The reconfiguration operations which are performed in order to improve VM consolida-
tion are fairly distributed among cloud applications. Thus, PMs whose VMs are subject to split are
fairly chosen.

6.2.3. Synthesis. In comparison with horizontal scaling, vertical scaling globally provides better
results regarding reconfiguration duration and performance degradation. Several reasons explained
that. First of all, reconfiguration operations required to be performed at application level after a
vertical scaling are most of the time less complex than those needed after an horizontal scaling (see
algorithms in Table II). Secondly, resource (un)plug-in is faster (in mere microseconds) than VM
instantiation/termination (in mere seconds). These two options are showcased in our solution.

6.3. Resource saving and scalability

Resource saving The main goal of our contribution is resource saving. For this evaluation type, we
rely on Google data center traces obtained from [35]. Before presenting the results, let us firstly
introduce how we interpreted Google traces. They represent the execution of thousands of jobs
monitored during 29 days. Each job is composed of several tasks, and every task runs within a
container. For each container, we know the amount of resource used by the job and the PM on which
it is executing. We considered a job as a customer application where its number of tasks correspond
to the number of tiers. Therefore, a container is seen as the VM allocated during the first resource
allocation request. The total number of PMs involved in these traces is 12,583, organized into eleven
types. For readability, we only present in this paper the analysis of a subset of these traces. It includes
up to 7669 PMs and 82,531 VMs. Figure 16 summarizes its content. We evaluated how the StopGap
extension may improve OpenStack Neat (OSN for short). The number of freed PMs is compared
when OSN runs in three situations: alone (noted ’OSN’), in combination with our solution when
every second tier leverages StopGap (noted ’OSN+(1/2)StopGap’), and in combination with our
solution when all tiers leverage StopGap (noted ’OSN+StopGap’). Figure 16 (left plot) presents
the results of these experiments. We can notice that both OSN+ (1/2)StopGap and OSN+StopGap
perform better than the standard consolidation system (i.e., OSN). In the case of OSN+StopGap,
OSN is enhanced with up to 62.5%.
Scalability StopGap complexity depends on the efficiency of the original consolidation algorithm
employed by the data center. The worst case complexity corresponds to the use of StopGap as
the only consolidation engine. Although this is not its main goal, StopGap can play that role in
the absence of a consolidation system. In this case, its complexity is the same as most First Fit

Figure 16. (top) The subset of Google data center traces we used. (bottom) Resource saving on Google traces
when our solution is used. OSN, OpenStack Neat; PM, physical machine; VM, virtual machine. [Colour

figure can be viewed at wileyonlinelibrary.com]



Figure 17. Overhead of our solution. OSN, OpenStack Neat; PM, physical machine. [Colour figure can be
viewed at wileyonlinelibrary.com]

Decreasing bin-packing algorithms [19]. The consolidation algorithm used by OSN has the com-
plexity O.n �m/, where n is the number of PMs and m is the number of VMs to be relocated. We
have also relied on Google traces to evaluate and compare both StopGap and OSN scalability. We
considered two extreme datacenter states (S1 and S2) which respectively represent the highest and
the lowest OSN efficiency. From Figure 16 left, we choose S1 and S2 to respectively be the times-
tamps 450 and 200. For each situation, we executed three consolidation algorithms (OSN, StopGap,
and OSN+StopGap) on different subsets from the original set of PMs. Normalized execution times
(against OSN) are plotted in Figure 17. In the most efficient case (S1), we can notice that both Stop-
Gap and OSN+StopGap are close to OSN. Conversely, both perform better than OSN when it is not
efficient (S2). In this case, StopGap as well as OSN+StopGap does the entire consolidation effort.
The minimum value noticed in Figure 17(top) represents another observation: OSN has the highest
efficiency when it operates on 5000 PMs.

7. RELATED WORK

Memory footprint improvements. Significant research has been devoted to improve workload con-
solidation in data centers [36]. Some studies have investigated VM memory footprint reduction to
increase VM consolidation ratio. Among these, memory compression and memory over commit-
ment [37, 38] are promising. In the same vein, [39] extends the VM ballooning technique to software
for increasing the density of software colocation in the same VM. Xen offers the so called ‘stub
domain’¶. This is a lightweight VM which requires limited memory (about 32 MB) for its execution.
Uncoordinated Policies. Many research projects focus on improving resource management on client
side [40–43]. They aim at improving the workload prediction and the allocation of VMs for repli-
cation. On the provider side, research mainly focuses on (i) size of resource slices, that is, provided
VM size; or (ii) VM placement, that is, VM allocation and migration across physical servers to
improve infrastructure utilization ratio. Various algorithms are proposed to solve the VM packing
problem [22, 23]. They take into account various factors such as real resource usage, VM loads,
etc. However, in a dataceter, the resource demands of a VM are not fixed. Thus, several authors
propose heuristics which address the dynamicity of this problem. Beloglazov et al. [44] propose an
algorithm which take consolidation decisions based on a minimum and a maximum PM utilization

¶http://wiki.xen.org/wiki/StubDom.



threshold. Because live VM migration is a costly operation, Murtazaev et al. propose Sercon [45],
a consolidation algorithm that minimize not only the number of active PMs but also the number of
VM migrations. Further, the state-of-the-art algorithms are leveraged in order to build dynamic con-
solidation systems. For example, Snooze [46] is an open-source consolidation system build on top of
Sercon. Snooze implements a decentralized resource management on three layers: local controllers
on each PM, group managers which survey a set of local controllers and a group leader among the
group managers. However, the previous solutions operate independently either on the client side or
the provider side. For this reason, their potential effectiveness may be narrowed.
Cooperative Policies. Authors in [47] describe a model to coordinate different resource manage-
ment policies from both cloud actors’ point of views. The proposed approach allows the customer
to specify his resource management constraints, including computing capacity, load thresholds for
each host and for each subnet before an allocation of a new VM, etc. The authors also describe
a set of affinity rules for imposing VM collocation in the IaaS, which is a form of knowledge
sharing. The authors have asserted that this model allows an efficient allocation of services on
virtualized resources. This work is a first step in the direction of coordinated policies. Nguyen Van et
al. [48] describe research works closely-related to ours. The authors propose an autonomic resource
management system to deal with the requirements of dynamic VMs provisioning and placement.
They take both application level SLA and resource cost into account, and support various applica-
tion types and workloads. Globally, the authors clearly separate two resource management levels:
Local Decision Modules and the Global Decision Module (GDM). The two are respectively sim-
ilar to our AppManager and IaaSManager. These two decision modules work cooperatively: the
Local Decision Module makes requests to the GDM to allocate and deallocate VMs, the GDM
may request back changes to allocated virtual machines. The results reported in [48] are only based
on simulations.

Christina Delimitrou et al. [2] presents Quasar, a non-virtualized cluster management solution
which adopts an approach philosophically close to our. It asserts that the customers are not able to
correctly estimate the amount of resource needed by their applications to run efficiently. The cus-
tomers are allowed to express their needs in terms of Quality-of-Service (QoS) constraints, instead
of low level resource requirements. The management system will allocate the appropriate amount
of resource which ensures the requested QoS. Like our solution, knowledge about applications and
their expected QoS is shipped to the cloud management system. This cooperation enables a smarter
resource management. Contrary to our solution, Quasar manages non-virtualized clusters and does
not address any dynamic consolidation issues.
Elastic workloads. Zhenhua Guo et al. [49] proposes a mechanism to split map-reduce tasks for
loadbalancing reasons. Because this application type may also be split, it could be included (along
with the MTMSA) in the list of suitable applications for our model. Middleboxes represent an
important obstacle in the scalability of web applications. In order to address this limitation, Shriram
Rajagopalan et al. [50] come up with a framework capable of splitting the middlebox VMs (e.g.,
loadbalancers, firewalls, and protocol accelerators). Consequently, the entry point of an application
(i.e., the loadbalancer) may now be distributed over multiple VMs. This work may exempt us from
the need of the traditional model because the entry point of an MTMSA application could now be
negotiated at the granularity of a tier (TGRNM).

8. LIMITATIONS AND FUTURE WORK

Our solution is effective only with systems, which consolidate VMs based on booked resources.
However, there are also systems which take consolidation decisions based on workload resource
utilization. In this latter case, the consolidation system try to predict the workload behavior and may
deliberately let holes in order to absorb possible forthcoming peaks. On short term, we plan to adapt
StopGap to consolidation systems in this latter case. In this respect, a better cooperation between
StopGap and the consolidation system is required.

StopGap is effective only for a part of cloud applications (i.e., elastic applications). In this respect,
we investigate broader solutions which address the datacenter fragmentation. The cloud computing
metaphor perceive a datacenter as a uniform computing facility and not a set of isolated servers.



Thus, we consider that the cloud software stack should be restructured accordingly. On long term,
we plan to architecture and develop a distributed virtualization system which allows a VM to use, at
the same time, resources provided by multiple servers.

9. CONCLUSION

This paper proposes a way to combine cooperative resource management with elastic VMs. Knowl-
edge about customer’s applications (e.g., tier instances) is shared with the IaaS provider so that
IaaSManager can better optimize the infrastructure. Based on this shared knowledge, the provider
can split or enlarge VMs. Our proposed cooperative IaaS can be considered from two different
perspectives: a PaaS extension or a hybrid IaaS-PaaS model. We validated the applicability of our
solution through extensive experiments. Relying on Google datacenter traces, we evaluated our solu-
tion’s benefits in terms of resource saving. It improves OpenStack consolidation engine by about
62.5%, without any additional overhead.
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