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Questions: What vegetation types can be distinguished on the basis of plant functional traits 26 

using numerical classification? How do they match syntaxonomical units? 27 

Location: Poland 28 

Methods: 6985 vegetation plots representing mesic and wet grasslands (Molinio-29 

Arrhenatheretea, Polygono-Poetea) were retrieved from the Polish Vegetation Database. 30 

Plant functional trait data were assembled from the LEDA and Clo-Pla databases for most 31 

species occurring in the data set. Community-weighted mean for five traits were calculated 32 

for each plot: specific leaf area, canopy height, seed mass, bud bank index and clonality 33 

index. Plots were classified using Ward’s method and iterative relocation based on silhouette 34 

widths. The clusters were interpreted and characterized on the basis of species and trait 35 

composition, functional diversity, functional redundancy, Ellenberg indicator values, and 36 

geographical distribution. The similarity between the trait-based classification and the 37 

syntaxonomical assignment of plots is evaluated both statistically and by expert knowledge. 38 

Results: Twelve clusters were distinguished. The classification mirrored the main gradients 39 

structuring grasslands in Poland, although, some vegetation types with the strong dominance 40 

of functionally unique species appeared more distinct than they are treated in syntaxonomy. 41 

Clusters did not differ significantly in functional diversity and redundancy. The differences of 42 

clusters in species and trait composition and environmental background are discussed. 43 

Conclusion: The application of trait data and numerical methods is a promising approach for 44 

obtaining vegetation classifications. Such classifications can be in closer relationship with the 45 

most important ecosystem processes than floristic classifications because communities 46 

comprising different species but similar functional trait distribution are not separated. Trait-47 

based classifications match phytosociological units to a variable degree. Functional 48 

uniqueness and variation of abundance determines how individual species influence the 49 

delimitation of vegetation types using our approach. 50 

 51 

Keywords 52 
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Introduction 57 

Due to its central role in ecosystem processes, vegetation characteristics are frequently used 58 

as general descriptors of ecosystems or habitat types for the purposes of nature conservation, 59 

land-use planning, and landscape mapping. Vegetation-plot databases are widely used for 60 

establishing classifications, very often with the application of statistical methods (De Cáceres 61 

et al., 2015). Such databases contain tens or hundreds of thousands of species by site records 62 

collected during the long history of phytosociology, often with additional data on vegetation 63 

physiognomy, geographical location and environmental background (Dengler et al., 2011). 64 

These data sources make it possible to answer questions about vegetation variation on scales 65 

as broad as countries or continents. As the essential type of data which is recorded in these 66 

plots with the highest consistency is species occurrence (and often some form of abundance), 67 

most typically these analyses use species as variables and sites as objects. In consequence, the 68 

classifications reflect patterns in species composition, together with all the possible 69 

mechanisms which influence community assembly, including selection, speciation, dispersal, 70 

and drift (Vellend, 2010). However, some of these processes, e.g. random drift, may not be 71 

interesting from the viewpoint of the potential user of the classification. Limited dispersal of 72 

species has strong consequences on classification results. If the sample includes areas with 73 

different site history, which is a common situation, species may not have had enough time to 74 

colonise all habitat patches which would have been suitable for them. In this case, a 75 

classification based on species composition will reflect not only environmental gradients but 76 

differences in regional species pools. When the geographical extent of the study is very large, 77 

and the effect of site history is strong, it can become impossible to reach a vegetation 78 

classification reflecting environmental gradients, which would be valid over the entire study 79 

area. This might be a primary reason for the high level of idiosyncrasy in national vegetation 80 

classifications. Patterns of speciation are mainly relevant on biogeographic scales in time and 81 

space; although, in specific studies differences in the phylogenetic structure of communities 82 

may be important (Lososová et al. 2015). Nevertheless, most vegetation classification studies 83 

seek answers for questions about what types of communities exist, and how their occurrence 84 

is related to environmental gradients, and ecosystem functions – i.e., the process of selection. 85 

However, it is increasingly recognised that patterns in species identities are not always tightly 86 

related with ecosystem properties, instead, traits of species are more relevant from this 87 

perspective (Díaz & Cabido, 2001; Díaz et al., 2004). Species respond to biotic and abiotic 88 

factors by their traits (response traits), as well as they form their environment by them (effect 89 
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traits; Lavorel & Garnier, 2002). Species which have similar traits may substitute each other 90 

without significantly altering ecosystem functioning – a phenomenon called functional 91 

redundancy (Hooper et al., 2005). Integrating the trait-based approach should improve the 92 

relevance of vegetation classification with respect to ecosystem functioning, and enhance the 93 

generalizability of results. Hérault and Honnay (2007) already presented a classification 94 

where instead of species, groups of species sharing similar traits called ‘emergent groups’ 95 

were applied as variables. Hence, it was possible to differentiate two types of riverine forests 96 

in Luxembourg different in life-form spectra, dispersal modes, and conservation relevance. 97 

However, this study restricted its scope on a specific vegetation type of a rather narrow area, 98 

while the most typical challenge of recent vegetation classification works is providing 99 

relevant and generalizable results over broad sample coverage in space and along ecological 100 

gradients. 101 

The functional approach of ecology has been in an intensive research period now for more 102 

than a decade, partially shifting the focus away from the study of patterns of species-level 103 

composition and diversity (Carlow, 1987; Tilman et al., 1997; McGill, Enquist, Weiher, & 104 

Westoby, 2006). A major outcome of this field is the emergence of plant trait databases, 105 

which provide trait measurements for thousands of taxa and hundreds of traits (Kattge et al., 106 

2011). Technically they are readily connectable with vegetation-plot databases, providing 107 

avenues for the same types of analyses of trait composition which has only appeared at the 108 

level of species yet. A fundamental question of trait-based ecology is the distinction between 109 

processes which impedes the co-existence of functionally similar organisms (i.e. functional 110 

divergence) and those which promotes it (i.e. functional convergence; Lhotsky et al., 2016). 111 

Competitive exclusion is known to increase divergence according to the theory of limiting 112 

similarity, while environmental (or niche) filtering (and, for traits increasing competitive 113 

vigour, also competitive exclusion) supports functional convergence (Weiher & Keddy, 114 

1995). Considering the interest of vegetation classification studies in the response of 115 

vegetation to environment, trait convergence should be a key phenomenon in the construction 116 

of functionally relevant classifications. Moreover, competitive exclusion is subordinated to 117 

environmental filtering according to the filter model of community assembly (Keddy 1992), 118 

which is a likely reason why trait convergence is more frequently detected than divergence. 119 

In this paper we present a trial for integrating the functional approach into the context of 120 

vegetation classifications using multivariate statistical methods. Our aim is to classify semi-121 

natural grasslands of Poland in a way that resulting groups are relatively similar in their trait 122 



5 
 

composition with no respect to species composition. We discuss the environmental 123 

background, trait composition, functional diversity, and redundancy of the clusters 124 

distinguished. We assess the similarity between the trait-based classification and the 125 

syntaxonomical system. We expect the resulting classification to be generalizable over the 126 

entire study area, while showing a strong relationship with ecosystem processes. 127 

 128 

Materials and Methods 129 

9725 phytosociological relevés representing temperate semi-natural grasslands were retrieved 130 

from the Polish Vegetation Database (Kącki & Śliwiński, 2012; GIVD identifier: EU-PL-131 

001). In the syntaxonomical system according to Kącki, Czarniecka and Swacha (2013), these 132 

grasslands are classified to Molinio-Arrhenatheretea class and comprise three orders, called 133 

Potentillo-Polygonetalia (temporarily flooded and heavily grazed and trampled vegetation on 134 

nutrient-rich soils), Arrhenatheretalia elatioris (lowland and montane mesic grasslands), and 135 

Molinietalia caeruleae (wet grasslands and tall-forb vegetation). We included into the data set 136 

also Polygono arenastri-Poetea annuae with one order Polygono arenastri-Poetalia annuae 137 

(therophyte-rich dwarf-herb vegetation of trampled habitats) because it strongly resembles 138 

heavily trampled pastures of the Cynosurion alliance (Arrhenatheretalia). Polygono-Poetea 139 

annuae was treated as part of the Molinio-Arrhenatheretea in previous syntaxonomical 140 

overviews in Poland. Plot size was restricted to 10 to 100 m2. Moss and lichen species were 141 

removed from the data set due to their uneven data availability across plots. Where species 142 

covers were recorded on ordinal scales (e.g. Braun-Blanquet scales, which is ca. 90% of all 143 

plots) cover categories were transformed to their respective mid-point percentages using the 144 

JUICE software (Tichý 2002). Relevés with >5% cover of trees and shrubs were excluded. 145 

The data set was subjected to geographical stratification and heterogeneity constrained 146 

random resampling (Knollová, Chytrý, Tichý, & Hájek, 2005; Lengyel, Chytrý, & Tichý, 147 

2011) using Bray-Curtis index calculated on square-root transformed abundance data. Strata 148 

were 6’×10’ in size. From each stratum the number of plots to select was determined as 5 + 149 

(n-5) × d, where n is the total number of plots in the stratum and d is the mean pairwise 150 

dissimilarity among plots within the stratum. This method down-weighted the contribution of 151 

oversampled areas only if their beta-diversity was low, while intensively sampled but diverse 152 

regions kept their high share (Wiser & De Cáceres 2013). No resampling was done in strata 153 

containing five or less plots. The stratified resampling reduced the data set to 6985 plots.  154 
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A key decision in any trait-based study is the selection of traits to involve in the analysis. 155 

According to Westoby (1998) and Westoby, Falster, Moles, Vesk, and Wright (2002), the 156 

traits of the leaf economics spectrum (Wright et al., 2004), the height, and the seed represent 157 

the major dimensions of plant variability along the most typical ecological gradients (the so-158 

called leaf-height-seed or LHS system). Leaf traits, especially specific leaf area (SLA; 159 

Cornelissen et al., 2003) are in close connection with resource acquisition and relative growth 160 

rate, and thus related to the productivity of the habitat (Wilson & Tilman, 1993; Lhotsky et 161 

al., 2016). Canopy height is positively correlated with the ability to outcompete other species 162 

in productive habitats, where light is the major limiting factor (e.g. Borer et al., 2014), while 163 

seed mass corresponds to reproduction strategy (e.g. Moles & Westoby, 2004). Besides LHS 164 

traits, there is growing evidence that clonal growth and bud bank are important in the 165 

adaptation of plants to regular disturbance, hence they have central role in the response of 166 

herbaceous vegetation to environment (Klimešová, Tackenberg, & Herben, 2016). Clonal 167 

growth enables plants to avoid disturbance, while bud bank is key in regeneration after minor 168 

damages. Five plant traits were included in the analysis, which can be regarded as the 169 

response traits that play the most fundamental role in the adaptation of plants to the 170 

environment and management regime. Specific leaf area (SLA), canopy height and seed mass 171 

were retrieved from the LEDA database (Kleyer et al., 2008). The ‘bud bank’ and the 172 

‘clonality’ index were introduced according to Johansson, Cousins and Eriksson (2011) and 173 

E.-Vojtkó et al. (2016). Bud bank index is the rank sum of above- and belowground bud bank 174 

categories, while clonality index is the rank sum of lateral spread and total number of 175 

offspring per parent categories. These data were obtained from the Clo-Pla database 176 

(Klimešová, Danihelka, Chrtek, de Bello, & Herben, 2017). All measurements were subjected 177 

to a semi-automated outlier exclusion and averaging procedure for each species by traits. 178 

First, the mean and standard deviation of all measurements from a given species and given 179 

trait was calculated. Those measurements which differed by >2*SD from the mean were 180 

excluded. The remaining measurements were subjected to averaging weighted by the square-181 

root of the number of replications given for each measurement in the public database 182 

(typically, the number of measured individuals for a given record). For species which lacked 183 

no more than two out of the five trait values, Bayesian Hierarchical Matrix Factorization 184 

(Schrodt et al., 2015) was used to fill the gaps in the trait table. Species with more than two 185 

missing trait measurements were rejected from the analysis resulting in 885 species in the 186 

final matrix. Plots where the relative cover of such rejected species was higher than 5% were 187 

excluded before the stratified resampling. Species-level mean trait values were checked for 188 
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normality by quantile-quantile plots. Since LHS traits proved to be right-skewed, they were 189 

log-transformed. Then, all traits were standardized to mean = 0 and standard deviation = 1. 190 

These species-level standardized means were used for calculating community-weighted 191 

means (CWM; Garnier et al., 2004), which is considered a satisfactory indicator of niche 192 

filtering along large-scale environmental gradients (Kleyer et al., 2012; De Bello et al., 2013). 193 

The CWM is constrained by the relative dominance of the most dominant trait value in the 194 

plot; therefore we expect species forming monodominant vegetation stands to have a high 195 

influence on the classification (De Bello, Lepš, Lavorel, & Moretti, 2007). This conforms the 196 

mass ratio hypothesis by Grime (1998) stating that ecosystem functioning is mainly 197 

determined by traits of the dominant species. 198 

Hierarchical classification was carried out by Ward’s agglomerative method (Podani, 2000) 199 

on the matrix of CWM values. Ward’s method relies on Euclidean distances in the trait space 200 

between plots. The upper 20 hierarchical levels of the classification were evaluated by several 201 

cluster validity indices (see Appendix S1); however, they suggested different numbers of 202 

clusters as optimal making it impossible to decide on a single ‘best’ solution. To overcome 203 

this, on the one hand, we considered also the biological interpretation of the clusters and the 204 

resolution desired typically in such large-scale classifications. Hence, the dendrogram was cut 205 

at a particular level and then it was improved using iterative relocation methods (Roberts 206 

2015). Most iterative relocation methods proposed by Roberts (2015) are computationally 207 

very demanding; therefore, we applied the REMOS2 algorithm (Lengyel, Roberts, & Botta-208 

Dukát 2019). This procedure uses the silhouette width index (Rousseeuw 1987) to identify 209 

misclassified objects, which are then re-assigned to their closest neighbour cluster. After re-210 

assignment, silhouette widths are updated, and misclassified plots are relocated again to their 211 

closest neighbour cluster, until the classification cannot be further optimized. This has 212 

changed the assignment of 31.58% of all plots. However, we did not change the hierarchical 213 

relations of the basic clusters. 214 

Delimited clusters were interpreted as biologically relevant units using expert-based 215 

knowledge and we attempted to find correspondence to already known and well-defined 216 

vegetation units in the traditional (floristic) syntaxonomical approach (Kącki et al., 2013). For 217 

this purpose, phytosociological relevés were assigned to syntaxa at the class, order, and 218 

alliance levels using their formal definitions. Relevés were classified to respective syntaxa 219 

based on explicit definitions of vegetation units in the way that the relevé matched by the 220 

definition of alliance must also match the definitions of the superior syntaxonomical units, i.e. 221 
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order and class. This classification system was created using combination of sociological 222 

species groups (Bruelheide, 1997), and total cover of individual species or group of species 223 

(Kočí, Chytrý, & Tichý, 2003; Dengler et al., 2006; Landucci, Tichý, Šumberová, & Chytrý, 224 

2015), and is part of an ongoing project of vegetation classification in Poland. The outcome of 225 

this classification is presented in the shortened synoptic table (Appendix S2). Assignments at 226 

order and alliance levels were compared with the trait-based classification using the 227 

symmetric version of Goodman and Kruskal’s lambda index (Goodman & Kruskal, 1954). To 228 

assess the strength of similarity, the observed lambda values were compared to a reference 229 

distribution obtained by re-calculating the index after permuting the trait-based classification 230 

9999 times. In total, five tests were performed: 1) class-level assignment vs. trait-based 231 

classification with random permutation; 2) order-level assignment vs. trait-based 232 

classification with random permutation; 3) order-level assignment vs. trait-based 233 

classification with restricted random permutation using class-level assignment as strata; 4) 234 

alliance-level assignment vs. trait-based classification with random permutation; 5) alliance-235 

level assignment vs. trait-based classification with restricted random permutation using order-236 

level assignment as strata. We report the P-values of the null hypothesis stating that the 237 

similarity between the trait-based classification and the syntaxonomical assignment is as high 238 

as we can observe due to chance. We also show the standardized effect sizes of the observed 239 

values calculated by probit transformation (Botta-Dukát, 2018).  240 

For each level of the hierarchical classification until reaching the level of basic clusters and 241 

for each trait a Wilcoxon test was carried out to test the difference between the two clusters to 242 

be merged in the respective fusion. Two-tailed P-values were calculated by using permutation 243 

tests (Hothorn, Hornik, van de Wiel, & Zeileis, 2006). Bonferroni-corrected P-values and 244 

standardized test statistics (Wst) were used for ranking traits by support to the tested fusions. 245 

Distribution of CWMs across clusters are shown on ‘boxes-and-whiskers’ plots. Clusters are 246 

also compared on the basis of functional vulnerability measured by Rao Q diversity index 247 

(Botta-Dukát, 2005), and functional redundancy (Ricotta et al., 2016). We also provide 248 

synoptic tables containing diagnostic, constant and dominant species, Ellenberg indicator 249 

values (EIV; Ellenberg et al., 1992), and geographical distribution of the clusters as 250 

Appendices S3-S5. Statistical comparison of clusters on the basis of variables dependent on 251 

compositional information (e.g. diversity indices, aggregated species attributes) often result in 252 

false positive tests due to the so-called ‘similarity issue’ (Zelený & Schaffers, 2012; Zelený, 253 

2018) and other structural biases (Hawkins et al., 2017) if the same occurrence information 254 
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had been used for the definition of clusters. To avoid false conclusions we refrain from formal 255 

statistical tests in the case of between-cluster comparisons and present only boxes-and-256 

whiskers plots. 257 

To measure the influence of individual species on the trait-based (especially, CWM-based) 258 

classification we used a simple formula, that we call ‘influence index’. That species affects 259 

CWM of a single community (e.g., a single relevé) the most, which has high abundance and 260 

highly different trait value from the other species in the community. If the variation of CWM 261 

across several communities is examined, species with highly variable abundance and unique 262 

trait values are supposed to be the most influential. Thus, we calculated the influence index 263 

for the kth species as follows: 264 

𝐼 = 𝐷. × 𝑆𝐷(𝐚𝒌) 265 

where D.k is the distance of the kth species from the unweighted mean of trait values of all 266 

species in the data set (‘uniqueness’), and SD(ak) is the standard deviation of the abundance 267 

vector of species k (‘variation of abundance’). Thus, the influence index is the geometric 268 

mean of two components, functional uniqueness and variation of abundance. We recommend 269 

to re-scale both D.k and SD(ak) by division by the maximum, respectively.  270 

Calculations were carried out by the R software (R Core Team, 2017) using vegan (Oksanen 271 

et al., 2018), cluster (Maechler, Rousseeuw, Struyf, Hubert, & Horni, 2017), FD (Laliberté, 272 

Legendre, & Shipley, 2014), rapportools (Blagotić & Daróczi, 2015), and coin (Hothorn, 273 

Hornik, van de Wiel, & Zeileis, 2008) packages. Nomenclature of plants follow the 274 

Euro+Med PlantBase (last accessed on 27 Sep 2018), syntaxon names are according to Kącki 275 

et al. (2013). 276 

 277 

Results 278 

Most cluster validity measures indicated a peak value between 2 and 5, as well as another 279 

peak near 10 clusters (Appendix S1). After considering non-formal criteria, we chose the level 280 

of twelve basic clusters for the interpretation because it provided a reasonable compromise 281 

between details and conciseness; however, coarser solutions can easily be assembled from this 282 

fine-scale classification by merging low-level clusters according to the dendrogram fusions 283 

(Fig. 1). Distribution of CWM values across clusters is shown on Fig. 2. Synoptic tables and 284 
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textual descriptions of the clusters are presented in Appendix S3, EIVs in Appendix S4, and 285 

geographic distributions in Appendix S5. 286 

Clusters 1 to 4 represent different kinds of grazed or frequently cut, often trampled grasslands. 287 

Cluster 1 consisted of plots of heavily grazed and trampled, or frequently cut grasslands from 288 

various soil types and moisture levels. This cluster is characterised by the lowest canopy 289 

among all clusters, high SLA and high clonality index. Cluster 2 represents mostly mesic 290 

grasslands on nutrient-poor and acidic soils which are mown or occasionally grazed. In this 291 

cluster SLA is slightly above and canopy height is slightly below the sample-wise average, 292 

while clonality is similarly high as in Cluster 1. Cluster 3 represents a small and distinct group 293 

of relevés dominated by Agrostis stolonifera and Alopecurus geniculatus. They occur on 294 

trampled, sometimes slightly alkaline, irregularly inundated habitats with nutrient-rich soils. 295 

In this cluster SLA is highest, canopy is second lowest, seed mass and bud bank are the lowest 296 

across all clusters, while clonality is highest among them. Similarly to Cluster 2, Cluster 4 297 

contains plots mostly from extensively grazed mesic grasslands. SLA, seed mass and bud 298 

bank values of this cluster are slightly above the average of all clusters, canopy height is 299 

below average, clonality is intermediate.  300 

Clusters 5 and 6 are two large, heterogeneous clusters containing several mesic and wet 301 

meadow types from lowland to montane sites. They are characterized by above-average seed 302 

mass and bud bank. Canopy height is lower in Cluster 5 than in Cluster 6.  303 

Clusters 7 and 8 are two, distinct types with monodominant graminoid species with high 304 

canopy. Cluster 7 contains common lowland and montane wet grasslands, mostly with the 305 

dominance of Scirpus sylvaticus. This cluster has the highest canopy on average, highest bud 306 

bank on average, low seed mass and high clonality. Cluster 8 contains mesic meadows of 307 

ruderal character with the dominance of Arrhenatherum elatius mostly on post-arable lands 308 

converted to grasslands. In this cluster SLA, canopy, seed mass and clonality are high.  309 

From Cluster 9 to 12 herbaceous communities of mostly wet habitats are found. Cluster 9 310 

contains a variety of wet and mesic communities including intermittently wet meadows with 311 

Molinia caerulea, wet tall-forb vegetation, and nutrient-rich mesic meadows. This cluster has 312 

high seed mass, high bud bank, low clonality index and intermediate values for the other two 313 

traits. Cluster 10 contains montane meadows, and degraded wet meadows with Deschampsia 314 

caespitosa and to lesser extent Juncus species. This cluster was characterised by low SLA and 315 

clonality, high bud bank, and intermediate values for the other two traits. Cluster 11 contained 316 
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a variety of wet meadows with constant presence of tall forbs. This cluster had low SLA and 317 

clonality, and high values for the other three traits. Cluster 12 comprised relevés dominated 318 

by Juncus species, most frequently Juncus effusus, occasionally J. subnodulosus or J. 319 

conglomeratus. These stands occur mostly on nutrient-poor, waterlogged and acidic soils, 320 

which are sometimes managed by grazing. This cluster has high canopy and low values for all 321 

the other traits.  322 

The cross-tabulation of the trait-based and the syntaxonomical classification is shown on Tab. 323 

1. Permutation tests with Goodman and Kruskal’s lambda index rejected the null hypothesis 324 

stating that trait-based classification and syntaxonomical assignment are as similar as 325 

expected by chance alone. Observed lambda values were higher than any element of the 326 

reference distribution using either the class-level (lambda = 0.007), order-level assignments 327 

(lambda = 0.313) or the alliance-level assignments (lambda = 0.236). In all cases P < 0.001 328 

which gave SES = 3.719 after probit-transformation. However, the matching between 329 

syntaxonomical and trait-based classifications was not perfect. Potentillion anserinae 330 

(Clusters 2 and 3), Juncion effusi (Clusters 10 and 12), and Polygono-Poetalia (Clusters 1 and 331 

4) were the few syntaxa which concentrated on a relatively limited number of trait-based 332 

clusters, while the majority of other units were more broadly dispersed across several clusters. 333 

At the highest hierarchical level (i.e., two clusters), clonality showed a difference between the 334 

merged clusters which was the most extreme not only among all traits at that level but also 335 

across all levels (Wst = 66.56; Table 2). From the three-cluster level onwards, we could found 336 

no difference of this magnitude; although, with <7 clusters all tests showed significant 337 

difference between the merged clusters. The bud bank showed the second largest difference 338 

on absolute scale at the four-cluster level (Wst = -38.04). Apart from those mentioned above, 339 

we could recognize no pattern in the contribution of individual traits to the merging of 340 

clusters. 341 

With some minor inequalities attributable to the unbalanced distribution of relevés, all clusters 342 

were distributed over almost the entire country, none of them was obviously restricted 343 

geographically. 344 

In terms of functional diversity, clusters showed high overlap (Fig. 3). The highest median 345 

Rao Q was detected in Cluster 12, while the lowest in Cluster 1. Cluster 12 showed also the 346 

lowest functional redundancy together with Cluster 3. The other clusters resembled each other 347 

very much also in this aspect. 348 
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On Fig. 4 we show the distribution of species in the space of D.k and SD(ak) and Table 3 349 

shows the ten species with the highest scores. Three of the first four species are those, which 350 

form monodominant and distinct vegetation types (Arrhenatherum elatius, Scirpus sylvaticus, 351 

Juncus effusus), while the rest species also occur as typical dominants of certain clusters 352 

(Appendix S3). 353 

 354 

Discussion 355 

In our paper we present the numerical classification of plots representing semi-natural 356 

grasslands of Poland, based on plant trait data, more specifically, on community-weighted 357 

trait means of phytosociological relevés.   358 

Using the emergent group approach, Hérault and Honnay (2007) showed that the involvement 359 

of trait data into classification could provide typologies which reflect certain ecosystem 360 

properties better than what would be achieved using only species composition. The main 361 

difference between Hérault and Honnay’s approach and ours lays in how we took into account 362 

trait information. Hérault and Honnay classified species on the basis of their trait values into 363 

‘emergent groups’, which were used as variables instead of species. The power of the 364 

emergent group approach is that it accounts for functionally redundant species explicitly, 365 

since emergent groups consist of species possessing the same trait syndrome and thus having 366 

very similar ecological functions. On the other hand, classification of species into discrete 367 

groups requires subjective decisions from the researcher regarding the clustering algorithm, 368 

similarity measure, and number of emergent groups. Moreover, even objective algorithms 369 

produce non-intuitive classifications due to methodological constraints, e.g. certain methods 370 

tend to prefer clusters with specific size or shape. Our approach avoided this pitfall by using 371 

trait information as continuous variables to calculate CWMs which were input for 372 

classification. 373 

We divided the sample into 12 clusters based on biological interpretability; although, several 374 

cluster validity indices had higher values at lower numbers of clusters. It might suggest that 375 

the trait-based classification approach recognized coarser vegetation units than we found 376 

relevant and well separable. Nevertheless, classification studies are often aimed at providing 377 

vegetation typologies at different hierarchical levels, enabling practitioners to choose the most 378 

suitable resolution for a given application. The finer cluster resolution discussed here allows a 379 

more detailed overview of the whole sample with reduced within-cluster heterogeneity; 380 
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however, for specific purposes it is still possible to merge lower-level clusters, e.g., according 381 

to the fusions of the dendrogram. Therefore, our view of vegetation classification and 382 

typology suggested here is flexible to a degree. 383 

The trait-based classification mirrored the most significant gradients shaping grassland 384 

vegetation of Poland, i.e. soil nutrient supply, soil moisture, and management. At the highest 385 

classification level, mostly nutrient-rich and mesic types (Clusters 1 to 8, except Clusters 3 386 

and 7) were separated from communities of nutrient-poor and wet habitats (Clusters 9 to 12). 387 

Clusters 1 to 4 form a separate group at the four-cluster level. Their separation at high 388 

hierarchical level is notable, since these trampled and grazed, highly specialized grasslands 389 

include plots which differ in species composition very much but they are rather similar in 390 

terms of physiognomy and traits with characteristically low canopy and high SLA. 391 

Goodman and Kruskal’s lambda with a permutation test rejected the independency between 392 

the trait-based and the syntaxonomical classification. This is not very surprising given that 393 

both formal definitions and CWM values rely on the species composition of relevés; however, 394 

we were not able to design a formal test of similarity with higher practical relevance since 395 

there is no standard threshold for ‘tolerable difference’ determining whether two 396 

classifications can be considered the same or not. With expert-based evaluation of the clusters 397 

we could point out several mismatches between the trait-based classification and the 398 

syntaxonomical system. A striking example can be seen in form of clusters which were 399 

dominated by functionally unique species, e.g. Scirpus sylvaticus (Cluster 7), Arrhenatherum 400 

elatius (Cluster 8), or Juncus spp. (Cluster 12). These vegetation types are either 401 

differentiated at the association (e.g., Scirpetum sylvatici) or alliance level (e.g., Juncion 402 

effusi), or not differentiated unequivocally (e.g., grasslands dominated by Arrhenatherum 403 

elatius) in the syntaxonomical system, while in the trait-based classification they appeared as 404 

very distinct clusters standing alone sometimes even at high hierarchical levels. Obviously, 405 

functionally unique and monodominant types also defined as separate syntaxa increase 406 

matching between syntaxonomic and trait-based classification, while syntaxonomically 407 

undefined types decrease it. Since monodominant communities are often species-poor, their 408 

distinct occurrence in the trait-based classification might be viewed as an artefact attributable 409 

to differences in species richness, considering that the more species are selected from the total 410 

species pool, the less likely it is to obtain an extreme community-weighted mean. 411 

Nevertheless, we consider differences in dominance structure as a relevant aspect of the 412 

biological phenomenon we study which mirrors environmental stress, disturbance, or specific 413 
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site-history that should not be removed from the analysis. The influence index accurately 414 

identified those species which appeared as dominants of certain clusters; therefore, we 415 

recommend its application for estimating the influence of individual species on CWM-based 416 

classifications. On the other hand, several alliances with more balanced dominance structure, 417 

higher species richness, and higher functional similarity between species did not separate well 418 

in the trait-based classification. For example, most meadow alliances, including 419 

Arrhenatherion and Polygono-Trisetion in the Arrhenatheretalia order, and Calthion, 420 

Cnidion, and Molinion in Molinietalia, similarly occurred in Clusters 5, 6, and 9. Considering 421 

the five traits we selected for our analysis, there is a high functional overlap between these 422 

meadow types despite being assigned to different orders in the syntaxonomical system. 423 

Importantly, the inclusion of other traits may explain specific functional differences between 424 

these alliances and orders. 425 

Clonality index was the trait having the highest influence on the classification, which is in line 426 

with the findings of Klimesová et al. (2008, 2016) and E.-Vojtkó et al. (2016). Bud bank also 427 

seemed to have a relatively strong impact. There are several possible reasons for the 428 

efficiency of vegetative traits in revealing patterns in herbaceous vegetation. One reason is 429 

that grasslands in the temperate zone are usually maintained by some form of biomass 430 

removal, typically grazing or mowing. Plants adapt to such disturbances through avoidance or 431 

regeneration using clonal and bud bank traits (Klimešová et al., 2016); although, affecting 432 

other traits due to developmental trade-offs (Rusch, Wilmann, Klimešová, & Evju, 2011; 433 

Herben, Šerá, & Klimešová, 2015). Differences in the form and timing of management may 434 

be at least as significant as abiotic variation among the vegetation types included in this 435 

analysis (i.e., mesic and wet, semi-natural grasslands without extreme conditions in abiotic 436 

environment). Another potential explanation for the high influence of vegetative traits is that 437 

the ability of clonal growth as expressed on the relatively coarse scale applied in the Clo-Pla 438 

database shows lower levels of intraspecific variation due to stronger phylogenetic constraints 439 

and less measurements error. We consider all these explanations similarly likely, and agree 440 

that clonal and bud bank traits should be given high attention in the study of functional 441 

responses of vegetation to environmental and management gradients. 442 

We did not find striking difference between clusters in terms of functional diversity and 443 

redundancy. Only Cluster 12 showed higher functional diversity and lower redundancy than 444 

the others in median values, which can be explained also by the functional uniqueness and 445 

high dominance of Juncus species. However, this may not be a reliable indication of the 446 
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vulnerability or conservation importance of this vegetation type, since Juncus-dominated 447 

stands, especially with Juncus effusus, are very common on nutrient-poor, disturbed or 448 

successional wetlands. 449 

We had to apply simplifications during our analyses which could have limited us in revealing 450 

certain patterns. We retrieved trait data from LEDA and Clo-Pla database with no respect to 451 

the geographical and environmental origin of the records, thus neglecting an amount of 452 

variation in trait values attributable to population-level adaptation to local conditions. With 453 

the application of community-weighted mean in the description of plot-level trait values, and 454 

using their Euclidean distances as dissimilarity measure, we neglected the role of intraspecific 455 

variation, despite growing evidence on its significant role in community assembly and 456 

response to environmental gradients (Bolnick et al., 2011; Violle et al., 2012; Siefert et al., 457 

2015). Phylogenetic constraints may also bias the relationship between CWM values and an 458 

environmental gradient (Duarte, Debastiani, Carlucci, & Diniz-Filho, 2018). Since there is no 459 

obvious implementation of phylogenetic correction into a classification framework yet, we 460 

neglected this effect. Despite the greatest and honourable efforts of database curators, 461 

differences in measurement protocols or technicalities may have caused an amount of 462 

variation between data sets coming from different providers. Nevertheless, we believe that 463 

these sources of bias do not compromise our results at the scale of the classification discussed 464 

here. 465 

In any trait-based study, the choice of the trait determines all the potential results and 466 

conclusions. We included LHS, clonal and bud bank traits with equal weight because there is 467 

growing evidence of their ability to describe major dimensions of plant variability and 468 

response of plants to environmental and management gradients (Westoby et al., 2002; 469 

Klimešová et al., 2016). We believe that these five response traits describe the most important 470 

vegetation gradients appropriately in the analysed data set. However, different sets of traits, or 471 

different weights attributed to them, may have resulted in fundamentally different 472 

classifications. For specific studies, it is straightforward to select traits which are relevant for 473 

the ecosystem property under study. 474 

 475 

Conclusions 476 

We prepared a classification system of a broad vegetation unit, semi-natural mesic and wet 477 

grasslands of Poland, relying on plot-based numerical classification of community-weighted 478 
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means of LHS and vegetative plant traits. The classification mirrors differences in 479 

management, moisture, as well as types dominated by functionally unique species (Scirpus 480 

sylvaticus, Arrhenatherum elatius, Juncus spp.). Among all traits, clonal index had the 481 

strongest influence on the classification. Although, the matching between the trait-based and 482 

the syntaxonomical classification was closer than the randomized references applied here, it 483 

varied across vegetation types. Syntaxa with high dominance of functionally unique species, 484 

typically occurring under more stressed environmental conditions or specific site-history, 485 

appeared distinct also in the trait-based classification. In contrast, syntaxa with typically more 486 

balanced dominance structure and higher functional overlap between species did not separate 487 

well in the trait-based classification. Despite some discrepancies with the traditional species-488 

based classification approach, functional trait-based classification provides biologically 489 

interpretable clusters. It must be, however, noted that our classification was performed on a 490 

type of vegetation highly dependent on management type and intensity. Classification of less 491 

disturbed vegetation types may bring sharper delimitation of vegetation units and different 492 

importance of individual traits.  493 
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Figure 1. Dendrogram of the upper 12 clusters in the hierarchy 715 

 716 

 717 

 718 

Figure 2. Boxes-and-whiskers plots comparing community-weighted means of traits across 719 

the twelve clusters. Boxes show upper and lower quartiles; whiskers show minimum and 720 

maximum values; circles show outliers 721 
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 722 

 723 

Figure 3. Boxes-and-whiskers plots comparing Rao’s functional diversity and functional 724 

redundancy (Ricotta et al., 2016) across the twelve clusters. Boxes show upper and lower 725 

quartiles; whiskers show minimum and maximum values; circles show outliers 726 

 727 

 728 

 729 
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Figure 4. Distribution of species in dimensions of functional uniqueness and SD of 730 

abundance (both divided by maximum). Only names of the ten species with the highest 731 

influence index values are shown 732 

 733 

  734 
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Table 1. Cross-tabulation of the trait-based and the syntaxonomical classification 735 

    Clusters of the trait-based classification 

  CLASSES ORDERS ALLIANCES 1 2 3 4 5 6 7 8 9 10 11 12 

Sy
nt

ax
on

om
ic

al
 c

la
ss

ifi
ca

tio
n 

Molinio-
Arrhenatheretea 

Arrhenathe-
retalia 

Arrhenatherion 1 70 0 1 120 200 4 251 99 0 8 0 

Cynosurion 83 30 0 127 223 25 0 0 99 2 0 0 

Poion alpinae 0 0 0 1 0 0 0 0 1 0 0 0 

Polygono-Trisetion 0 11 0 0 34 24 0 0 24 1 2 0 

Unidentified at 
alliance level 9 287 0 39 446 452 1 11 190 7 4 0 

Molinietalia 

Calthion 0 7 0 41 165 193 203 4 545 92 214 12 

Cnidion 0 0 0 7 35 55 1 0 49 28 4 14 

Juncion effusi 0 2 0 2 0 0 0 0 0 36 0 111 

Molinion 0 0 0 2 23 69 0 0 240 38 320 0 

Unidentified at 
alliance level 0 9 0 4 112 109 20 12 201 196 113 21 

Potentillo-
Polygonetalia 

Potentillion 
anserinae 1 11 11 0 1 0 0 0 0 2 0 0 

Unidentified at 
alliance level 16 13 23 1 7 13 0 1 1 1 0 0 

Unidentified at order level 14 41 0 13 153 260 11 10 33 7 2 2 

Polygono-Poetea 
Polygono-
Poetalia 

Unidentified at 
alliance level 79 7 0 36 10 0 0 0 0 0 0 1 

Dubious assignment 5 0 0 0 1 0 1 0 0 1 0 0 

 736 

 737 

Table 2. Standardized test statistic of Wilcoxon tests of CWM-s between clusters to be 738 

merged in each fusion level of the hierarchical classification. Significance levels after 739 

Bonferroni adjustment (two-tailed tests): *** p<0.001, ** p<0.01, * p<0.05, ns = not 740 

significant 741 

No. Clusters SLA Canopy height Seed mass Bud bank Clonality 

2 34.65*** -19.67*** -17.82*** -9.48*** 66.56*** 

3 20.62*** -15.13*** 20.93*** 20.81*** -4.74*** 

4 20.53*** -29.81*** -19.41*** -38.04*** -6.83*** 

5 -15.69*** -22.37*** -22.22*** 25.05*** -20.93*** 

6 3.37*** -36.72*** -12.05*** -17.44*** 25.98*** 

7 2.22* -25.42*** 23.24*** -15.14*** -17.91*** 

8 28.88*** 2.58** 31.22*** 10.05*** -0.74ns 

9 3.19** -15.86*** -15.15*** 10.13*** 24.96*** 
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10 -5.5*** 1.43ns 8.52*** 9.56*** -8.44*** 

11 18.81*** -17.4*** -0.79ns -30.07*** 15.83*** 

12 8.47*** -18.19*** 17.84*** -0.63ns -2.76** 

 742 

Table 3. Species with the highest influence index 743 

Species Influence index 

Arrhenatherum elatius 0.407 

Juncus effusus 0.369 

Agrostis capillaris 0.331 

Scirpus sylvaticus 0.322 

Festuca rubra s. l. 0.253 

Molinia caerulea s. l. 0.248 

Agrostis stolonifera 0.229 

Deschampsia cespitosa 0.207 

Dactylis glomerata 0.186 

Filipendula ulmaria 0.184 

 744 


