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Abstract: The influence of Mo addition on the compression behavior of Ni films was studied by 
micropillar deformation tests. Thus, films with low (0.4 at.%) and high (5.3 at.%) Mo contents were 
processed by electrodeposition and tested by micropillar compression up to the plastic strain of 
about 0.26. The microstructures of the films before and after compression were studied by 
transmission electron microscopy. It was found that the as-deposited sample with high Mo 
concentration has a much lower grain size (~26 nm) than that for the layer with low Mo content 
(~240 nm). In addition, the density of lattice defects such as dislocations and twin faults was 
considerably higher for the specimen containing a larger amount of Mo. These differences resulted 
in a four-times higher yield strength for the latter sample. The Ni film with low Mo concentration 
showed a normal strain hardening while the sample having high Mo content exhibited a continuous 
softening after a short hardening period. The strain softening was attributed to detwinning during 
deformation. 
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1. Introduction 

Alloying with Mo is an effective way to tailor the physical properties of Ni. For instance, the 
Curie temperature decreases significantly with increasing Mo concentration in Ni [1]. For pure Ni, 
the temperature of transition from ferromagnetic to paramagnetic state is 354 °C which is reduced to 
about 60 °C when the Mo concentration increases to about 5 at.% [1]. On the other hand, the hardness 
and the wear resistance of Ni considerably increase with the addition of Mo, therefore Ni–Mo alloys 
are often used as hard coatings [2]. The improvement of hardness and wear resistance with grain 
refinement is a general phenomenon for Ni-based coatings, be achieved either with alloying or with 
incorporation of ceramic particles [3]. Alloying may result not only in the decrease of the grain size 
but also in the increase of the lattice defect density [4]. It has been shown that Mo addition enhances 
the density of twin faults [4] which improves the hardness since twin faults are obstacles against 
dislocation motion similar to grain boundaries [5]. In the case of alloying, the chemical nature of the 
added element also affects the mechanical properties, and this is why tungsten is a common 
candidate besides molybdenum for alloying nickel [6]. In dispersion-hardened coatings, the primary 
hardening factor is the grain refinement as a result of the particle incorporation, regardless of the 
properties of the particles incorporated [3]. 
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As with their physical behaviour, Ni–Mo alloys also obtained attention due to their chemical 
properties. Ni–Mo is applied as a catalyst in hydrogen production either in the form of coating or 
powder since this material shows a high activity and a long-term stability in this process [7–9]. In 
bulk form, Ni–Mo is used as a substrate for epitaxially grown superconducting coatings as the sharp 
cube texture formed after rolling and subsequent annealing in Ni–Mo alloys is beneficial for the layer 
deposition [10]. Thus, Ni–Mo alloys have drawn significant attention from the scientific community 
due to their important applications in either bulk, powder or thin layer form. 

Ni–Mo electroplated films can be produced by codeposition of Ni and Mo [11,12]. This is a 
typical induced codeposition process which means that the incorporation of Mo in the layer is 
induced by the deposition of Ni, i.e., pure Mo cannot be obtained by electroplating. The conditions 
of electrodeposition, such as bath composition, pH value, current density and stirring, influence 
strongly the concentration of the deposited Mo [13–15]. It was shown that the Mo content can reach 
74 at.% in electrodeposited Ni films, but in this case the current efficiency became extremely low 
(about 1%) [15,16]. It has also been revealed that appropriate additives may facilitate the deposition 
of Mo in Ni [17]. 

Former studies revealed that the Mo content significantly influences the microstructure and 
hardness of Ni electrodeposits [4,18]. Namely, the grain size decreased while the density of lattice 
defects (e.g., dislocations and twin faults) increased with increasing Mo concentration. As a 
consequence, the hardness of the layers was considerably enhanced with the addition of Mo [18,19]. 
For instance, the hardness of a pure nanocrystalline Ni film was found to be about 4.3 GPa which 
increased to 5.5–6.0 GPa when 3–13 at.% Mo was codeposited with Ni [20]. It is noted that this 
hardness can be further enhanced with the application of annealing at 400–550 °C for 1 h [20,21]. This 
effect is referred to as anneal-hardening and may cause an increase of the hardness with a factor of 
two for electrodeposited Ni–Mo films. This hardening was explained by the segregation of Mo solutes 
to Ni grain boundaries which impeded both dislocation emission from grain boundaries and the 
grain boundary sliding during straining. Although the hardness of Ni–Mo films was studied 
extensively, the stress-strain response for these materials has not been studied yet. 

In this paper, the deformation behavior of electrodeposited Ni–Mo films with lower (0.4 at.%) 
and higher (5.3 at.%) Mo contents was investigated by micropillar compression. This test has already 
been applied to the study of the mechanical properties of Ni, Ni-W and Ni-ceramic composite films 
[22–25]. At the same time, to the knowledge of the authors, this is the first micropillar compression 
on Ni–Mo films. It will be shown that not only the yield strength but also the strain-hardening 
behavior exhibits significant differences in the two layers. For the explanation of the different 
mechanical performances of the Ni films with low and high Mo contents, a detailed characterization 
of the microstructure was conducted before and after compression. 

2. Materials and Methods  

2.1. Film-Processing by Electrodeposition 

Ni–Mo films were processed by electrodeposition at room temperature (RT) using a solution 
containing 0.52 mol/liter NiSO4, 0.26 mol/liter sodium citrate, 0.1 g/liter sodium dodecylsulfate as 
wetting agent, and Na2MoO4 in varying concentration up to 6 mmol/liter. To minimize the impurity 
content of the films, a high-purity nickel sulfate salt with a Co concentration lower than 50 ppm was 
applied in the electroplating process. The pH of the bath was set as 6.1 ± 0.08 since this value yielded 
a very high Ni deposition efficiency (about 98%) [26]. Although saccharin is known as an efficient 
stress reliever for the deposition, it was not applied because the resulting sulfur content in the 
deposits may also impact the mechanical properties of the films. The current density was selected as 
−5.6 mA/cm−2. This current density was about one order of magnitude lower than the values used 
commonly for the production of Ni–Mo films. The low current density yielded similarly high 
efficiency of deposition (96%–98%) as obtained for pure Ni. Then, the Mo content in the films was 
tailored by changing the Mo concentration in the bath. Two films were deposited with low (0.4 ± 0.1 
at.%) and high (5.3 ± 0.4 at.%) Mo contents. These values were determined by energy-dispersive X-
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ray spectroscopy (EDS) in an FEI Quanta 3D scanning electron microscope (SEM, Thermo Fisher 
Scientific, Waltham, MA, USA). The electrodeposited samples with low and high Mo contents are 
denoted as LMo and HMo, respectively. 

The deposition of the Ni–Mo films was carried out on a Cu substrate. First, the substrate was 
degreased and then placed horizontally at the bottom of the cell. A nickel wire spiral served as the 
counter electrode which was immersed into a frit-separated chamber of the cell in order to avoid the 
contamination of the deposit with the disintegrated grains of the anode. The deposition was stopped 
when the desired film thickness (about 20 µm) was achieved.  

2.2. Microstructure Characterization of the As-Grown Film by Transmission Electron Microscopy 

Transmission electron microscopy (TEM) was used for the determination of the average grain 
size in the as-deposited Ni–Mo films. The TEM samples were thinned by ion milling using liquid 
nitrogen cooling in order to avoid undesired annealing during thinning. In this procedure, GATAN 
G1 low temperature glue was used at 60 °C for fixing the sample in a Ti disk with a diameter of 3 mm. 
Then, the specimen was milled by Ar ions with the energy of 7 keV until perforation. The TEM 
experiments were carried out by a Philips CM20 electron microscope (Philips, Amsterdam, The 
Netherlands) operating at 200 keV. The mean grain size was determined as the average of the 
diameters of the grains identified in dark-field TEM images. About twenty grains were evaluated in 
this way for each film. 

2.3. Characterization of the Crystallographic Texture of the Ni–Mo Films 

The crystallographic texture of the films was characterized by the analysis of X-ray diffraction 
(XRD) pole figures which were measured by a Smartlab diffractometer made by Rigaku company, 
Japan using parallel-beam optics and Cu Kα radiation with the wavelength of 0.15418 nm. Before the 
pole figure measurements, diffraction patterns were taken by the Smartlab diffractometer using 
Bragg-Brentano geometry. The diffraction angles for reflections 111, 200 and 220 were determined for 
both Ni–Mo layers and these 2θ values were used in the pole figure measurements. 

2.4. Micropillar Compression Test 

The deformation behavior of the Ni–Mo films was studied by micropillar compression. 
Micropillars with square cross sections were fabricated by a focused ion beam (FIB) in the same SEM 
microscope as used in EDS experiments (see Section 2.1). The edge and the height of the pillars were 
3 and 6 µm, respectively. The compression experiments were carried out by a home-made indenter 
device using a flat-ended cylindrical punch. The precision of the indentation depth and the load were 
~1 nm and ~1 µN, respectively. In the present experiments, the maximum applied load was ~15 
mN. The technical details of the indenter device can be found in reference [27]. To ensure the 
reproducibility of the compression data, three micropillars were fabricated and compressed for each 
film. SEM images were also taken on the pillars before and after deformation. 

2.5. Characterization of the Microstructure of the Micropillars before and after Compression 

The microstructure of the pillars before and after compression was studied by TEM and high-
resolution TEM (HRTEM). First, thin sections parallel to the longitudinal axis of the pillars were cut 
using the FIB technique. Then, these foils were thinned by ion milling until perforation using Ar ions. 
The HRTEM structural characterization of the samples was carried out by a FEI Titan-Themis 
transmission electron microscope with a Cs corrected objective lens (point resolution is around 0.09 nm 
in HRTEM mode) operated at 200 kV. 
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3. Results 

3.1. Microstructure of the As-Deposited Ni Films with Low and High Mo Contents 

Figure 1 shows dark-field TEM images taken on the films LMo and HMo (lateral view). The 
average grain sizes determined from TEM images are ~240 and ~26 nm for samples LMo and HMo, 
respectively. Figure 1a also reveals that the large grains bordered by white dashed curves contain 
subgrains in the LMo film, appearing as bright and dark regions inside the grains. The size of these 
subgrains varies between 20 and 50 nm which is in good agreement with the diffraction domain size 
determined formerly by X-ray line profile analysis (XLPA) [4]. Namely, the average diffraction 
domain size was obtained as ~40 nm from fitting the experimental X-ray diffractogram using a 
theoretical pattern calculated for the description of the diffraction peak broadening caused by the 
ultrafine-grained microstructure [4]. For sample HMo, the X-ray diffraction domain size was ~47 nm 
which is slightly higher than the grain size determined by TEM. This difference can be explained by 
the many orders of magnitude larger volume studied by XLPA as compared to TEM. Nevertheless, 
the similar grain and diffraction domain sizes for layer HMo indicate that for this film the grains were 
not divided into subgrains. 

 

Figure 1. Dark-field transmission electron microscope (TEM) micrographs showing the grains in films 
with (a) low Mo content (LMo) and (b) high Mo content (HMo). In (a) the grains are bordered by 
white dashed curves for a better visibility. 

The TEM image in Figure 2a shows that the nanograins in sample HMo contain twin faults. 
Former XLPA investigation revealed that the twin fault probability in layer HMo is as high as ~3.9% 
which corresponds to an average twin fault spacing of ~5 nm. This value is in accordance with the 
visual impression obtained from the HRTEM image in Figure 2b where some twin faults are indicated 
by white arrows. A magnified part of this HRTEM picture is Fourier-filtered in Figure 2c. In this 
image, only the (200) lattice fringes are shown. The yellow dashed lines indicate twin faults. The 
white arrow in Figure 2c marks the end of a twin lamella in the grain interior which usually comprises 
partial dislocations [28]. Sample LMo does not contain significant amount of twin faults as suggested 
by both TEM and XLPA since the twin fault probability determined by the latter method was under 
the detection limit (˂0.1%) [4]. 
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Figure 2. Bright-field TEM micrograph (a) and high-resolution TEM (HRTEM) image (b) taken on 
sample HMo. The white arrows indicate some twin faults. (c) shows a magnified and Fourier-filtered 
part of (b) (indicated by the blue frame). The dashed yellow lines mark twin faults. The white arrow 
in (c) indicates a twin lamella ending in the grain interior. 

The crystallographic textures for samples LMo and HMo are characterized by the 111, 200 and 
220 pole figures shown in Figure 3. The normal vector of the film surface is perpendicular to the plane 
of the pole figures. It is evident that the LMo film has a strong 200 texture parallel to the film normal. 
For sample HMo, no preferred orientation was detected. 
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Figure 3. Pole figures for orientations 111, 200 and 220 as obtained by X-ray diffraction (XRD) for 
samples LMo and HMo. The normal vector of the film surface is perpendicular to the plane of the 
pole figures. 

3.2. Compression Behavior of the Micropillars Fabricated from the Ni–Mo Films 

As an example, Figure 4a,b show a micropillar fabricated from the film LMo before and after 
compression. The engineering stress versus plastic strain curves for samples LMo and HMo are 
plotted in Figure 5a,b, respectively. Very similar curves were obtained for other pillars manufactured 
from the same film. The engineering stress was obtained as the ratio of the applied force and the 
initial cross section of the pillars. The plastic portion of the engineering strain was calculated as 
follows. First, the engineering strain was determined as the ratio of the displacement and the initial 
pillar height (6 µm). Then, the elastic part of the strain was calculated as the ratio of the engineering 
stress and the elastic modulus. The latter quantity was determined as the slope of the initial linear 
part of the engineering stress-strain curve. Finally, the plastic strain was calculated as the difference 
between the total engineering strain and the elastic strain. 

 
Figure 4. A micropillar under the indenter before (a) and after (b) compression for the film LMo. 
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Figure 5. Engineering stress versus plastic strain obtained by micropillar compression for the films 
LMo (a) and HMo (b). 

The yield strength values for samples LMo and HMo were obtained as 0.35 ± 0.05 and 1.3 ± 0.2 
GPa, respectively. The sample LMo showed a monotonous hardening while the film HMo exhibited 
a strain-softening after an initial hardening stage. The maximum compressive stress values were 0.86 
and 2.4 GPa for specimens LMo and HMo, respectively. These stresses were achieved at the plastic 
strains of 0.26 (at the end of the test) and 0.04 for the films LMo and HMo, respectively. The stress-
strain behavior of sample LMo is not surprising; however, the strain-softening for film HMo is 
unusual. Therefore, the reason of this softening for sample HMo was studied by comparing the 
microstructures before and after micropillar deformation. These results are presented in the next 
section. 

3.3. Changes of the Microstructure in the Ni Film with High Mo Content during Micropillar Compression 

A TEM study was conducted on the microstructures of uncompressed and compressed 
micropillars manufactured from the film HMo. Figure 6 shows illustrative examples for the bright-
field and the corresponding dark-field TEM images obtained before and after compression up to the 
plastic strain of 0.26. The average grain size determined from the images was about 24 nm for both 
the uncompressed and compressed micropillars, i.e., it remained unchanged during deformation. 
This value is practically the same as the grain size (~26 nm) obtained from the TEM images taken on 
the as-processed film HMo. It should be noted, however, that some larger grains with the size of 
about 100–200 nm were also found both before and after compression. As an example, a large grain 
in the compressed pillar is marked by a yellow ellipse in Figure 6d. This grain contains twin lamellas 
as revealed by the dark-field image in Figure 6d. It is noted that large grains were also observed in 
the uncompressed pillars. The numbers and the diameters of these grains were similar before and 
after compression. For example, long twin lamellas in a large grain can be seen at the bottom of Figure 
6a taken on an uncompressed pillar. These large grains were formed in the nanocrystalline matrix 
during deposition and micropillar compression did not yield either their fragmentation or growth 
due to the relatively low plastic strain (about 0.26). 

The HRTEM images in Figure 7 show a high density of twin faults in both the uncompressed 
and compressed pillars for film HMo. The crystallographic direction <110> is lying perpendicular to 
the images. The twin boundaries are marked by white lines. Comparing Figure 7a,c, it seems that the 
twin fault density is lower for the compressed pillar than that in the undeformed state. Figure 7b 
shows a magnified part of Figure 7a. In this picture, bright and dark lattice fringes are visible parallel 
to the {111} planes and the periodicity of these fringes is three times larger than the lattice spacing for 
planes {111}. The Fourier transform of this HRTEM image can be seen in the lower right corner of 
Figure 7b which reveals that beside the fundamental fcc diffraction points additional spots appeared 
on the <111> lines of the reciprocal lattice, dividing the spacing between the fcc reciprocal lattice 
points into three. A former study explained these extra diffraction points by single and double 
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diffraction from twins [29]. The different twin variants are indicated by numbers in Figure 7b. In 
some areas of Figure 7b, more than one twin variant exists overlapping each other in the TEM foil, 
which resulted in double diffraction of electrons. 

 
Figure 6. Bright-field (a,b) and the corresponding dark-field (c,d) TEM images taken on 
uncompressed (a,c) and compressed (b,d) micropillars for sample HMo. 

4. Discussion 

The film HMo exhibited a much higher yield strength (~1.3 GPa) than that measured for sample 
LMo (~0.35 GPa). This difference can be explained by the combined hardening effect of the smaller 
grain size and the higher lattice defect (e.g., twin fault) density for the specimen HMo. Indeed, twin 
faults are similarly effective obstacles against dislocation motion such as the general grain boundaries 
[30,31]. Since the twin fault spacing in film HMo (about 5 nm) is smaller than the grain size (about 26 nm), 
the former value must be considered as the average distance between the dislocation glide obstacles. 
For sample LMo, either the grain size (~240 nm) or the crystallite size (~40 nm) is selected for the 
average obstacle spacing, it is much higher than the value determined for the film HMo, resulting in 
a softer yielding. In addition to the smaller obstacle spacing, the higher solute hardening for sample 
HMo may also contribute to the enhanced yield strength. Moreover, the different crystallographic 
textures in samples LMo and HMo also increased the difference between the yield strength values. 
Namely, film LMo exhibited a strong 200 texture and according to the Taylor model the Taylor factor 
for compression along direction <200> is about 2.4 which is lower than the value for an untextured 
fcc material (~3.06) [32]. The film HMo has no considerable texture (see Figure 3), therefore the Taylor 
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factor for this material is surely higher than that for sample LMo during micropillar compression 
parallel to the film normal. 

 
Figure 7. HRTEM images taken on uncompressed (a,b) and compressed (c) micropillars for the film 
HMo. The white lines indicate twin faults. (b) is a magnified part of (a) marked by the black frame. 
The diffraction pattern in (b) is obtained as the Fourier transform of the corresponding HRTEM image. 

Figure 5 reveals that not only the yield strength but also the stress–strain behavior of the films 
LMo and HMo differ significantly. Namely, sample LMo exhibited strain hardening in the entire 
range of strain (up the strain of 0.26) while for film HMo softening was observed for the strains higher 
than ~0.04. Theoretically, softening can be caused by grain growth during plastic deformation. 
Indeed, former studies have shown that the high-pressure torsion (HPT) technique applied up to 30 
turns on electrodeposited Ni–20% Fe caused an increase of the grain size from ~20 to ~50 nm at the 
equivalent strain of about 200 [33] and to ~115 nm when the equivalent strain increased to ~1300 [34]. 
This grain growth may be caused by a dynamic recrystallization of the as-deposited microstructure 
during deformation due to the high driving force owing to the large defect density and the small 
grain size. However, in sample HMo considerable grain growth did not occur during deformation, 
which can be attributed to the relatively low applied strain. Therefore, this effect is ruled out in the 
explanation of the softening observed for layer HMo. 

The as-processed sample HMo contains a very high amount of grown-in twin faults, and 
detwinning during pillar compression might have occurred that could cause the observed softening. 
Detwinning is a result of the interaction between twin boundaries and gliding dislocations, yielding 
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thinning or full disappearance of twin lamellae [35]. In the first step of detwinning, a gliding 
dislocation at the twin boundary dissociates into two partials. For a material with high stacking fault 
energy (SFE), these partials are sessile Shockley and glissile Frank dislocations [36]. The Shockley 
partial slips along the twin boundary, resulting in a thinning of the twin lamella with one {111} plane. 
This Shockley partial in the twin boundary is also called as twinning partial and it can also form if a 
dislocation is transmitted into the adjacent twin lamella [37]. The collective slip of twinning partials 
on successive glide planes parallel to the twin boundary can lead to a complete disappearance of a 
twinned region [28]. This effect has already been observed in electrodeposited Ni–20% Fe film 
processed by HPT [38]. Ni alloys have high SFE, therefore twinning is not a preferred mechanism of 
plastic deformation. At the same time, during the deposition of nanocrystalline pure Ni and Ni alloys 
many grown-in twin faults form as these have the lowest energy among the grain boundaries. Above 
the grain size of 20 nm, dislocation glide is an important deformation mechanism in Ni alloys [38], 
and therefore the interaction between moving dislocations and grown-in twin boundaries may cause 
detwinning. Then, the gradually decreasing twin fault density can result in a continuous softening 
during deformation as shown in Figure 5b. Indeed, the amount of twin faults in the film HMo seems 
to decrease during the present micropillar compression tests as suggested by the comparison of 
Figure 7a,c. The twin faults disappeared by detwinning were not replaced by new ones during 
compression as the probability of deformation twinning is very low in both studied Ni–Mo alloys as 
revealed in our former studies where the same compositions were deformed by HPT [39]. Up to the 
strain of about 1000, considerable twinning was not observed in bulk Ni samples with either ~0.3 or 
~5 at.% of Mo. It should be noted that the reduction of the twin fault density during pillar 
compression of the film HMo is difficult to determine with good statistics from Figure 7 due to the 
small studied area (about 100 nm × 100 nm). However, the HRTEM images in Figure 7 suggest that 
in the investigated area the twin fault density decreased to about half during deformation. 

Considerable reduction of grown-in lattice defects (e.g., dislocations and twin faults) during 
deformation of nanocrystalline fcc metals processed by bottom-up methods has already been 
observed in former studies [40]. This is a deformation-induced relaxation of nanostructures with 
extremely high density of growth defects. Due to the very small grain size and the extremely high 
defect density, nanocrystalline metals processed by bottom-up methods are very far from the 
equilibrium. However, this state can be frozen in the material as the annihilation of defects is strongly 
hindered kinetically by the impurities and the alloying elements. At the same time, plastic 
deformation of the as-processed samples causes a mechanical perturbation which can result in a shift 
of the material to a more equilibrium state by the annihilation of a portion of grown-in defects. For 
instance, a Ni–18 wt.% Fe alloy processed by pulsed electrodeposition was subjected to rolling at RT 
and liquid nitrogen temperature (LNT) up to the true strains between 0.4 and 0.6 [41]. This 
deformation resulted in a decrease of the twin fault probability from about 3.2% to 1.5%–2.2%. In 
addition, the initial dislocation density was also reduced from 370 × 1014 m−2 to (180–220) × 1014 m−2 as 
revealed by XLPA. During plastic deformation of nanomaterials with the grain sizes higher than 10–
20 nm, dislocations are emitted from the grain boundaries which slip across the host grain and are 
absorbed by the boundary at the opposite side of the grain. The interaction between the plasticity-
induced and the growth dislocations can lead to their annihilation. The decrease of lattice defect 
density can result in softening of nanomaterials processed by bottom-up methods, as in the case of 
film HMo in the present study. It should be noted that softening in highly twinned microstructures 
was also observed for other fcc metals, such as Cu [42,43]. For copper, detwinning was detected not 
only during plastic deformation of nanotwinned films [43] but also for powders nanostructured by 
preliminary milling [44]. 

It is worth noting that during plastic deformation both defect formation and annihilation occur 
simultaneously and at high strains (>1) there is a dynamic equilibrium between these processes, 
resulting in a saturation of the values of the densities of lattice defects (e.g., dislocation and twin 
faults) [45]. If the density of grown-in defects in nanomaterials processed by bottom-up methods is 
higher than the saturation value achievable by severe plastic deformation, then deformation most 
probably results in a reduction of defect density. This was the case for sample HMo where the 
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dislocation density in the electrodeposited film (~114 × 1014 m−2) was much higher than the saturation 
value of ~60 × 1014 m−2 measured by XLPA on a sample processed from a coarse-grained material by 
HPT [39]. In addition, a high twin fault probability was detected in film HMo (~3.9%) while 
significant twin fault probability was not found in the sample processed till saturation by HPT. 
Therefore, defect density reduction was expected for layer HMo during micropillar compression. At 
the same time, in film LMo the density of growth dislocations was slightly lower (~23 × 1014 m−2) than 
the saturation value achieved by HPT (~30 × 1014 m−2). In addition, twins were not observed in either 
the electrodeposited or the HPT-processed LMo samples [39]. Thus, defect formation and a 
corresponding hardening were expected in this case which is in accordance with the present 
experimental observation. This research can be continued by studying the transition from strain 
hardening to softening as a function of Mo concentration in nanocrystalline Ni deposits. 

5. Conclusions 

The deformation behaviors of nanocrystalline Ni films deposited with low and high Mo contents 
were studied by micropillar compression test which was performed up to the plastic strain of 0.26. 
The following conclusions were drawn from the results: 

• The film with high (5.3 at.%) Mo concentration had a much larger yield strength (1.3 GPa) than 
the value obtained for low (0.4 at.%) Mo content (0.35 GPa). This difference can be attributed to 
the higher solute hardening, the much smaller grain size and the higher defect density in the 
former sample. In film HMo, nanotwins with an average spacing of ~5 nm were formed while 
considerable twinning was not observed in specimen LMo. In addition, a strong 200 texture was 
observed for film LMo while no considerable texture was detected in sample HMo, and this 
change also contributed to the higher yield strength of the latter specimen. 

• The Ni film with low Mo concentration exhibited strain-hardening in the studied strain range, 
yielding a maximum compressive stress of 0.86 GPa. At the same time, layer HMo showed a fast 
hardening to the stress of 2.4 GPa which was followed by a continous softening between the 
strains of 0.04 and 0.26. 

• The strain-softening for film HMo cannot be explained by grain coarsening since the average 
grain size remained about 26 nm during compression. On the other hand, a decrease of the twin 
density during compression was observed by comparing the TEM images taken on the pillars 
before and after deformation. This detwinning process caused the observed softening. 
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