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1.  INTRODUCTION AND AIMS 

Type 2 diabetes mellitus (T2DM) is a progressive disorder characterized by the production 

of insufficient level of insulin due to β cell dysfunction and/or insulin resistance, accounting for 

roughly 90% of all diabetic cases (American Diabetes Association, 2015). With the expanding 

knowledge of the pathophysiology of T2DM, the incretin system has become a crucial target in the 

treatment of T2DM patients. There are two approved classes of incretin-based therapeutics: 

glucagon-like peptide-1 (GLP-1) analogues and dipeptidyl peptidase-4 inhibitors (DPP-4i).  

 Glucagon-like peptide-1 analogues liraglutide (Lira) and exenatide (Exn) are currently 

limited to subcutaneous injection (SC) in clinical protocols. Due to several drawbacks 

accompanied by this invasive route, the development of a patient-friendly delivery system should 

be aimed for (Araújo et al., 2012). Herein, the oral route is likely the most desirable choice since 

it mimics the physiological GLP-1 secretion in addition to ensuring good patient adherence to the 

treatment (Lin et al., 2016). Moreover, oral delivery appears to be feasible for such antidiabetic 

peptides due to the relatively larger safety window of GLP-1 analogues compared to insulin. 

Among the various strategies having been developed to conquer the barriers limiting oral peptide 

delivery, namely the harsh environment of the gastrointestinal (GI) tract and the absorption 

membrane barrier, the encapsulation of GLP-1 analogues into nanosystems seems to be very 

promising strategy (Ismail and Csóka, 2017).   

Therefore, the aim of this work was to investigate the potential of polymeric and lipid-based 

nanocarriers (NCs) in overcoming the main challenges that block the oral delivery of Lira and Exn. 

Due to the complexity, biocompatibility and nanotoxicological concerns of nanopharmaceuticals, 

not to mention the risks the risks accompanied with peptide drugs formulation development, it was 

crucial to implement the Quality by Design (QbD) and risk assessment (RA) concepts aiming to 

classify the quality attributes and process parameters and ultimately develop a thorough 

understanding of the target product and process design (Pallagi et al., 2018). Following to setting 

up the Quality Target Product Profile (QTPP) and conducting the initial RA for designing oral 

GLP-1 analogues loaded nanocarriers (NCs), two different NCs were designed, optimized and 

assessed according to their critical quality attributes (CQAs). These developed NCs are (i) Lira 

loaded poly (d, l-lactic-co-glycolic acid) nanoparticles (PLGA NPs) and (ii) Exn loaded self-
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emulsifying drug delivery system (SEDDS). Figure 1 presents the main experimental steps being 

followed in this work. 

 

Figure 1. The main questions/tasks of this work to be answered.  

• Preformulation design followed by setting up the QTPP for oral GLP-1 analogues
loaded NCs.

• Defining the CQAs, CPPs and CMAs.

• Conducting the initial RA based study (Lean-QbD® software).

Extended QbD model - Risk assessment

• Optimization of particle size, polydispersity index (PDI), surface charge and
encapsulation efficiency (EE) by applying 7-factor, 2-level Plackett-Burman
Design (Zetasizer. HPLC, Statistica® software).

• Assessment of formulation stability: particle size, PDI and zeta potential
(Zetasizer).

• Evaluation of in vitro release characteristics (HPLC).

• Conducting enzymatic stability study (HPLC).

• Assessment of cytotoxicity (RTCA SP) and intestinal permeability across Caco-2
cell model (HPLC).

Design and evaluation of liraglutide loaded PLGA NPs 

• Optimization of hydrophobic ion pairs (HIPs) of Exn with cationic/anionic
surfactants, and evaluating the precipitation efficiency and zeta potential of the
HIPs (HPLC, Zetasizer).

• Development of SEDDS loaded with HIPs (exenatide:surfactant), and evaluation
of particle size, PDI, zeta potential, and HIPs payload (Zetasizer, HPLC).

• Assessment of formulation stability: particle size, PDI and zeta potential
(Zetasizer).

• Evaluation of in vitro release characteristics (determination of log D
SEDDS/release medium of HIPs) (HPLC).

• Assessment of cytotoxicity (hemolysis assay) and intestinal permeability on
freshly excised rat intestinal mucosa (ELISA, Microplate reader).

• In vivo pharmacokinetic study following the oral administration in healthy rats
(ELISA, Microplate reader).

Design and evaluation of exenatide loaded SEDDS 



6 
 

2. THEORETICAL BACKGROUND 

2.1.Incretin based therapies for T2DM 

Incretin-based agents, including glucagon-like peptide-1 (GLP-1) analogues and dipeptidyl 

peptidase-4 inhibitors (DPP-4i), represent potential options for T2DM treatment (Łabuzek et al., 

2013). These novel therapies have been recommended by the American Diabetes Association 

(ADA) and the European Association for the Study of Diabetes (EASD) as second line therapy for 

T2DM (Inzucchi et al.,2015). 

The incretin effect refers to the amplification of insulin secretion that occurs when glucose 

is ingested orally as opposed to glucose given in any other way that bypasses the gut, under similar 

plasma glucose levels. In healthy individuals, the response to oral glucose is two to three-fold 

greater than the response to intravenous (i.v.) glucose (Hare et al., 2010). However, T2DM patients 

had shown to have a diminished or absent incretin effect, due to decreased secretion and 

insulinotropic action of incretin hormones namely; glucose-dependent insulinotropic polypeptide 

(GIP) and GLP-1 (Nauck et al., 1986; Nauck, Baller and Meier, 2004). This suggests the significant 

contribution of these incretin hormones to glycemic control. Since the insulinotropic activity of 

GLP-1 is reported to be largely preserved in T2DM patients, this peptide has been considered as a 

potential therapeutic choice for T2DM. The hyperglycemia in patients with T2DM can readily be 

normalized by the i.v. administration of GLP-1, even at relatively low doses (Knop et al., 2007; 

Phillips and Prins, 2011). Unlike GLP-1, continuous i.v. infusion of GIP to T2DM patients has 

resulted in no significant glucose-lowering effect (Jones et al., 1989; Kazafeos, 2011).  

2.1.1. Pharmacological effects of GLP-1 

GLP-1 (7-36) (80% of circulating GLP-1) is a 30-amino acid polypeptide produced by post-

translational processing of preproglucagon located on chromosome 17, and secreted from the 

intestinal L enteroendocrine cells of the ileum in response to food intake (Pacheco-López and 

Langhans, 2013). It binds to and activates the GLP-1 receptors belonging to class B family of G-

protein-coupled receptors (GPCRs), and located in many tissues including the pancreas, stomach, 

duodenum, heart, muscles,  liver in addition to several parts of the brain (Campos, Lee and Drucker, 

1994; Bullock, Heller and Habener, 1996) (Figure 2). GLP-1 regulates the expression of β-cell 

genes as it stimulates pancreatic β-cell proliferation and differentiation, inhibits β-cell apoptosis 

and prevents β-cell glucolipotoxicity. Moreover, GLP-1 promotes insulin gene transcription, 
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blocks glucagon secretion from the pancreas, prevents acid secretion and gastric emptying and 

reduces food intake by inducing satiety, leading to body weight decrease (Tran et al., 2017). 

Since its discovery in the early 1980s (Bell et al., 1983), GLP-1 has been regarded as 

possible potential key for T2DM treatment due to its unique antidiabetic functions. However, once 

in the circulation, GLP-1 undergoes a rapid N-terminal degradation by endopeptidases such as 

dipeptidyl peptidase-4 (DPP-4) enzyme which results in a short half-life of one to two minutes. 

The necessity of continuous i.v. infusion of native GLP-1 to normalize blood glucose levels in 

patients with T2DM is clearly not of any clinical potential for long term treatment (Nauck et al., 

1993). To circumvent this issue, DPP-4i and GLP-1 analogues have been successfully developed 

to treat T2DM patients. 

 

 

Figure 2.  Schematic representation of GLP-1 effects in peripheral tissues. 

 

2.1.2. GLP-1 analogues: Exenatide and Liraglutide  

GLP-1 analogues have been recently acknowledged as a powerful treatment strategy for 

patients with T2DM. Exenatide (Exn), a 39-amino-acid peptide (molecular weight:4.186 KDa), 

is the synthetic form of exendin-4 which was isolated from the saliva of the lizard Heloderma 

suspectum in 1992 (Eng et al., 1992). The substitution of Arginine at the 2nd position in GLP-1 

for Glycine in Exn (Figure 3) provides resistance against DPP-4 and thus a longer half-life of 

∼2-4 h (Shi et al., 2018a). Exn is the first GLP-1 analogue to reach the market as Byetta® which 

https://www.sciencedirect.com/topics/medicine-and-dentistry/position
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is administered twice daily at a dose of 5-10 µg through SC injection. Besides, Bydureon® is a 

sustained release Exn product prepared by microsphere-based technology where Exn is 

encapsulated in PLGA microspheres controlling the drug release over an extended period of 

time and has a 2-week half-life (Gupta, 2013).  

Acylation is a process that was applied to prolong the half-life of GLP-1 through ensuring 

slow release from the injection site; promoting binding to human albumin, which can contribute to 

protecting it from metabolic degradation by DPP-4. Liraglutide (Lira) or NN2211 (MW: 3751.2 

Da) is an is recombinant palmityl-acylated derivative of GLP-1 with two modifications (Figure 3): 

Arginine 34 for Lysine substitution, and a fatty acid side chain (16-carbon palmitate) has been 

attached to Lysine 26 via a glutamic acid linker (Araújo et al., 2012). Lira retains the physiological 

activities of GLP-1 with a considerably longer half-life (approximately 13h) that supports once-

daily dosing (Iepsen, Torekov and Holst, 2015). Lira once daily SC injection (Victoza®) was 

approved by both the European Medicine Agency (EMA) (2009) and the U.S. Food and Drug 

Administration (USFDA) (2010) for the treatment of T2DM. USFDA (2014) and EMA (2015) 

approved Lira under the name Saxenda® for the chronic weight management in patients with 

obesity or who are overweight with BMI ≥ 27 kg/m2 and have a weight-related comorbid 

conditions (Mehta, Marso and Neeland, 2017). The dose of Lira SC injection is 3.0 mg once daily 

in case of weight management in contrast to the 1.2 or 1.8 mg once daily for T2DM management. 

 

Figure 3. Amino acid structure of Exenatide and Liraglutide in comparision with native human 

GLP-1 

https://www.sciencedirect.com/topics/medicine-and-dentistry/microsphere


9 
 

2.2.Oral delivery of GLP-1 analogues 

GLP-1 analogues Exn and Lira are currently administered through SC injection which is 

an invasive route that would adversely affect patients’ adherence to the therapy (Lin et al., 2016).  

Accordingly, a great effort should be devoted to developing a patient-friendly delivery system, and 

the oral route is considered the most widely accepted means of administration as it could prove 

safe and effective. Besides, the oral delivery stimulates the normal physiological pathway of the 

native GLP-1 peptide by targeting the liver, and subsequently minimizes potential side effects 

which would enhance patients’ compliance to the treatment and thus increase the treatment efficacy 

(Shamekhi, Tamjid and Khajeh, 2018). However, oral delivery of peptide drugs constitutes a great 

challenge due to the harsh acidic environment in the stomach, the enzymatic barrier in the 

gastrointestinal (GI) tract, and sulfhydryl barrier that all lead to the low stability of such 

macromolecules. Additionally, the mucus barrier presented by the mucus gel layer covering the GI 

epithelium, and the absorption barrier presented by GI epithelial cells and tight junctions between 

adjacent epithelial cells contribute to the poor diffusion and penetration of the peptides across the 

intestinal epithelium into the blood circulation, resulting in low oral bioavailability (Leonaviciute 

and Bernkop-Schnürch, 2015).  

A huge variety of strategies have been designed aiming to deliver these anti-diabetic 

peptides orally, from the structural modification of the peptide drug such as PEGylation, 

lipidization, inclusion of unnatural amino acids, palmitoylation and biotinylation to incorporation 

of enzyme inhibitors, absorption enhancers and cell-penetrating peptides (Ismail and Csóka, 2017; 

Kamei et al., 2018), in addition to loading the peptide drugs into carrier systems. Among the several 

developed strategies, incorporation of GLP-1 analogues in nanocarrier systems could be the most 

promising choice attracting more and more academic and industrial research groups.    

2.2.1.  Nanocarriers for oral GLP-1 and its analogues delivery 

The USFDA defines nanomaterials as “materials that have at least one dimension in the 

range of approximately 1 to 100 nm and exhibit dimension-dependent phenomena” (USFDA, 

2014). This definition is even broader in the field of drug delivery, including particles up to 1000 

nm in size (Jeevanandam et al., 2018). The potential success of NCs as delivery systems for many 

small molecules has paved the way for the application of nanotechnology for peptides and proteins 

delivery (Navya et al., 2019). Recently, several studies have been conducted using nanotechnology 

approaches to overcome the main biological barrier limiting GLP-1 administration, namely, its 
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short half-life (Araújo et al., 2012; Pérez-Ortiz et al., 2017). For efficient oral GLP-1 and its 

analogs delivery, a wide range of nanosystems have been explored. In addition to the protective 

effect towards the harsh environment in the GI tract, nanocarrier systems could control peptides 

release, facilitate their mucus permeation and enhance the cellular uptake, and accordingly, 

enhance the peptides oral bioavailability (Abeer et al., 2019).  

2.2.1.1. Polymeric nanoparticles 

Utilizing polymers to form NPs provides simple elaboration and design by enabling 

modulation of physicochemical characteristics (particle size, surface properties, and 

hydrophobicity), drug release properties in addition to biological behavior (targeted drug delivery 

and improved cellular uptake) (Patel et al., 2014). Polymeric NPs are stable in the GI environment 

and able to protect encapsulated therapeutics from the rapid pH variations and enzymatic 

degradation due to their capability of forming a steric hindrance for enzymes to attack to 

encapsulated peptide drugs (Suchaoin and Bernkop-Schnürch, 2017). They can also be excellent 

carrier systems to evade the efflux route limiting the intestinal transport since P-glycoprotein (Pgp) 

is incapable of recognizing NPs (Xu et al., 2012). Providing protection towards degradation in the 

GI tract, enhancing cellular contact with the intestinal membrane, and promoting absorption in the 

small intestine, polymeric NPs are considered as promising carrier systems for oral peptide 

delivery. 

Commonly used polymers include natural polysaccharides such as chitosan (CS), cellulose 

and alginate as well as synthetic biodegradable polymers, namely, poly ε-caprolactone (PCL), poly 

(d,l -lactic acid) (PLA), polyacrylic acid (PAA) and poly (d,l -lactic-co-glycolic acid) (PLGA) 

(Kamaly et al., 2016). Since biodegradable polymers are degraded in vivo by either hydrolysis or 

other enzymatic mechanisms and producing nontoxic degradation products which are further 

eliminated by the normal metabolic pathways, these polymers are the preferred candidates for the 

design of polymeric nanosystems. Approved by USFDA for therapeutic use in human, PLGA (a 

co-polymer of PLA and polyglycolic acid (PGA)) is extensively utilized in nanodelivery for the 

entrapment of several therapeutics including biologics (Fredenberg et al., 2011; Gutjahr et al., 

2016). It has been demonstrated that release kinetics of therapeutics from PLGA NPs are highly 

affected by molecular mass, the ratio of lactide to glycoside and drug loading. PLGA backbone 

contains labile bonds, ester linkage, being sensitive to hydrolysis (Mir, Ahmed and Rehman, 2017), 

and drug release from PLGA nanosystems can be mediated by different mechanisms: (i) desorption 
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of drug bound to the surface, (ii) surface erosion, (iii) polymer degradation at the surface or within 

the NPs matrix due to cleavage of ester bonds, (iv) drug diffusion through polymer matrix and/or 

(v) a combined erosion-diffusion process (Danhier et al., 2012; Kamaly et al., 2016).  

Peptides encapsulation in polymeric NPs can be reached by several techniques such as 

nanoprecipitation, supercritical fluids, salting out, emulsification/solvent diffusion and 

emulsification/solvent evaporation in addition to ionic gelation and polymerization of monomers 

(Vandana and Sahoo, 2009; Nagavarma et al., 2012; Gaudana et al., 2013; Marin, Briceño and 

Caballero-George, 2013). Among these up-to-date applied techniques, the double emulsion 

W1/O/W2 solvent evaporation method is the most widely used one for loading peptides into PLGA 

NPs (Araújo et al., 2016) (Figure 4).  

 

 

Figure 4. Schematic representation of preparation of PLGA nanoparticles (NPs) by water in oil in 

water (W1/O/W2) double emulsion solvent evaporation method. 

Aiming to overcome the challenges limiting the oral GLP-1 delivery, different formulations 

of polymeric and lipid NPs were developed via modified double emulsion W1/O/W2 solvent 

evaporation technique, and results showed that CS-coated PLGA NPs was the system which could 

efficiently retain the GLP-1 from the harsh environment of the stomach simulated conditions and 

sustained the peptide release. However, this nanosystem was not as successful as CS-coated porous 

silicon NPs in enhancing the permeability across  the intestinal Caco-2 and HT29-MTX cell 

monolayers (Araújo et al., 2014). Another research group developed oral Exn -loaded CS NPs 

prepared using ionotropic gelation and modified with CSKSSDYQC peptide. This system was able 
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to significantly enhance the transport of Exn across a co-cultured Caco-2 and HT29 cell membrane, 

protect Exn from enzymatic degradation in the GI tract, and improve the relative bioavailability of 

the drug (versus SC) up in db/db mice up to 6.56% (Li et al., 2015).   

In a recent work, GLP-1 loaded PLGA-CS NPs were prepared by modified double 

emulsion W1/O/W2 solvent evaporation technique and conjugated to polyarginine (R9) using 

EDC/NHS coupling chemistry. This was followed by enteric encapsulation of the developed NPs 

within HPMC, and loading with the dipeptidyl peptidase-4 inhibitor (DPP-4i), using a double 

emulsion technique through a microfluidic flow-focusing glass device (Araujo et al., 2016). 

Following the oral administration of the developed nanosystem in T2DM rat model, significantly 

higher plasmatic insulin levels and lower blood glucose levels with regard to the oral (GLP-

1+DPP-4i) solution were obtained. Exn was recently encapsulated into Fc-modified polyethylene 

glycol (PEG)-PLGA NPs by double emulsion W1/O/W2 solvent evaporation method as well, and 

this nanosystem revealed improved Caco-2 cells uptake and could produce a sustained reduction 

in blood glucose levels following the oral delivery in db/db mice (Shi et al., 2018b). 

2.2.1.2. Self-emulsifying drug delivery systems  

SEDDS are defined as isotropic thermodynamically stable mixtures of natural or synthetic 

oils, solid or liquid surfactants, solvents and co-solvents/surfactants which could emulsify 

spontaneously to produce oil-in-water (O/W) nanoemulsion of approximately 100 nm or less in 

size upon being introduced into aqueous phase such as GI fluids under gentle agitation (Khattab, 

Hassanin and Zaki, 2017; Mohd Izham et al., 2019). This spontaneous formation of nanoemulsion 

in the GI tract presents the drug in a solubilized form inside small droplets of oil, all over its transit 

through the GI tract. SEDDS can offer the advantages of enhanced physical and/or chemical 

stability of the formulation, a high degree of patient compliance/tolerability due to the possibility 

of filling them into unit dosage forms such as soft/hard gelatin in addition to the ease of production  

and scale-up process (Date et al., 2010).  

SEDDS have emerged as a potential platform for the oral peptide delivery since they 

exhibited promising results for oral delivery of different therapeutic peptides (Ijaz et al., 2016; 

Leonaviciute et al., 2016; Zupančič et al., 2017; Nardin and Köllner, 2018).). This can be due to 

their protective effect against peptidases and proteases that are too hydrophilic to enter the 

hydrophobic droplets of SEDDS (Pereira De Sousa and Bernkop-Schnürch, 2014). The mucus 

permeation enhancing properties of SEDDS should also be considered since they showed 
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promising results in overcoming the mucus gel barrier in a comparatively efficient manner 

facilitating the transport of incorporated peptide drugs to the underlying epithelium (Mahmood and 

Bernkop-Schnürch, 2018). The intestinal permeation enhancing effect of SEDDS for insulin has 

been proved and the results indicate that SEDDS can enable opening tight junctions of the Caco-2 

monolayer. The relative oral bioavailability of insulin embedded in this formulation (versus SC) 

was also improved reaching up to 15% (Ma et al., 2006).  

Due to their hydrophilicity, hydrophilic macromolecules such as peptides and proteins 

cannot be directly loaded into SEDDS nanodroplet. Up to date, the hydrophobic ion-pairing (HIP) 

technique could be the most promising technique to increase the lipophilicity of hydrophilic 

peptide drugs upon co-precipitation of the peptide due to its full or partial association with an 

appropriate counterion in aqueous media (Chamieh et al., 2019; Phan, Shahzadi and Bernkop-

Schnürch, 2019).  

Various anionic surfactants sodium glutamate, sodium dodecanoate, sodium deoxycholate 

and pamoic acid exhibiting mono- and di-carboxylic moieties were used for hydrophobic ion pairs 

(HIPs) formation with insulin, leuprolide and bovine serum albumin, and precipitated HIPs were 

further incorporated in SEDDS formulations. Findings showed that the stability of HIPs is an 

important controlling factor for improving their affinity towards SEDDS oily droplets and 

subsequently affecting the release behavior of these complexes upon dilution with intestinal fluids, 

which in turns affect their intestinal permeability (Nazir et al., 2019). In another study, insulin was 

successfully into SEDDS formulation in the form of insulin:dimyristoyl 

phosphatidylglycerol HIPs, and the developed SEDDS could efficiently protect insulin from 

enzymatic degradation, prevent the burst effect and increase the mucus permeability (Karamanidou 

et al., 2015).  

2.3.Quality by Design (QbD) approach in pharmaceutical development 

Due to the complexity of macromolecules containing nanosystems development, it is a 

priority to understand the potential risks to product quality, safety and efficacy associated with the 

nanosystem attributes (de Vlieger et al., 2019). Pharmaceutical QbD is recommended by regulatory 

bodies to be applied as risk based approach which starts with predefined objectives and emphasizes 

product and process understanding and control based on sound science and quality risk 

management (USFDA, 2009). The elements of a pharmaceutical QbD approach are described in 

the relevant guidelines of the International Council of Harmonization (ICH), namely ICH Q8 (R2) 

https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/anionic-surfactants
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(Pharmaceutical Development), ICH Q9 (Quality Risk Management), and ICH Q10 

(Pharmaceutical Quality System) (ICH, 2005, 2008, 2009). The ICH and USFDA strongly promote 

the implementation of QbD principles in drug product development since the quality must be built 

into the product (Mishra et al., 2018). The flow chart in figure 5 illustrates the extended version of 

QbD model for R&D stage that was proposed by Csóka et al. (Csóka et al.,2018). The 

preformulation stage (labeled as zero phase) includes careful assessment of the available 

biopharmaceutical knowledge of the unmet therapeutic needs in addition to evaluating all the 

possibilities concerning the administration route–dosage form–drug substance triangle. This is 

followed by defining the QTPP that describes the targeted safety and efficacy aspects during 

product development. Identifying the characteristics that are critical to quality, CQAs forms the 

next step followed by the selection of CPPs and CMAs which are defined based on a thorough 

understanding of process design, previous practical investigations and evaluation of relevant 

literature. The Ishikawa diagram and Pareto charts can help in CQA, CMAs and CPP selection 

during the early development. The next step is to conduct RA to identify and rank the potentially 

high-risk attributes that warrant further optimization. Setting up the appropriate Design of 

Experiment (DoE) could enable the researcher to minimize the number of runs, rank the most 

influential parameters that could highly impact the quality of the product (Pallagi et al., 2019) and 

select the optimum level of each parameter that assures the desired CQAs values, and ultimately 

generates the design space (DS) to comply with the predefined QTPP. One of the important 

questions when implementing DoE methodology is the selection of adequate experimental design 

that matches with the experimental objective. When estimating the main effects of a large number 

of factors are of interest to be investigated, screening designs such as 2- level Plackett-Burman 

design (PBD) is applied (Rahman et al., 2010). The main advantage of applying such screening 

designs is the minimum number of observations needed to calculate the effect of several variables. 

If providing further information on direct and pairwise-interaction effects and curvilinear variable 

effects is desired, second-order designs: central composite designs (CCD) and Box-Behnken 

designs (BBD) are the most widely applied ones (Rakić et al., 2014). The knowledge gained during 

previously designed development studies culminates in the establishment of a control strategy to 

measure the critical attributes and evaluate them according to the desired predefined value within 

the acceptance range, followed by evaluating the possibilities of continuous improvement. 
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Figure 5. QbD flow chart for the research and development (R&D) stage. 

 

3. MATERIALS 

Liraglutide was purchased from Xi'an Health Biochem Technology Co., Ltd (Shaanxi, 

China). Exenatide was purchased from Chemos GmbH (Altdorf, Germany).  

For PLGA NPs preparation, Poly (D,L-lactide-co-glycolide) (PLGA 50:50, Mw=30,000-

60,000 Da), poly (vinyl alcohol) (MOWIOL 4-98®, MW~27000 Da) and D-(+)-Trehalose 

dihydrate (MW=378.33 g/mol) were purchased from Sigma-Aldrich (Munich, Germany).                             

D-(-) -Mannitol was supplied from Molar Chemicals Ltd. (Budapest, Hungary). Sodium acetate 

anhydrous was supplied from Scharlau Chemie S.A. (Barcelona, Spain). Ethyl acetate used for 

dissolving PLGA was obtained from Reanal Labor (Budapest, Hungary). Pepsin from porcine 

gastric mucosa, powder (≥400 units/mg protein) and pancreatin from porcine pancreas (≥3× 
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USP specifications) were purchased from Sigma Aldrich (Budapest, Hungary). The Caco-2 

intestinal epithelial cell line was purchased from ATCC (cat.no. HTB-37) at passage 60. 

Dulbecco’s modified Eagle’s medium (Gibco, Life Technologies, Carlsbad, CA, USA) and 10% 

fetal bovine serum (Pan-Biotech GmbH, Aidenbach, Germany) were used as cell 

culture supplements.  

For SEDDS preparation, Capmul® MCM (mono/diglycerides of caprylic acid, HLB 5-

6) and Captex® 355 (caprylic/capric triglycerides, HLB 0) were supplied from Abitec 

(Janesville, Wisconsin, USA). Kolliphor® RH 40 (polyoxyl hydrogenated 40 castor oil, HLB 14-

16), sodium docusate (DOC) and tetraheptylammonium bromide (THA) were purchased from 

Sigma-Aldrich (Vienna, Austria). Minimum Essential Medium Eagle (MEM) and Dulbecco's 

phosphate‐buffered saline were supplied from Biochrom GmbH (Berlin, Germany). Exendin-

4 fluorescent ELISA kit was purchased from Phoenix Pharmaceuticals, Inc. (Burlingame, CA, 

USA).  Hanks’ Balanced Salts (HBSS), propylene glycol and all other reagents and solvents 

were purchased from Sigma-Aldrich (Vienna, Austria). Table 1 shows the structures and 

applications of the excipients used in this work. 

 

Table 1. Structures and applications of excipients applied for experimental work. 

Excipient Structure Applications 

PLGA 

 

Biodegradable and biocompatible polymer 

used for PLGA NPs preparation 

D- (+)-Trehalose dihydrate 

 

Lyoprotectants used to stabilize PLGA NPs 

and protect them during freeze-drying and 

storage 

D- (-)-Mannitol 

 

PVA 

 

Surfactant used as stabilizer of PLGA NPs 

by minimizing surface tension of continuous 

aqueous phase 

https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/exendin-4
https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/exendin-4
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Capuml® MCM 

 Oils used for SEDDS preparation 

 

Captex® 355 

 

Kolliphor® RH 40 

 

Surfactant used for SEDDS formulation 

PG 

 
 

Co-solvent of hydrophobic ion pairs (HIPs) 

into SEDDS formulation 

DOC 

 

Anionic surfactant used to from hydrophobic 

ion pairs (HIPs) with exenatide 

THA  

 

Cationic surfactant used to from 

hydrophobic ion pairs (HIPs) with exenatide 

 

4. METHODS 

4.1. QbD based strategy for development of GLP-1 analogue loaded nanocarriers 

At the preformulation design stage, all the possibilities concerning the administration route, 

dosage form and drug substance were carefully evaluated. This was followed by the identification 

of the QTPP for GLP-1 analogue loaded nanocarrier. Defining the CQAs, CMAs and CPPs was 

the next step, followed by performing the initial RA with Lean QbD® Software (QbD Works LLC. 

USA, CA, Fremont). At this stage, the interdependence rating was performed between CQAs and 

CMAs, CQAs and CPPs on a three-level scale and categorized as “high” (H), “medium,” (M) or 

“low” (L). The whole risk estimation also resulted in calculated and ranked severity scores of the 

CQAs that were presented in Pareto chart generated by the software. 
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4.2.Liraglutide loaded PLGA NPs 

4.2.1. Preparation of liraglutide loaded PLGA NPs  

The preparation of Lira loaded PLGA NPs was carried out by means of the double emulsion 

W1/O/W2-solvent evaporation method (Ismail et al., 2019b). PLGA was dissolved in ethyl acetate 

at room temperature to form the organic phase. The inner aqueous phase of Lira dissolved in 1% 

(m/v) sodium acetate aqueous solution was slowly added to the organic phase, and water in oil 

(W/O) primary emulsion was formed upon sonication at the power of 90 W for 30 s using a probe 

sonicator in ice bath. The obtained emulsion was re-emulsified with the external aqueous phase 

containing PVA as a stabilizer by sonication at the power of 90 W for 0.5-2 min using the probe 

sonicator in ice bath. The obtained W1/O/W2 double emulsion was subjected to magnetic stirring 

at room temperature over the night to allow the complete evaporation of ethyl acetate. The 

nanoparticles were then collected by centrifugation for 15 min at 16500 rpm, washed three times 

with water, resuspended in deionized water, and lyophilized at -40 °C at 0.01 mbar (Scanvac, 

CoolSafe 100-9 Pro freeze dryer). A 5-10% (m/v) of mannitol or trehalose was added as 

lyoprotectants. Samples were stored at -20 °C for further use. 

4.2.2. Optimization of liraglutide loaded PLGA NPs: Plackett-Burman design (PBD) 

PBD with a total of 8 runs involving 7 independent variables at two levels was carried out 

using STATISTICA 13® software (Table 2). Particle size (Y1), polydispersity index (PDI) (Y2), 

encapsulation efficiency (EE) (Y3) and zeta potential (Y4) were selected as dependent variables. 

The design was validated by 3 extra center checkpoint formulations and the bias (%) between 

predicted and observed values of response was calculated. The optimized formulation was prepared 

within the DS and compared with the predicted values of the responses. 
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Table 2. The input factor levels in 7-factor, 2-level, 8-run Plackett-Burman Design (PBD). 

Run code PLGA 

(mg) 

Lira 

(mg) 

2nd sonication time 

(min) 

PVA 

(%) 

Lyoprotectant 

type 

Lyoprotectant 

(%) 

W2/O 

ratio 

PBD-F1 30 0.5 0.5 2 Trehalose 10 2 

PBD-F2 60 0.5 0.5 0.5 Mannitol 10 5 

PBD-F3 30 5 0.5 0.5 Trehalose 5 5 

PBD-F4 60 5 0.5 2 Mannitol 5 2 

PBD-F5 30 0.5 2 2 Mannitol 5 5 

PBD-F6 60 0.5 2 0.5 Trehalose 5 2 

PBD-F7 30 5 2 0.5 Mannitol 10 2 

PBD-F8 60 5 2 2 Trehalose 10 5 

 

4.2.3. Characterization of the developed liraglutide loaded PLGA NPs 

4.2.3.1. Particle size, size distribution, surface charge and encapsulation efficiency measurements 

The hydrodynamic diameter (Z-average), PDI and zeta potential of NPs reconstituted in 

demineralized water were measured in a folded capillary cell by using Malvern Nano ZS Zetasizer 

(Malvern Instruments Ltd. UK) equipped with He-Ne laser (633 nm). The EE of Lira loaded in 

PLGA NPs was determined directly using the centrifugation method (Ismail et al., 2019b), and the 

supernatant was then collected and the amount of encapsulated Lira was measured using the HPLC 

method. Stability of the optimized Lira-PLGA NPs was also investigated by measuring the 

particle size, PDI and zeta potential after one week at room temperature. All the measurements 

were conducted in triplicate.  

4.2.3.2. In vitro release study 

The release behavior of Lira from PLGA NPs was evaluated in simulated gastric fluid 

without enzymes (SGFsp: 0.1N HCl at pH 1.2) over 2 hours followed by simulated intestinal fluid 

without enzymes (SIFsp: phosphate buffer saline at pH 6.8) over 4 hours. An aliquot of 500 μl was 

withdrawn from the release medium at predetermined time points and replenished with the same 

volume of the fresh preheated medium. Samples were centrifuged at 16,500 ×g and 4°C for 10 

min, and the Lira concentration in the supernatant was determined by HPLC. The cumulative 
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percentage of Lira released was calculated and then plotted versus time. All experiments were 

conducted in triplicate. 

4.2.3.3. Enzymatic degradation study 

PLGA NPs containing 500 µg of Lira were resuspended in 2 ml of pepsin containing 

simulated gastric fluid SGF (3.2 g pepsin, 2 g of sodium chloride, 7 mL HCl, mixed and diluted 

with water to 1L, pH=1.2) or pancreatin containing simulated intestinal fluid SIF (10 g pancreatin, 

6.8 g KH2PO4, mixed and adjusted with 0.2 N NaOH then diluted with water to 1L, pH=6.8) and 

incubated at 37°C under stirring of 100 rpm. Native Lira was used as control. Samples were 

withdrawn at specific time intervals over a 2-hour period, and an equal volume of ice-cold reagent 

was added: 0.1 M NaOH for SGF and 0.1 M HCl for SIF, to stop the enzymatic reaction. Samples 

were centrifuged at 16,500 ×g and 4°C for 10 min and the supernatant was analyzed by HPLC. All 

incubations were done in triplicates. Lira recovery in the withdrawn samples was calculated using 

the following equation: 

                      Lira recovery (%) = (Remaining Lira amount/theoretical Lira amount) *100 

4.2.3.4. Treatment of Caco-2 cells 

The Caco-2 cells were grown, as previously reported (Bocsik et al., 2019). The 

concentration of stock solutions for cell culture experiments was 1 mM for both the therapeutic 

peptide Lira and the PN159 peptide, which was used as a reference absorption enhancer. The final 

concentration of Lira encapsulated in the PLGA NPs was 100 µM and was diluted directly before 

using it. Lira was examined at 100 µM, while PN159 was examined at 3 µM concentration both 

for cell viability and permeability.  

4.2.3.5. Cell viability measurement by impedance 

Impedance was measured at 10 kHz by an RTCA SP instrument (RTCA-SP instrument, ACEA 

Biosciences, San Diego, CA, USA).  Lira, Lira-loaded/free PLGA NPs, Lira and PN159 solution, 

and PN159 peptide were diluted in cell culture medium and the effects were followed for 24 h. 

Triton X-100 (TX-100) (1 mg/ml) was used as a reference positive control. The cell index was 

defined as Rn-Rb at each time point of measurement, where Rn is the cell–electrode impedance of 

the well when it contains cells and Rb is the background impedance of the well with the medium 

alone. 
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4.2.3.6. Permeability study on the Caco-2 cell model 

Transepithelial electrical resistance (TEER) monitoring was performed by an EVOM volt-

ohmmeter (World Precision Instruments, Sarasota, FL, USA) combined with STX-2 electrodes. 

The final TEER was expressed relative to the surface area of the monolayers as Ω × cm2 after the 

subtraction of TEER values of cell-free inserts. Caco-2 cells were seeded onto Transwell inserts 

(polycarbonate membrane, 3 µm pore size, 1.12 cm2 surface area) and cultured for three weeks. 

For transport experiments, the inserts were transferred to 12-well plates containing 1.5 mL Ringer-

buffer in the acceptor (lower/basal) compartments. In the donor (upper/apical) compartments, the 

culture medium was replaced by 0.5 mL Ringer-buffer containing treatment solutions of Lira, Lira 

loaded in PLGA NPs, and Lira and PN159 solution at the concentration of 100 µM for Lira for 1 

h. Treatment solutions from both compartments were collected and the Lira level was detected by 

HPLC. 

The apparent permeability coefficients (Papp) and recovery (mass balance) were calculated as 

described previously (Hellinger et al., 2012; Bocsik et al., 2016). 

4.2.3.7. Immunohistochemistry 

Aiming to investigate the morphological changes in interepithelial junctions, immunostaining 

for the junctional proteins, zonula occludens protein-1 (ZO-1) and β-catenin, was carried out 

(Ismail et al., 2019a). Cells were grown on glass coverslips (Menzel-Glaser, Braunschweig, 

Germany) at a density of 4 × 104 cells/coverslips for 4 days and treated with Lira (100 µM), Lira 

loaded in PLGA NPs, Lira and PN159 solution, and PN159 peptide (3 µM) solutions for 1 h. 

Hoechst dye 33342 was used to stain the cell nuclei. After mounting the samples (Fluoromount-G; 

Southern Biotech, Birmingham, AL, USA), the staining was visualized by a Visitron spinning disk 

confocal system (Visitron Systems GmbH, Puchheim, Germany). 

4.2.3.8. Chromatographic equipment and conditions  

Lira was analyzed by a reversed-phase HPLC (Shimadzu Corporation, NEXERA X2, 

Tokyo, Japan) method that was developed in our lab. A Kinetex® C18 column (5 μm, 150*4.6 

mm, (Phenomenex, USA) was used as a stationary phase. The column temperature was set to 40 

°C. The mobile phase consisted of 0.02 M aqueous KH2PO4 solution (pH = 7.0, eluent A) and 

acetonitrile (eluent B), and was pumped in a gradient mode from 80:20 (A:B, v/v) to 30:70 (A:B, 

v/v) in 12 min then set back to 80:20 (A:B, v/v) between 12.1-15 min at a flow rate of 1.5 ml/min 

over 15 min. Fifty microliters of sample volume were injected. The wavelength of UV detection 
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was 214 nm. Retention time of Lira was 8.65 min and the regression coefficient (R2) of the 

calibration curve was 0.996 proving high linearity.  

4.3.Exenatide loaded SEDDS 

4.3.1. Optimization of hydrophobic ion-pairing of exenatide with THA and DOC 

Exn acetate aqueous solution was prepared in a concentration of 2 mg/ml and the pH 

was adjusted with 0.1 M NaOH to 8.0. Increasing amounts of THA were dissolved in 1 ml of 

demineralized water: methanol and added slowly and dropwise to 1 ml of the Exn solution under 

light shaking. Exn to THA ratios of 1:1, 1:2, 1:4, 1:6, 1:8, 1:10 and 1:12 were tested. Exn -DOC 

ion pairs were prepared as previously described (Menzel et al., 2018), where the pH of  2 mg/ml 

Exn solution was adjusted to 3.0 with 2 M HCl followed by the addition of an equal volume of 

DOC aqueous solution slowly and dropwise to Exn solution under light shaking. Exn to DOC 

ratios of 1:1, 1:2, 1:4 and 1:6 were tested.  

HIPs were collected by centrifugation for 5 min at 13400 rpm (MiniSpin®, Eppendorf 

Austria GmbH) and washing 3 times with water. The supernatant that contained the remaining 

amount of dissolved Exn was analyzed by HLPC to calculate the precipitation efficiency using 

the following equation: 

Precipitation efficiency (%) =
peptide concentration after HIP

peptide concentration before HIP
∗ 100  

Zeta potential of HIPs with surfactant was determined with Zetasizer Nano ZSP 

(Malvern Instruments, Worcestershire, UK). Precipitated HIPs were frozen, lyophil ized at -

30°C and 3-5 mTorr (Christ Gamma 1-16 LSC Freeze dryer) and stored at -20°C for further use. 

4.3.2. Development of Exn-THA and Exn-DOC loaded SEDDS  

HIPs with THA were prepared at a molar ratio of 1:8 (Exn: THA) at pH 8.0. HIPs with 

DOC were prepared at a molar ratio of 1:4 (Exn: DOC) at pH 4.0. SEDDS were formed by 

dissolving 2 mg of HIPs having been prepared as described above in 4 mg of propylene glycol 

(PG) by stirring for 2 min and homogenizing (1500 rpm) for 10 min at room temperature 

(Eppendorf ThermoMixer®, Hamburg, Germany). This was followed by addition of 41 mg of 

Capmul MCM (oil), 40 mg of Kolliphor RH (surfactant) and 15 mg of Captex 355 (oil) and 

homogenizing the mixture (1500 rpm) after the addition of each component. 
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4.3.2.1. Particle size, size distribution, surface charge and payload measurements 

To determine the maximum payload of HIPs of Exn-surfactant in the formulation, the 

preconcentrate was analyzed by HPLC. Furthermore, the droplet size (Z-average), PDI and zeta 

potential of SEDDS having been dispersed in demineralized water (1:100) were measured via 

Zetasizer Nano ZSP (Malvern Instruments, Worcestershire, UK). Stability of the SEDDS was 

also tested by measuring the droplet size, PDI and zeta potential after one week at room 

temperature. All the measurements were performed in triplicate. 

4.3.2.2. Determination of log D SEDDS/release medium of Exn-THA and Exn-DOC 

The release characteristics of Exn-THA and Exn-DOC from SEDDS were evaluated 

according to the distribution of the ion pairs between the oily droplet phase of SEDDS and the 

release medium (log DSEDDS/RM) (Shahzadi et al., 2018). Lyophilized Exn-THA (molar ratio 1:8) 

and Exn-DOC (molar ratio 1:4) were dispersed in SIF (50 mM phosphate buffer pH 6.8) and 

HBSS. After stirring for 3 hours at 1000 rpm, the suspension was centrifuged for 5 min at 13400 

rpm. The supernatant was analyzed by HPLC to calculate the solubility of HIPs in each release 

medium (CRM). The maximum payload of the complex represents the solubility of HIPs in 

SEDDS (CSEDDS). Log DSEDDS/RM of HIPs was calculated according to the following equation: 

log D 𝑆𝐸𝐷𝐷𝑆/𝑅𝑀 = log 
C RM

C 𝑆𝐸𝐷𝐷𝑆
 

4.3.2.3. In vitro hemolysis assay 

The in vitro hemolysis assay on human erythrocytes can be used as a rapid and reliable 

method to evaluate cytocompatibility of drug delivery systems (Roointan et al., 2018; Lam et al., 

2019). In-vitro hemolysis assay of Exn-THA SEDDS, Exn-DOC SEDDS and blank SEDDS was 

carried out according to a previously reported protocol (Lam et al., 2019).  

First, 50 µl of SEDDS was added to 1 ml of diluted blood to the final concentration of 

0.1%, 0.25% and 0.5% (m/v). This was followed by an immediate shaking of the mixtures on 

thermomixer for 2 h at 300 rpm and 37 °C and additionally homogenized by inversion during 

the incubation. Then, the mixtures were centrifuged at 503*g for 5 min at 5° C. Tecan infinite 

M200 plate reader was used to read the absorbance of the supernatants at a wavelength of 420 

nm. Triton-X-100 1% (m/v) in MEM and sterile Dulbecco’s PBS pH 7.4 served as positive and 

negative control, respectively. 

The percentage of hemolysis (H%) was calculated by the following equation 
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H (%) =
Abs (test) − Abs (neg)

Abs (pos) − Abs (neg)
 

where Abstest is absorbance of the test sample, Absneg is absorbance of PBS (negative control) and 

Abspos is absorbance of TX-100 (positive control). 

4.3.2.4. Ex-vivo permeability study 

The ex-vivo permeability study was performed on fasted rats weighing 200-250 g. Rats 

were sacrificed and the freshly excised small intestine was preincubated in HBSS buffer for 30 

min before being cut into strips of 2 cm mounted in Ussing-type chambers. The apical and 

basolateral sides were filled with 1 mL of HBSS pH 6.8 and incubated for 30 min in a water 

bath at 37 °C. Then, HBSS was replaced by fresh incubation medium at the apical side and by 

the following test samples: (1) 0.25% (m/v)of Exn-THA-SEDDS, (2) 0.6% (m/v) of Exn-DOC 

SEDDS and (3) 8 µg /ml of Exn solution in HBSS at the apical side.   

Aliquots of 200 µl were withdrawn from the basolateral side at 1, 2, and 3 h and replaced 

with an equal volume of fresh HBSS preincubated at 37 °C. Exn concentration in the aliquots 

was quantified by fluorescent ELISA immunoassay (FEK-070-94; Phoenix Pharmaceuticals, Inc., 

USA) following the manufacturer’s instructions. The absorbance was read at 450 nm using a 

microplate reader (Spark Multimode microplate reader, Tecan). Values are presented as 

means ± SD (n = 4).  

4.3.2.5. In-vivo study 

Male Sprague-Dawley rats with a mean bodyweight of 200-250 g were supplied by 

Janvier Labs (Saint Berthevin, France) and the in vivo study was approved by the Ethical 

Committee of Austria and performed according to the principles of Laboratory Animal 

Care. Rats were fasted 2 hours prior to drug administration and 6 hours thereafter but had free 

access to water during the entire experiment. Rats were randomly divided into four groups (n = 

5). The first group was the positive control group where Exn solution was administered via SC 

injection at a dose of 50 µg/kg body weight. The second group was the negative control group 

where Exn solution was orally administered at a dose of 300 µg/kg body. The third and fourth 

group received 300 µg/kg body weight of Exn-THA and Exn-DOC SEDDS formulation via oral 

gavage, respectively. The formulations were diluted with water (1:2) before administration.  

https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/drug-concentration
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Blood samples (100 µl) were collected from the tail vein before drug administration and 

at predetermined time points after dosing. The collected blood samples were then centrifuged 

at 2000* g for 5 min at 4º C and the serum was separated and stored at -80 ºC for further analysis. 

Exn concentration was measured by fluorescent ELISA immunoassay (FEK-070-94; Phoenix 

Pharmaceuticals, INC., USA). The absorbance was read at 450 nm using a microplate reader 

(Spark Multimode microplate reader, Tecan). The relative bioavailability (BAR) of Exn after oral 

administration was calculated using the following equation  

       

 

4.3.2.6. Chromatographic equipment and conditions 

Reversed-phase HPLC (Hitachi Chromaster HPLC-system equipped with 5430 

photodiode array UV detector, Tokyo, Japan) method was developed in our lab to quantify 

exenatide. A Nucleosil® C18 100-5 column (5 μm, 250*4 mm, Phenomenex, USA) was used 

as a stationary phase. The mobile phase consisted of  0.1% TFA in water (eluent  A) and 80% 

acetonitrile with 0.1% TFA (eluent B), and was pumped in a linear-gradient mode from 58:42 

(A:B, v/v) to 24:76 (A:B, v/v) at a flow rate of 0.75 ml/min over 22 min. The column 

temperature was set to 40 °C. Twenty microliters of sample volume were injected. The 

wavelength of UV detection was 278 nm. The retention time of Exn was 16.5 min and the 

regression coefficient (R2) of the calibration curve was 0.999 proving high linearity.  

4.4.Statistical analysis 

All data are presented as means ± SD. PB design of experiment was carried out using 

STATISTICA 13® software, and analysis of variance (ANOVA) was applied to determine the 

statistical significance of each model coefficient. The values of other tested responses were 

compared using ANOVA followed by the Dunnett test or the Bonferroni test. GraphPad Prism® 

5.0 software (GraphPad Software Inc., San Diego, USA) was used. Changes were considered 

statistically significant at p < 0.05. 

BAR (%) =
AUC (oral)*Dose (SC)

AUC (SC)*Dose (oral)
∗ 100 
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5. RESULTS and DISCUSSION 

5.1.QbD based strategy for development of GLP-1 analogue loaded nanocarriers 

The initial step of QbD-based study aiming to design oral GLP-1 analogue loaded 

nanocarriers was to set up the QTPP based on the relevant guideline (USFDA, 2009,  2017), and 

its extended version for early phase of R&D (Csóka et al.,2018) in addition to our initial 

experimental data (Figure 6). PLGA NPs and SEDDS were selected to be further investigated as 

potential carriers to deliver Lira and Exn orally. 

 

 

Figure 6.  Defining the QTPP for GLP-1 analogue loaded nanocarriers (NCs). 
 

Based on reviewing the most relevant production methods, Lira loaded PLGA NPs were 

selected to be prepared using double emulsion solvent evaporation method which is the most 

commonly used technique for the encapsulation of peptide drugs within PLGA NPs due to its 

simplicity and high encapsulation efficiency (Araújo et al., 2016). For loading Exn into SEDDS 

formulation, the formation of HIPs (Exn with anionic or cationic counterion) was the selected 
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strategy to increase the lipophilicity of the peptide followed by incorporating the HIPs into SEDDS 

(Phan, Shahzadi and Bernkop-Schnürch, 2019). 

The proposed CQAs, CMAs and CPPs regarding the preparation methods of PLGA NPs 

and SEDDS were also defined. Ishikawa fishbone diagram was established to configure the risk 

analysis process for defining the cause-effect relationship between the significant variables and the 

CQAs of the NCs (PLGA NPs, SEDDS) (Figure 7).  

 

 

Figure 7. Ishikawa fishbone diagram for evaluating the risky factors related to the quality of GLP-

1 analogue loaded into nanocarriers (NCs). 

 

This was followed by the initial RA study achieved using Lean QbD® software. Figure 8 

depicts the interdependence rating on the three-point scale between the selected CQAs and CMAs, 

and CQAs and CPPs, respectively. The calculated and ranked severity scores for the CQAs 

presented in a Pareto chart generated by the Lean QbD® Software are also shown in Figure 8E. 

Results of the RA study revealed that in the case of PLGA NPs, the most highly influential CPP is 

sonication time, and the most highly influential CMAs are polymer concentration, drug 

concentration, stabilizer concentration, cryoprotectant type, cryoprotectant concentration and 

external aqueous phase to organic phase ratio W2/O. Regarding SEDDS, the most highly 

influential CPP is the pH level during the HIPs formation, and the highly influential CMAs are 
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also related to HIPs formation (type of counterion, molar ratio of peptide to counterion) followed 

by the surfactant type and concentration. 

 

 

Figure 8. Risk assessment: Interdependence rating in case of PLGA NPs (A) between CMAs and 

CQAs, and (B) between CPPs and CQAs. Interdependence rating in case of SEDDS (C) between 

CMAs and CQAs, and (D) between CPPs and CQAs. (E) Pareto chart of estimated severity scores 

of the proposed CQAs. 

 

5.2. Liraglutide loaded PLGA NPs 

5.2.1. Optimization of liraglutide loaded PLGA NPs: Plackett-Burman design (PBD) 

The high-risk formulation and process parameters resulted from RA study were further 

investigated regarding their effects on four responses namely: particle size (Y1), PDI (Y2), EE 
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(Y3) and zeta potential (Y4) by applying a seven-factor, two-level, eight-run PBD. The 

experimental data was validated by ANOVA for each factor. Depending on the selected parameters 

levels, the Z-average of the NPs ranged from 160.1±5.63 nm to 235.69±5.34 with an EE varying 

between 20.07±1.7% and 43.47±3.34%. Besides, NPs exhibited a practically monodisperse or 

narrow distribution as PDI ranged from 0.09±0.003 to 0.23±0.01 evidencing that the obtained NPs 

are homogeneous and stable with no aggregation. The zeta potential ranged from -31.15±1.23 mV 

to -23.83±0.95 mV and these expected negative values are attributed to the presence of carboxyl 

group end on PLGA (Table 3). 

 

Table 3. Results of experimental responses in Plackett-Burman Design (PBD). Data are presented 

as mean ± SD (n=3). 

Run code Particle size (Z-Average) 

(nm) 

PDI EE% Z-potential 

(mV) 

PBD-F1 160.11±5.63 0.1±0.03 20.07±1.7 -30.57±1.79 

PBD-F2 209.82±8.01 0.15±0.01 36.01±1.25 -24.97±1.64 

PBD-F3 190.01±2.81 0.23±0.01 40.98±2.46 -27.35±0.67 

PBD-F4 200.21±3.47 0.16±0.03 43.47±3.34 -31.15±1.23 

PBD-F5 179.47±3.83 0.17±0.01 31.91±4.03 -23.83±0.95 

PBD-F6 235.69±5.34 0.09±0.003 28.83±2.05 -29.24±0.41 

PBD-F7 223.59±3.74 0.17±0.02 22.17±2.12 -30.42±0.39 

PBD-F8 183.52±3.03 0.2±0.01 20.96±1.51 -26.95±0.148 

 

The polynomial equations obtained for the fitted full model explaining the effect of 

formulation and process variables on the mean particle size, PDI, EE and zeta potential were as 

follows:  

▪ Y1=197.8021+ 9.5079X1+1.5304X2+7.7638X3 - 16.9754X4 - 5.4712X5 - 3.5429X6 -   

7.0791X7, with R2 = 0.9745, adjusted R2 = 0.9609, and Mean square (MS) = 22.3978  

▪ Y2=0.1568-0.0061X1+ 0.0312X2+ 0.0005X3 - 0.0013X4 - 0.0032X5 - 0.0031X6 + 

0.0291X7, with R2 = 0.9235, adjusted R2 = 0.8828, and Mean square (MS) = 0.0003  

▪ Y3= 30.548 + 1.7683X1 + 1.3458X2 - 4.5825X3 - 1.4458X4 - 2.8408X5 - 5.7483X6 + 

1.915X7, with R2 = 0.9471, adjusted R2 = 0.9189, and Mean square (MS) = 6.5021  
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▪ Y4= -28.0596 - 0.0154X1 - 0.9071X2 + 0.4496X3 - 0.0646X4 - 0.4679X5 - 0.1663X6 + 

2.2846X7, with R2 = 0.9001, adjusted R2 = 0.8468, and Mean square (MS) = 1.1599  

After establishing the polynomial equations describing the relationship between the CPPs, 

CMAs and the examined responses, particle size and EE were found to be significantly affected by 

almost all the tested CPPs and CMAs which is in accordance with the estimated severity scores of 

CQAs that was calculated previously in the initial RA step (Figure 8).  

According to polynomial equations and Pareto charts (Figure 9), the most influential factors 

in terms of particle size were the PVA concentration, PLGA amount followed by sonication time 

and W2/O ratio at almost the same level of significance. Then the next important variables include 

lyoprotectant type and concentration. The tested levels of Lira amount were observed to have a 

non-statistically significant effect on the particle size. In the case of EE, the lyoprotectant %, 2nd 

sonication time and lyoprotectant type were the most highly risky factors. This is followed by other 

factors which all showed a significant impact on the amount of Lira encapsulated in the PLGA 

NPs. However, results revealed that only Lira amount and W2/O ratio were critical in terms of PDI 

and zeta potential. 
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Figure 9. Pareto charts of the effects of the examined independent variables on particle size (Y1), 

PDI (Y2), EE (Y3), zeta potential (Y4) of Liraglutide loaded PLGA nanoparticles. 

 

Aiming to validate the generated models and estimate the experimental error, three 

replications of center checkpoint formulations (F1, F2 and F3) were prepared and evaluated 

regarding the four responses. The minor differences between the predicted values and the average 

of experimental values confirm the validity of this design in providing a good prediction of the 

four tested responses (Table 4).  

 

Table 4. The observed and the predicted values of the response values of the optimized Liraglutide 

loaded PLGA nanoparticles. Data are presented as mean ± SD (n=3). 

Experimental 

response 

Predicted 

value 

Observed value (F1) 

(Bias%) 

Observed value (F2) 

(Bias%) 

Observed value (F3) 

(Bias%) 

Particle size (nm) 197.8 195.8±2.5 (1.0) 202.72±5.8 (2.5) 196.41±4.06 (0.7) 

EE (%) 30.5 29.46±1.83(3.3) 31.18±2.32 (2.3) 33.14±3.32 (8.5) 

PDI 0.2 0.19±0.01 (5.5) 0.19±0.01(5.0) 0.18±0.003 (10.0) 

Zeta potential (mV) -28.1 -28.11±1.06 (0) -28.84±2.51 (2.5) -27.7±1.33 (1.4) 
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The DS was optimized targeting the following criteria: the particle size was minimized; EE 

was maximized while PDI and Zeta potential were excluded. Thanks to the knowledge obtained 

via the DS, the optimum levels of the formulation factors were determined: 60 mg of PLGA, 5 mg 

of Lira, 0.5 min 2nd sonication time, 1.48% of PVA, 5% of mannitol and W2/O ratio of 5. As 

presented in Table 5, the observed values were comparable to the predicted ones, presenting 

another confirmation of the validity of the generated models and indicating that the optimized 

formulation is reliable. The optimized formula showed a sufficient stability after one week 

regarding particles size, PDI and zeta potential as shown in Table 6.  

 

Table 5. The observed and the predicted values of the response values of the optimized Liraglutide 

loaded PLGA NPs. Data are presented as mean ± SD (n=3). 

Experimental response Predicted value Observed value (Bias%) 

Particle size (nm) 197.9 188.95±4.99 (4.5%) 

EE% 48.31           51.81±2.39 (7.2%) 

PDI 0.2            0.19±0.01 (7.8%) 

Zeta potential (mV) -26.5 -27.12±1.33 (2.2%) 

 

Table 6.  Particle size, polydispersity index (PDI), zeta potential of optimized Liraglutide loaded 

PLGA NPs in water after one week. Data are presented as mean ± SD (n=3). 

Experimental response Values 

Particle size (nm) 193.17±6.51 

PDI           0.21±0.03 

Zeta potential (mV) -27.83±1.49 

 

5.2.2. Drug release study 

The release behavior data presented in Figure 10A shows a biphasic release pattern starting 

by a moderate initial burst release during the first 2 hours in SGFsp, where 14.2±0.86% of Lira 

was released from the NPs. This was followed by a slow release profile until 6 hours in the SIFsp 

where only 18.5±2.39% of cumulative Lira release was reached.  

At the burst release phase, PLGA NPs are exposed to the gastric simulated conditions and 

the surface of the NPs is hydrated. Then, non-capsulated Lira, or Lira existing close to the surface 
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having weak interactions with it is easily accessible by hydration and is released in the medium. 

At the second phase of slow Lira release, the degradation of the polymer matrix takes place, leading 

to diffusion of the encapsulated Lira. These findings prove that the PLGA nanosystem could hinder 

the release of encapsulated peptide in the simulated gastric medium, and later sustain the peptide 

release in the simulated intestinal medium. 

5.2.3. Enzymatic degradation study 

It is obvious that only 1.9±0.46% and 9.2±0.7% of the free Lira was recovered after 30 min 

incubation in SGF and SIF, respectively. Lira was completely degraded after incubation for 1 hour 

in SIF while only 5.7±0.53% was recovered after 2-hour incubation with SGF (Figure 10B). On 

the other hand, the encapsulation of Lira into PLGA NPs was able to successfully protect 

71.2±1.49% and 87.6±1.3% of Lira from degradation in the SGF and SIF at the end of 2-hour 

incubation, respectively (Figure 10B). These results depict that PLGA NPs can provide a physical 

barrier between the encapsulated Lira and the harsh environment of GI tract thereby they could be 

promising for obtaining higher oral peptide bioavailability. 

 

 

Figure 10. (A) Cumulative in vitro release profile of liraglutide (Lira) from PLGA NPs. (B) 

Enzymatic stability of Lira encapsulated in PLGA NPs in SGF and SIF media, with free Lira as a 

control. SGF, Simulated Gastric Fluid; SIF, Simulated Intestinal Fluid. 

 

5.2.4. Cell viability measurement by impedance 

As illustrated in Figure 11, the impedance measurement did not exhibit any significant cell 

damage after treatments with Lira, Lira loaded in PLGA NPs, Lira with PN159 peptide, unloaded 
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PLGA NPs or PN159 peptide as reflected by the cell index values. These findings proved the 

biocompatibility of the PLGA NPs and showed that the composition of the nanosystem did not 

contribute to toxicity in Caco-2 cells. Figure 11A shows the kinetics of the cellular effects of 

treatment solutions, while the columns on Figure 11B show the effect of treatments at the 1-hour 

time point. 

 

 

Figure 11. (A) Cell viability kinetics for 24 hours and (B) results of a 1-hour treatment of Caco-2 

intestinal epithelial cells with liraglutide (Lira), Lira in PLGA NPs, Lira with PN159 peptide, blank 

PLGA NPs and PN159 peptide measured by impedance. Values are presented as means ± SD, n = 

6–12. Statistical analysis: Analysis of Variance (ANOVA) followed by Dunnett’s test. NPs, 

nanoparticles; TX-100, Triton X-100. ***p<0.001 compared to control. 

 

5.2.5. Permeability study on the Caco-2 cell model 

Free Lira solution at a donor concentration of 100 µM  showed a good apparent 

permeability (Papp) of 16 × 10-6 cm/s through the Caco-2 cell model compared to what was reported 

for the native GLP-1 or Exn (Gupta, Doshi and Mitragotri, 2013) (Figure 12A), which could be 

due to the 16-carbon fatty acid chain that is attached to lysine at position 26 via a glutamic acid 

spacer (Knudsen and Lau, 2019). However, Lira encapsulated in PLGA NPs showed a 1.5-fold 

higher apparent permeability as compared to Lira alone (Figure 12A). Since PLGA NPs are more 

lipophilic compared to the free peptide drug, their transport across the lipid membrane of Caco-2 

cells is better. Furthermore, these NPs showed a particle size of less than 200 nm which could 
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further enhance the cellular uptake compared to larger-sized (≥ 500 nm) particles (Lanza, Langer 

and Vacanti, 2013).  

In the presence of PN159 peptide, our reference absorption enhancer, Lira permeability 

also increased (Figure 12A). This finding is consistent with previous results on the reversible tight 

junction opening and cell membrane permeability enhancing effects of the PN159 peptide through 

intestinal epithelial cells, which effectively improve the permeability of different drugs and 

hydrophilic marker molecules through the paracellular pathway (Cu,Kunyuan,Chen,iShu-Chih, 

Houston,Michael, Quay, 2006; Bocsik et al., 2019). There was no statistical difference between 

Lira loaded PLGA NPs and Lira + PN159 groups in enhancing the permeability across Caco-2 

cells. On the contrary of group containing PN159 peptide where the TEER values dropped after 

the 1-hour treatment  (Figure 12A) (Cu,Kunyuan,Chen,iShu-Chih, Houston,Michael, Quay, 2006; 

Bocsik et al., 2019),  Lira alone or loaded in PLGA NPs did not change the ionic permeability 

(Figure 12B), suggesting no toxic effect on differentiated Caco-2 cells in agreement with the 

viability data (Figure 12) and no effect on the paracellular pathway. 

 

Figure 12. (A) Evaluation of permeability of liraglutide (Lira) (100 µM) across Caco-2 epithelial 

cell layers treated with different Lira formulations for 1 h. (B) Changes in transepithelial electrical 

resistance (TEER) values of Caco-2 cell layers after 1-hour treatment with different Lira 

formulations as compared to TEER values before treatment. Data are presented as means ± SD (n 

= 4). Statistical analysis: ANOVA followed by Bonferroni test, ***p<0.001 compared to Lira 

group. 
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There was a good recovery for Lira after the permeability experiments and no significant 

differences between the recovery values of the different investigated Lira groups were found (Table 

7).  

 

Table 7. Recovery (mass balance) calculation after liraglutide (Lira) permeability across Caco-2 

cells. Data are presented as mean ± SD (n=4). 

Group Recovery (%) 

Lira 80.9 ± 1.6 

Lira-PLGA NPs 75.3 ± 2.3 

Lira + PN159 81.3 ± 6.9 

 

5.2.6. Immunohistochemistry 

The cells were tightly apposed, and the junctional proteins were localized at the intercellular 

connections forming pericellular belts both in the control and the treated groups. No morphological 

changes of interepithelial junctions were observed with Lira-PLGA NPs treated group confirming 

the lack of a paracellular component in the transport mechanism. Only the PN159 peptide treated 

group demonstrated a visible change in the staining pattern of β-catenin adherens junctional protein 

which is also in accordance with the previous results confirming the tight junction opening effect 

of PN159  (Bocsik et al., 2016) (Figure 13).  

 



37 
 

 

Figure 13. Effects of Lira, Lira-PLGA NPs, Lira and PN159 peptide, and PN159 peptide on the 

junctional morphology of Caco-2 epithelial cells. Immunostaining for zonula occludens-1 (ZO-1), 

and β-catenin junction proteins after a 1-hour treatment. Red color: immunostaining for junctional 

proteins. Blue color: staining of cell nuclei. Bar: 10 µm. 

 

5.3.Exenatide loaded SEDDS 

5.3.1. Optimization of hydrophobic ion-pairing (HIP) of exenatide with (THA) 

The cationic surfactant THA and the anionic surfactant DOC were capable of forming 

HIPs with the anionic and cationic amino acids of Exn via non-covalent ionic interactions (Figure 

14). The addition of THA or DOC to the Exn solution caused an immediate precipitation 

indicating the formation of HIPs.  
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Figure 14. Graphical illustration of the chemical structure of (A) exenatide-

tetraheptylammonium bromide (THA) ion pairs and (B) exenatide-docusate (DOC) ion pairs. 

Different Exn to surfactant ratios were evaluated as illustrated in Figure 15. The more 

surfactant was added to Exn, the more HIPs were formed until the maximum precipitation 

efficiency of 95.3 ± 4.02% at a molar ratio of 1:8 (Exn: THA), whereas a maximum of 100% 

was reached in the case of DOC at a molar ratio of 1:4 (Exn: DOC). Higher concentrations of 

surfactant led to a lower amount of formed ion pairs. This observation was previously reported  for 

other surfactants (Griesser et al., 2017) and could be explained by the formation of micelles that 

re-dissolve the ion pair complex (Dai and Dong, 2007). 
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Figure 15. Precipitation efficiency of exenatide  (2 mg/mL) with THA and DOC at different molar 

ratios. The precipitated exenatide-surfactant ion pairs were centrifuged and the remaining amount 

of exenatide in supernatant was quantified by HPLC. Data are presented as mean ± SD (n = 3). 

The zeta potential of HIPs having been formed at different molar ratios of Exn to 

surfactant was determined in order to evaluate the surface charge of the complexes. Figure 16A 

shows that the negative charge of Exn at pH 8.0 decreased with the increase in THA having 

been bound to the peptide drug reaching the lowest negative zeta potential at a molar ratio of 

1:10 (Exn: THA). At a higher molar ratio, the THA level could exceed the critical micellar 

concentration (CMC) and the resulting formation of micelles can explain the increase in 

negative zeta potential due to the solubilizing effect of the excess of THA. The formation of 

these micelles could cause reduction in the amount of THA being bound to the surface of 

exenatide causing a higher negative charge. In case of Exn -DOC, a shift in zeta potential toward 

negative values was observed where the positive charge of exenatide at pH 3.0 decreased with 

higher molar ratio (Exn:DOC) reaching almost 0 mV at a molar ratio of 1:4 (Figure 16B). 

 

https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/exendin-4
https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/inorganic-ions
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Figure 16. The shift in zeta potential values of (A) exenatide-THA HIPs formed at pH 8.0 in 

different molar ratios, and (B) exenatide-DOC HIPs formed at pH 3.0 in different molar ratios. 

Data are presented as mean ± SD (n = 3). 

5.3.2. Characterization of exenatide-THA and exenatide-DOC loaded SEDDS  

5.3.2.1. Particle size, size distribution, surface charge and payload measurements 

Small droplet size (< 30 nm) with low PDI value was determined for loaded SEDDS 

(Table 8). The surface charge of Exn-THA loaded SEDDS was positive whereas negative values 

were measured in case of Exn-DOC loaded SEDDS. This observation can be explained by the 

cationic character of THA and the anionic character of DOC. Loaded SEDDS showed sufficient 

stability for one week regarding the droplet size, PDI and zeta potential as shown in Table 8. 

The maximum payload of Exn-THA and Exn-DOC that could be dissolved in the pre-

concentrate was 0.54% and 0.17%, respectively. This payload was used to prepare SEDDS for  

further evaluation. 
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Table 8. Droplet size, polydispersity index (PDI) and zeta potential of reconstituted exenatide-

THA SEDDS and exenatide-DOC SEDDS in water over one week. Data are presented as mean ± 

SD (n=3). 

 

 

 

5.3.2.2. Determination of log D SEDDS/release medium of exenatide-THA and exenatide-DOC 

It was previously reported that the drug release from SEDDS formulation depends on a 

simple diffusion process from a lipophilic liquid phase into an aqueous liquid phase that occurs 

within a few seconds (Bernkop-Schnürch and Jalil, 2018). As the released HIPs are absorbed 

from the membrane, more HIPs will diffuse out of SEDDS until equilibrium is reached again. 

Since drug release is controlled by the partition coefficient of HIPs between the lipophilic phase 

(SEDDS) and the release medium (RM), log DSEDDS/RM was determined in two different media 

to assess affinity of Exn-THA and Exn-DOC ion pairs toward the oily droplets of SEDDS 

(Bernkop-Schnürch and Jalil, 2018; Shahzadi et al., 2018). The log DSEDDS/RM of Exn-THA was 

2.29 and 1.92, whereas the log DSEDDS/RM   of Exn-DOC was 1.2 and -0.9 in simulated intestinal 

fluid and HBSS, respectively. These log D values proved that THA is capable of forming more 

 Droplet Size (nm) PDI Zeta potential (mV) 

THA NCs-Exenatide 25.71±2.48 0.24±0.48 10.11±1.07 

DOC NCs-Exenatide 24.55±3.2 0.25±0.046 20±2.2 - 

                                           4 h  

 Droplet Size (nm) PDI Zeta potential (mV) 

THA NCs-Exenatide 23.64±2.75 0.05±0.03 5.5±0.85 

DOC NCs-Exenatide 25.17±5.22 0.2±0.07 12.67±2.08 - 

                                           1 week            

 roplet Size (nm)D PDI Zeta potential (mV) 

THA NCs-Exenatide 22.49±4.55 0.081±0.11 9.24±3.42 

DOC NCs-Exenatide 20.2±0.63 0.11±0.05 9.37±0.15 - 
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hydrophobic complexes than DOC. Accordingly, the amount of Exn immediately released from 

Exn-DOC SEDDS is likely higher than that from Exn-THA SEDDS.  

5.3.2.3. Cytocompatibility  

SEDDS loaded with different concentrations of either Exn-THA or Exn-DOC were tested 

regarding their hemolytic activity and compared to blank SEDDS. Figure 17 displays the hemolysis 

caused by increasing concentrations of blank and loaded SEDDS showing that this toxicity is 

concentration dependent. Both blank and loaded SEDDS displayed no significant hemolytic 

activity at concentrations of 0.1% (m/v) and 0.25% (m/v). Compared to SEDDS loaded with 

Exn-THA, SEDDS loaded with Exn-DOC showed higher toxicity as concluded from the 

hemolytic activity reaching more than 90% at a concentration of 0.5% (m/v) of this formulation. 

 

 

Figure 17. Cytotoxicity of different concentrations of blank SEDDS, exenatide-THA SEDDS, 

exenatide-DOC SEDDS. Hemolysis assay was conducted with human red blood cells (RBC). Data 

are presented as mean ± SD (n = 3).  

 

5.3.2.4. Ex-vivo permeability study 

Results presented in Figure 18 clearly demonstrate that Exn-DOC SEDDS and Exn-THA 

SEDDS yielded a 3-fold and a 10-fold enhancement of intestinal membrane permeability 

compared to free Exn. The lipophilic nature of SEDDS and their slippery surface in addition to 

a nanodroplet size of less than 30 nm are advantageous to facilitate their permeation through 

the intestinal mucus gel layer and likely also across the absorption membrane.  The composition 
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of SEDDS could additionally contribute to an enhanced intestinal uptake of Exn. The main 

component of SEDDS having been tested in this study for instance is Capmul®MCM that was 

shown in previous studies to open tight junctions and to enhance permeation via the paracellular 

pathway (Holmes et al., 2013; Keemink and Bergström, 2018).  

Since Exn has six anionic substructures while only four cationic ones, the lipophilicity of 

HIPs with the cationic counter ion THA was assumed to be higher compared to those formed with 

the anionic surfactant DOC. This assumption could be confirmed by the higher solubility of Exn-

THA than Exn-DOC complexes in the organic phase. Furthermore, the higher potential of Exn-

THA SEDDS in their membrane permeation behaviour (p < 0.05) is in agreement with the higher 

lipophilic character of this complex. The positive zeta potential of Exn-THA SEDDS in 

comparison to the negatively charged Exn-DOC SEDDS might also contribute to their higher 

membrane permeating properties. This outcome provides evidence for the crucial role of the type 

of HIPs incorporated in SEDDS in enhancing permeability across the intestinal mucus gel layer 

and epithelial barrier strongly limiting oral peptide uptake. 
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Figure 18. Evaluation of ex vivo permeability of exenatide (Exn) across rat intestinal mucosa 

following the 3-hour treatment with free Exn solution, Exn-THA SEDDS or Exn-DOC SEDDS. 

Data are presented as means ± SD (n = 3). Statistical analysis: Analysis of Variance (ANOVA) 

followed by Bonferroni test, * p < 0.05, ** P < 0.01. 
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5.3.2.5. In-vivo study 

As illustrated in Figure 19, SC injection of free Exn solution elicited a maximum serum 

level at 1 hour after administration being in good agreement with previous reported studies 

(Nguyen et al., 2011). The orally administered free Exn solution could not provide any systemic 

uptake of the drug. In contrast, high Exn serum levels were observed after oral administ ration 

of Exn-THA and Exn-DOC SEDDS reaching maximum after 3 hours.  

 

 

Figure 19. Exenatide (Exn) plasma concentration vs time profiles for SC free exenatide solution 

(50 µg/kg), oral exenatide solution (dose: 300 μg/kg), oral exenatide-THA SEDDS (dose: 

300 μg/kg) and oral exenatide-DOC SEDDS (dose: 300 μg/kg). Data are presented as means ± SD 

(n = 5). 

 

The developed SEDDS incorporating Exn-DOC resulted in a greater BAR (16.29±5.34%) 

when administered to rats (Table 9), compared to the previously reported formulation (Menzel 

et al., 2018). This could be due to the difference in the above-mentioned SEDDS compositions 

that were able to efficiently protect Exn from enzymatic digestion. Besides, using a low 

concentration of PG could contribute to avoiding the trigger effect of such hydrophilic co-

solvent in solubilizing HIPs and releasing them out of the oily droplet (Phan, Shahzadi and 

Bernkop-Schnürch, 2019). Exn-THA SEDDS, however, showed an even greater potential 

reaching a BAR of 27.96 ± 5.24% (Table 9), which is in consistence with ex-vivo results 

https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/exendin-4
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confirming the superiority of this system compared to Exn-DOC SEDDS. These results also 

demonstrate the great impact of the type of counter ions used for HIP formation on the oral 

bioavailability of the peptide drug of interest. They are in good agreement with previous studies 

showing that the oral bioavailability of octreotide strongly depends on the type of counter ion 

used for HIP formation. SEDDS containing octreotide-deoxycholate led to a 17.9-fold higher 

oral bioavailability than octreotide-docusate HIPs (Bonengel et al., 2018).  

Our study revealed the potential of cationic surfactants in increasing the lipophilicity of 

Exn before being embedded into SEDDS, which has a great impact on drug release 

characteristics and intestinal permeability. The developed Exn-THA SEDDS system holds high 

promise for oral delivery exceeding the results elicited from preceding reported studies (Jin et 

al.,  Nguyen et al., 2011; Zhang et al., 2014; Li et al., 2015; Menzel et al., 2018; Zhang, Shi, 

Song, Duan, et al., 2018; Zhang, Shi, Song, Sun, et al., 2018; Song et al., 2019). 

 

Table 9. Pharmacokinetic parameters of exenatide in rats following subcutaneous (SC) injection 

of the free exenatide solution and per oral (P.O.) administration of exenatide solution, exenatide-

THA SEDDS and exenatide-DOC SEDDS. Cmax: maximum serum concentration; Tmax: time at 

which Cmax is reached; AUC 0-10: area under the serum concentration-time curve over 10 h, BAR: 

relative bioavailability (n = 5). 

Formulation Free exenatide solution Exenatide-THA SEDDS Exenatide-DOC SEDDS 

Route of administration SC P.O. P.O. 

Dose (µg/Kg) 50 300 300 

Cmax (ng/ml) 7.0±2.70 3.4±0.97 1.53±0.50 

Tmax (h) 1 3 3 

AUC 0-10 (ng h/ml) 10.56±3.92 17.33±3.48 10.28±4.7 

BAR (%) 100 27.96±5.24 16.29±6.63 
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6. SUMMARY 

Since the oral delivery of GLP-1 analogues Lira and Exn can improve the patient adherence 

to therapy, a smart carrier system that can tackle the challenges hindering the oral delivery of these 

peptides has been targeted. In accordance with our research goals, polymeric and lipid-based 

nanocarriers were designed for the oral delivery of Liraglutide and Exenatide. The extended QbD 

model-based development of GLP-1 analogues loaded nanocarriers was successfully implemented 

to identify and rank the potentially high-risk attributes.  

I. Following the literature evaluation and preliminary experimental work, the QTPP 

encompassing the desired quality attributes in the GLP-1 analogues loaded 

nanocarriers for oral use was set up. To illustrate the identified CMAs and CPPs 

related to the selected production methods of PLGA NPs and SEDDS, Ishikawa 

diagram was constructed. According to initial RA study performed using Lean 

QbD® Software, the interdependence rating between CQAs and CMAs, CQAs and 

CPPs was conducted on a three-level scale. The calculated and ranked severity 

scores of CQAs were presented based on R&D QbD. 

II. In the second part, PLGA NPs encapsulating Lira were prepared by double 

emulsion solvent evaporation method. 

▪ A seven-factor, two-level, eight-run Plackett-Burman DoE was a validated 

statistical tool to be applied for the optimization of PLGA NPs containing 

Lira. The optimized formulation was prepared within the defined Design 

Space. Lira loaded PLGA NPs with a homogeneous distribution, particle 

size of 188.95 nm and encapsulation efficiency of 51.81% which were 

within the desired range. The physical stability of this formulation was also 

proved over one week. 

▪ The PLGA nanosystem could hinder the release of loaded Lira in stomach 

since less than 15% of Lira was released from NPs in the SGFsp followed 

by a slow release in the SIFsp which is good for absorption. The ability of 

PLGA NPs to protect the encapsulated Lira from hostile environment of GI 

tract was further confirmed by enzymatic stability studies. 
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▪ The viability of Caco-2 intestinal epithelial cells was assessed by measuring 

cell impedance over 24 h. No decrease in cell impedance kinetics after 

treatment with Lira loaded/free PLGA NPs during the long-time treatment 

was observed. These findings proved the biocompatibility of PLGA NPs 

and showed that the composition of the nanosystem did not contribute to 

toxicity in Caco-2 cells.  

▪ Compared to free Lira, Lira encapsulated in PLGA NPs showed a 1.5-fold 

enhancement in intestinal apparent permeability which was comparable to 

Lira + PN159 group. 

▪ The immunostaining for the junctional proteins, ZO-1 and β-catenin was 

performed. On the contrary of PN159 containing group, no morphological 

changes of interepithelial junctions ZO-1 and β-catenin were observed with 

Lira loaded PLGA NPs treated group confirming the lack of a paracellular 

component in the transport mechanism. 

III. In the third part, HIPs of Exn with cationic/anionic surfactant were formed before 

being incorporated into SEDDS. 

▪ Aiming to sufficiently reduce hydrophilicity of the peptide, hydrophobic 

ion pairing of Exn with THA (cationic surfactant) and DOC (anionic 

surfactant) was applied. The maximum ion-pairing efficiency was reached 

after optimizing the molar ratio (Exn: surfactant) and pH levels. The 

formation of HIPs with THA and DOC was further verified by a shift in 

zeta potential values the more surfactant was bound to Exn. 

▪ SEDDS formulations were developed with a droplet size of less than 30 nm 

with a homogenous distribution, and the physical stability of SEDDS 

formulations was proved over one week. The maximum payload of 

exenatide-THA and exenatide-DOC that could be dissolved in the 

lipophilic phase of the SEEDS was 0.54% and 0.17%, respectively. 

▪ According to calculated log DSEDDS/RM in SIF and HBSS, the amount of 

Exn immediately released from Exn-DOC SEDDS is likely higher than 

that from Exn-THA SEDDS, showing the superiority of the cationic 
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surfactant in protecting the peptide from the GI environment by forming 

more hydrophobic complexes. 

▪ In vitro toxicity studies with human red blood cells revealed that the 

toxicity is concentration dependent, and both blank and loaded SEDDS 

displayed no significant hemolytic activity at a concentration of 0.25% 

(m/v). 

▪ Compared to free Exn solution, Exn-DOC SEDDS and Exn-THA 

SEDDS exhibited a 3-fold and 10-fold increment in intestinal membrane 

permeability. 

▪ Orally administered Exn-THA and Exn-DOC SEDDS resulted in a 

relative bioavailability of 27.96 ± 5.24% and 16.29 ± 6.63%, 

respectively, confirming the comparatively higher potential of the 

cationic surfactant over the anionic surfactant. 

New findings/Practical relevance of the work: 

• This is the first practical evidence of the theoretical extended version of QbD model for 

R&D which was successfully applied to identify the critical material attributes and process 

parameters that highly affect the quality of the final target nanosystem designed for oral GLP-1 

analogue delivery. 

• The novel biocompatible PLGA nanoparticles could successfully protect the encapsulated 

Lira from the enzymatic degradation in simulated GI environment on top of significantly enhancing 

the permeability across the Caco-2 cell intestinal model. 

• Hydrophobic ion pairing of Exn with a cationic surfactant is investigated for the first 

time, and results proved the superiority of cationic surfactant THA over the model anionic 

surfactant DOC regarding the tested quality attributes.  

• The novel biocompatible Exn-THA SEDDS hold high potential for oral delivery 

exceeding the relative bioavailability results obtained from preceding studies. 

•  Polymeric and lipid based NCs aiming to deliver Lira and Exn orally were successfully 

designed with characteristics complying with the predefined quality target product profile. The 

developed NCs could offer novel possibilities for oral GLP-1 analogues delivery to ensure 

effective management of T2DM. 
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Abstract: The potential of poly (lactic-co-glycolic acid) nanoparticles (PLGA NPs) to overcome
the intestinal barrier that limits oral liraglutide delivery was evaluated. Liraglutide-loaded PLGA
NPs were prepared by the double emulsion solvent evaporation method. In vitro release kinetics
and enzymatic degradation studies were conducted, mimicking the gastrointestinal environment.
The permeability of liraglutide solution, liraglutide-loaded PLGA NPs, and liraglutide in the
presence of the absorption enhancer PN159 peptide was tested on the Caco-2 cell model. Liraglutide
release from PLGA NPs showed a biphasic release pattern with a burst effect of less than 15%.
The PLGA nanosystem protected the encapsulated liraglutide from the conditions simulating the
gastric environment. The permeability of liraglutide encapsulated in PLGA NPs was 1.5-fold higher
(24 × 10−6 cm/s) across Caco-2 cells as compared to liraglutide solution. PLGA NPs were as effective
at elevating liraglutide penetration as the tight junction-opening PN159 peptide. No morphological
changes were seen in the intercellular junctions of Caco-2 cells after treatment with liraglutide-PLGA
NPs, confirming the lack of a paracellular component in the transport mechanism. PLGA NPs,
by protecting liraglutide from enzyme degradation and enhancing its permeability across intestinal
epithelium, hold great potential as carriers for oral GLP-1 analog delivery.

Keywords: liraglutide; GLP-1 analog; oral peptide delivery; enzymatic barrier; intestinal permeability;
PLGA nanoparticles; Caco-2 cells

1. Introduction

The worldwide prevalence of type 2 diabetes mellitus (T2DM) has been increasing dramatically
and has become a serious issue at an alarming rate. Because the incretin effect has been proven to be
severely reduced or lost in relatively lean type 2 diabetic patients, incretin-based therapy, especially
glucagon-like peptide 1 (GLP-1) receptor agonists, is now widely investigated for T2DM [1]. Long acting
GLP-1 analogs have been developed to overcome the clinical limitations of the native GLP-1 due to its
short circulating half-life [2,3].

Liraglutide (Lira; MW: 3751.2 Da) is an acylated derivative of GLP-1 that shares 97% homology
to the native GLP-1, with two modifications: an Arg34Lys substitution, and a fatty acid side chain

Pharmaceutics 2019, 11, 599; doi:10.3390/pharmaceutics11110599 www.mdpi.com/journal/pharmaceutics

http://www.mdpi.com/journal/pharmaceutics
http://www.mdpi.com
https://orcid.org/0000-0002-5122-9513
https://orcid.org/0000-0001-6084-6524
http://www.mdpi.com/1999-4923/11/11/599?type=check_update&version=1
http://dx.doi.org/10.3390/pharmaceutics11110599
http://www.mdpi.com/journal/pharmaceutics


Pharmaceutics 2019, 11, 599 2 of 13

(16-carbon palmitate) attached to Lys26 via a glutamic acid linker [4,5]. Lira retains the physiological
activities of GLP-1 with a considerably longer half-life (approximately 13 h) that supports once-daily
dosing. Subcutaneous Lira has been EMA and FDA approved for T2DM treatment, and soon after
was approved for chronic weight management [6]. As Lira is limited to administration parenterally,
the development of a patient-friendly delivery should be aimed for. Herein, oral administration is the
most attractive choice as this route likely mimics physiological GLP-1 secretion in addition to ensuring
good patient adherence to the treatment [7,8]. Moreover, oral delivery appears to be feasible for Lira
due to the relatively large safety window of GLP1 analogs compared to insulin [9]. However, the oral
delivery of Lira is still challenging due to low stability along the gastrointestinal (GI) tract and poor
intestinal permeability that result in low oral bioavailability [10].

The encapsulation of peptides into nanocarrier systems, especially polymeric NPs, has arisen as
a very promising alternative carrier system that has greater stability in biological fluids and during
storage when compared to lipid-based nanosystems [11]. Polymeric NPs can not only protect the
encapsulated peptide from the harsh environment in the GI tract but also control drug release and
enhance its intracellular uptake [12,13]. Poly (lactic-co-glycolic acid) (PLGA) nanoparticles showed
potential results as nanocarriers designed for the oral delivery of insulin and exenatide [14–17].

To enhance the delivery of protein or peptide molecules across biological barriers, several strategies
can be used. One of them is the opening of intercellular tight junctions [18]. Another possibility is the
use of cell penetrating peptides (CPPs). CPPs comprise a family of functional carrier peptides consisting
of 5–30 amino acid residues that have been reported to have great potential in enhancing the peptide
drugs permeability across the intestinal epithelium. Amphipathic CPPs, such as penetratin, are among
the most widely promising ones. Many recent studies proved that the non-covalent intermolecular
interaction between penetratin and insulin could be clinically promising as an absorption enhancer for
successful oral insulin delivery [19–22]. Our group has recently demonstrated, that a permeability
enhancing 18-mer amphiphilic peptide, PN159, also known as KLAL or MAP, has a dual action:
by acting on claudin transmembrane tight junction proteins it opens the paracellular route in both
epithelial and blood–brain barrier models [23] and at the same time it has cell permeabilizing and
penetrating properties [24].

As realizing the dream of administering antidiabetic peptides such as liraglutide orally is still an
elusive goal, we reported in our previous paper the potential of implementing the quality by design
methodology from the early stage of product formulation, especially when dealing with complex
nanosystems such as polymeric NPs designed for peptide delivery. We have successfully optimized the
formulation of Lira encapsulated in hydrophobic PLGA NPs. For the present work, the purpose was
to evaluate the effectiveness of our previously developed PLGA NPs in protecting the encapsulated
peptide from the harsh environment in the GI tract. As there is no available literature regarding the
intestinal permeability of Lira solution, we also evaluated the permeability of Lira through the Caco-2
cell model. Moreover, we investigated the potential of the optimized PLGA NPs in enhancing the
permeability of encapsulated Lira through the Caco-2 cell model and compared it with the permeability
enhancer PN159 peptide.

2. Materials and Methods

2.1. Materials

Liraglutide was purchased from Xi’an Health Biochem Technology Co., Ltd. (Shaanxi,
China), Poly(lactide-co-glycolide) (PLGA 50:50, Mw = 30,000–60,000 Da), and PVA (MOWIOL 4-98,
Mw ~ 27,000 Da) were purchased from Sigma Aldrich (Munich, Germany). d-mannitol was purchased
from Molar Chemicals Ltd. (Budapest, Hungary). Sodium acetate anhydrous was purchased from
Scharlau Chemie S.A. (Barcelona, Spain). Ethyl acetate was from REANAL Labor (Budapest, Hungary).
Pepsin from porcine gastric mucosa, powder (≥400 units/mg protein) and pancreatin from porcine
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pancreas (≥3× USP specifications) were purchased from Sigma Aldrich (Budapest, Hungary). All other
chemicals in the study were of analytical reagent grade.

2.2. Human Caco-2 Intestinal Epithelial Cell Line

The Caco-2 intestinal epithelial cell line was purchased from ATCC (cat.no. HTB-37) at passage 60.
The cells were grown, as previously reported [24], in Dulbecco’s modified Eagle’s medium (Gibco,
Life Technologies, Carlsbad, CA, USA) supplemented with 10% fetal bovine serum (Pan-Biotech GmbH,
Aidenbach, Germany) and 50 µg/mL gentamycin in a humidified incubator with 5% CO2 at 37 ◦C.
All plastic surfaces were coated with 0.05% rat tail collagen in sterile distilled water before cell seeding
in culture dishes and the medium was changed every 2 days.

2.3. Preparation of PLGA NPs

The Lira loaded PLGA NPs were prepared by the double emulsion solvent evaporation method and
then lyophilized as described previously [25]. Following the initial risk assessment-based study [26],
the Plackett–Burman screening design of the experiment was applied by our research group to optimize
the lyophilized Lira loaded PLGA NP formulation regarding four critical quality attributes namely:
particle size, polydispersity index, encapsulation efficiency and zeta potential [25]. The optimized
formula is shown in Table 1.

Table 1. Optimized Lira loaded PLGA NPs; where PVA is the polyvinyl alcohol-stabilizer, and W2/O is
the outer aqueous phase to organic phase ratio.

Formulation Parameters

PLGA amount 60 mg
Lira amount 5 mg

2nd sonication time 0.5 min
PVA amount 1.48%

Lyoprotectant type Mannitol
Lyoprotectant amount 5%

W2/O ratio 5

2.4. Preparation of Lira and PN159 Solutions

PN159 peptide (NH2-KLALKLALKALKAALKLA-amide) was previously synthesized and
purified as reported by our research group [23,24]. To prepare Lira and PN159 solutions, liraglutide
was dissolved in cell culture medium or Ringer-buffer (136 mM NaCl, 0.9 mM CaCl2, 0.5 mM MgCl2,
2.7 mM KCl, 1.5 mM KH2PO4, 10 mM NaH2PO4, pH 7.4) in a plastic vial. PN159 was weighed in a
plastic vial and dissolved in Ringer buffer as well. Equal volumes of Lira and PN159 solutions were
gently mixed at room temperature. The final concentrations of liraglutide and PN159 were 100 µM
and 3 µM, respectively, in all experiments.

2.5. In Vitro Drug Release Study

The in vitro release behavior of Lira from the prepared PLGA nanoparticles was assessed by
dispersing Lira-loaded PLGA NPs (corresponding to 500 µg of Lira) in 10 mL of simulated gastric fluid
without enzymes (SGFsp: 0.1 N HCl at pH 1.2). After 2 h, the NPs were centrifuged and transferred to
simulated intestinal fluid without enzymes (SIFsp: phosphate buffer saline at pH 7.4).

The beaker was placed over a magnetic stirrer (100 rpm) and the temperature was kept at 37 ± 1 ◦C
throughout the experiment. At specified time points (0, 0.5, 1, 2, 3, 4, 6 h), an aliquot of 500 µL
was withdrawn from the release medium and replenished with the same volume of fresh preheated
medium. Samples were centrifuged at 16,500× g and 4 ◦C for 10 min, and the Lira concentrations in
the supernatant were determined by HPLC. The cumulative percentage of Lira released was calculated
and then plotted versus time. All experiments were conducted in triplicate.
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2.6. Release Kinetics Studies

To understand the in vitro release from PLGA NPs, the data were fitted into various kinetic models,
which were the zero order (where the drug release rate is independent of its concentration), and first
order model (where the drug release rate is concentration-dependent), and Higuchi (which describes
the drug release from an insoluble matrix as a square root of the time-dependent process based on
Fickian diffusion). The best-fit model was selected based on the coefficient of correlation R2. Then the
release mechanism was further confirmed by fitting the release data in the Korsmeyer–Peppas equation,
where the exponent (η) value was used to describe the release mechanism of the drug through the PLGA
matrix; where 0.45 ≤ η corresponds to the Fickian diffusion mechanism, 0.45 < η < 0.89 corresponds to
anomalous (non-Fickian) transport, η = 0.89 corresponds to case II (relaxational) transport, and η > 0.89
corresponds to super case II transport.

2.7. Enzymatic Degradation Study

Stability analysis in the presence of pepsin and pancreatin was conducted and compared between
native Lira and Lira loaded in PLGA NPs. Five hundred micrograms of native Lira, or the amount of
NPs containing an equivalent amount of Lira, were added to 2 mL of pepsin-containing simulated
gastric fluid SGF (3.2 g pepsin, 2 g of sodium chloride, 7 mL HCl, mixed and diluted with water to 1 L,
pH = 1.2) or pancreatin-containing simulated intestinal fluid SIF (10 g pancreatin, 6.8 g KH2PO4, mixed
and adjusted with 0.2 N NaOH then diluted with water to 1 L, pH = 6.8) and incubated at 37 ◦C under
stirring at a speed of 100 rpm. The SGF and SIF were prepared as per USP specifications (Test Solutions,
United States Pharmacopeia 35, NF 30, 2012). The same methodology was followed to assess the native
Lira stability in SGFsp and SIFsp. The samples (750 µL) were withdrawn at specified time intervals for
2 h, and an equal volume of ice-cold reagent was added: 0.1 M NaOH for SGF and 0.1 M HCl for SIF,
to stop the enzymatic reaction. The samples were centrifuged at 16,500× g and 4 ◦C for 10 min and
the supernatant was analyzed by HPLC to calculate the residual Lira. All incubations were done in
triplicates. Lira recovery in the withdrawn samples was calculated using the following equation:

Lira recovery% = (Remaining Lira amount/theoretical Lira amount) × 100

2.8. Treatment of Caco-2 Cells

The concentration of stock solutions for cell culture experiments were 1 mM for both the therapeutic
peptide liraglutide and the PN159 peptide, which was used as a reference absorption enhancer [23,24].
The working solutions were diluted in cell culture medium or Ringer-buffer depending on the
experiments. The final concentration of liraglutide encapsulated in the PLGA NPs was 100 µM and
was diluted directly before using. Liraglutide was examined at 100 µM, while PN159 was examined at
3 µM concentration both for cell viability and permeability.

2.9. Cell Viability Measurement by Impedance

Impedance was measured at 10 kHz by an RTCA SP instrument (RTCA-SP instrument,
ACEA Biosciences, San Diego, CA, USA). We have successfully tested the cellular effects of peptides
and pharmaceutical excipients by impedance kinetics [23,27,28]. For background measurements,
50 µL cell culture medium was added to the wells. This was followed by seeding the cells at a density
of 6 × 103 cells/well to 96-well plate with gold electrodes (E-plate 96, ACEA Biosciences) coated with
collagen. Cells were cultured for 5 days in a CO2 incubator at 37 ◦C and monitored every 10 min
until the end of experiments. Cells were treated at the beginning of the plateau phase of growth.
Lira, Lira-loaded PLGA NPs, blank PLGA NPs (without cargo), Lira and PN159 solution, and PN159
peptide were diluted in cell culture medium and the effects were followed for 24 h. Triton X-100
detergent (1 mg/mL) was used as a reference compound to obtain total cell toxicity. Cell index was
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defined as Rn-Rb at each time point of measurement, where Rn is the cell–electrode impedance of the
well when it contains cells and Rb is the background impedance of the well with the medium alone.

2.10. Permeability Study on the Caco-2 Model

Transepithelial electrical resistance (TEER) reflects the overall tightness of cell layers of biological
barriers. TEER monitoring was performed by an EVOM volt-ohmmeter (World Precision Instruments,
Sarasota, FL, USA) combined with STX-2 electrodes. The final TEER was expressed relative to the
surface area of the monolayers as Ω × cm2 after subtraction of TEER values of cell free inserts.

Caco-2 cells were seeded onto Transwell inserts (polycarbonate membrane, 3 µm pore size,
1.12 cm2 surface area; Corning Life Sciences, Tewksbury, MA, USA) and cultured for three weeks [29,30].
For transport experiments, the inserts were transferred to 12-well plates containing 1.5 mL Ringer-buffer
in the acceptor (lower/basal) compartments. In the donor (upper/apical) compartments, the culture
medium was replaced by 0.5 mL Ringer-buffer containing treatment solutions of Lira, Lira loaded
in PLGA NPs, and Lira and PN159 solution at the concentration of 100 µM for liraglutide for 1 h.
Treatment solutions from both compartments were collected and the Lira level was detected by HPLC.

The apparent permeability coefficients (Papp) were calculated as described previously [23].
Briefly, the cleared volume was calculated from the concentration difference of the tracer in the
acceptor compartment (∆[C]A) after 1 h and the donor compartments at 0 h ([C]D), the volume of the
acceptor compartment (VA; 1.5 mL) and the surface area available for permeability (A; 1.1 cm2) using
this equation:

Papp(cm/s) =
∆[C]A ×VA

A× [C]D × ∆t

Recovery (mass balance) was calculated according to the equation:

%Recovery =
CD

f VD + CA
f VA

CD
0 VD

× 100%

where CD
0 and CD

f are the initial and final concentrations of the compound in the donor compartment,
respectively; CA

0 is the final concentration in the acceptor compartment; and VD and VA are the volumes
of the solutions in the donor and acceptor compartments [29].

2.11. Immunohistochemistry

Aiming to investigate the morphological changes in interepithelial junctions, immunostaining
for the junctional proteins, zonula occludens protein-1 (ZO-1) and β-catenin, was carried out.
Cells were grown on glass coverslips (Menzel-Glaser, Braunschweig, Germany) at a density of
4 × 104 cells/coverslips for 4 days and treated with Lira (100 µM), Lira loaded in PLGA NPs, Lira and
PN159 solution, and PN159 peptide (3 µM) solutions for 1 h. After the treatment, the coverslips were
washed with phosphate buffer (PBS) and the cells were fixed with 3% paraformaldehyde solution for
15 min at room temperature and incubated in 0.2% TX-100 solution for permeabilization. The cells
were blocked with 3% bovine serum albumin in PBS and incubated with the rabbit primary antibodies,
anti-ZO-1 and anti-β-catenin, overnight. Incubation with secondary Cy3-labeled anti-rabbit antibody
lasted for 1 h. Hoechst dye 33342 was used to stain the cell nuclei. After mounting the samples
(Fluoromount-G; Southern Biotech, Birmingham, AL, USA), the staining was visualized by a Visitron
spinning disk confocal system (Visitron Systems GmbH, Puchheim, Germany).

2.12. Chromatographic Equipment and Conditions

Lira was analyzed by a reversed phase HPLC (Agilent 1200, San Diego, CA, USA) method that
was previously developed and validated in our lab [25]. A Kinetex® C18 column with dimensions of
(5 µm, 150 × 4.6 mm, (Phenomenex, Torrance, CA, USA) was used as the stationary phase. The mobile
phase comprised 0.02 M aqueous KH2PO4 solution (pH = 7.0, solvent A) and acetonitrile (solvent B)
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was pumped in a gradient mode from 80:20 (A:B, v/v) to 30:70 (A:B, v/v) in 12 min then back to
80:20 (v/v) between 12.1–15 min, at a flow rate of 1.5 mL/min. Fifty microliters of the sample was
injected. The wavelength of UV detection was 214 nm. The retention time of Lira was 8.65 min.

The regression of the linearity (R2) of the Lira calibration curve was 0.996.

2.13. Statistical Analysis

All data presented are means ± SD. The values were compared using the analysis of variance
(ANOVA) followed by the Dunnett test or the Bonferroni test, using GraphPad Prism 5.0 software
(GraphPad Software Inc., San Diego, CA, USA). Changes were considered statistically significant
at p < 0.05.

3. Results

3.1. In Vitro Release of Lira from PLGA NPs

The release behavior data presented in (Figure 1) showed a biphasic release pattern starting by a
moderate initial burst release during the first 2 h in SGFsp, where 14.2 ± 0.86% of Lira was released from
the NPs. This was followed by a slow release profile until 6 h in the SIFsp, where only 18.5 ± 2.39% of
cumulative Lira release was reached.
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Figure 1. Cumulative in vitro release profile of liraglutide (Lira) from PLGA NPs.

3.2. Release Kinetics Studies

Based on the best fit with the highest correlation (R2) value, it is concluded that Lira release from
PLGA NPs follows the zero-order model (R2 = 0.999) in SGFsp (pH = 1.2). When the release data is
fitted into the Korsemeyer–Peppas equation (R2 = 0.999), the exponent (n) value is 1.316, which is
consistent with the zero-order release mechanism (Table 2).

Regarding the following 4 h in SIFsp, the release mechanism follows the Higuchi model (R2 = 0.998),
indicating diffusion-controlled release, and the exponent (n) value of the Korsmeyer–Peppas equation
is 0.254, indicating that the release mechanism from PLGA NPs follows the Fickian diffusion mechanism
(Table 2).
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Table 2. Release kinetics data of Lira from PLGA NPs, in SGF and SIF (without enzymes).

Kinetic Model
SGF SIF

N k R2 n k R2

Zero order 7.9857 1.84 0.9991 0.9836 12.658 0.9925
First order 0.038 2.01 0.998 0.0052 1.9418 0.9934

Higuchi 17.049 10.262 0.9854 4.1563 8.3559 0.9983
Korsmeyer-Peppas 1.3162 0.762 0.9993 0.2456 1.0696 0.9996

3.3. Enzymatic Degradation Study

It is obvious that only 1.9 ± 0.46% and 9.2 ± 0.7% of the free Lira was recovered after 30 min
incubation in SGF and SIF, respectively. Lira was completely degraded after incubation for 1 h in SIF,
while only 5.7 ± 0.53% Lira recovery occurred after 2 h incubation with SGF. On the other hand, the
encapsulation of Lira into PLGA NPs was able to successfully protect 71.2 ± 1.49% and 87.6 ± 1.3% of
Lira from degradation in the SGF and SIF at the end of the 2-h incubation, respectively (Figure 2). PLGA
nanoparticles were claimed in previous research papers to be able to provide a protective and stable
environment to encapsulate peptide drugs [11,31]. Encapsulation of GLP-1 into PLGA nanosystems
could successfully shelter the peptide from the harsh environment of the simulated conditions of the
stomach with sustained GLP-1 release [12].
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mediums, with free Lira as a control.

3.4. Cell Viability Assay

Treatments with Lira, Lira loaded in PLGA NPs, Lira with PN159 peptide, unloaded PLGA NPs
or PN159 peptide did not change the cell index values measured by impedance, a sensitive method
to detect cellular effects, indicating good cell viability (Figure 3). Figure 3A shows the kinetics of the
cellular effects of the treatment solutions, while the columns in Figure 3B show the effect of treatments
at the 1-h time point. When cells were lysed with the detergent Triton X-100 the impedance dropped to
zero (Figure 3B).
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Figure 3. Cell viability kinetics for 24 h (A) and results of a 1-h treatment (B) of Caco-2 intestinal epithelial
cells with liraglutide (Lira), NPs, liraglutide in NPs, liraglutide with PN159 peptide, and PN159 peptide
measured by impedance. Values are presented as means ± SD, n = 6–12. Statistical analysis: Analysis of
Variance (ANOVA) followed by Dunnett’s test. NPs, nanoparticles; TX-100, Triton X-100. *** p < 0.001
compared to control.

3.5. Permeability Study on the Caco-2 Intestinal Barrier Model

Caco-2 monolayers showed high TEER values (893 ± 135 Ω × cm2, n = 20) before permeability
experiments indicating tight barrier properties. Because of the tight barrier the permeability was low
for the marker molecule fluorescein (Papp: below 0.5 × 10−6 cm/s) as in our previous study [29]. The free
Lira at a donor concentration of 100 µM showed good penetration as the Papp was 16 × 10−6 cm/s
(Figure 4). The permeability of Lira encapsulated in NPs, 24 × 10−6 cm/s, was significantly higher than
that for Lira solution. An increased Lira permeability (28 × 10−6 cm/s) was measured in the presence
of PN159 peptide, our reference absorption enhancer (Figure 4A). There was no statistical difference
between the liraglutide permeability values of the Lira-NP and Lira + PN159 groups. In contrast, the
only group where the TEER values dropped after the 1-h treatment was the one containing PN159
peptide (Figure 4B) indicating opening of the paracellular pathway in agreement with observations
from our previous studies [23,24]. Liraglutide alone or encapsulated in PLGA NPs did not change the
ionic permeability (Figure 4B), suggesting no toxic effect on differentiated Caco-2 cells in concordance
with the viability data (Figure 3) and no effect on the paracellular pathway.
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Figure 4. Evaluation of permeability of liraglutide (100 µM) across Caco-2 epithelial cell layers treated
with different liraglutide formulations for 1 h (A). Changes in transepithelial electrical resistance (TEER)
values of Caco-2 cell layers after 1-h treatment with different liraglutide formulations as compared
to TEER values before treatment (B). Values are presented as means ± SD, n = 4. Statistical analysis:
ANOVA followed by Bonferroni test, *** p < 0.001 compared to liraglutide group.
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There was a good recovery for Lira after the permeability experiments and we found no significant
differences between the recovery values of the different investigated Lira groups (Table 3).

Table 3. Recovery (mass balance) calculation after liraglutide permeability on Caco-2 cells.

Liraglutide Recovery (%) Mean ± SD

Liraglutide 80.9 ± 1.6
Liraglutide in NPs 75.3 ± 2.3

Liraglutide + PN159 81.3 ± 6.9

3.6. Immunohistochemistry

The Caco-2 intestinal epithelial cells formed confluent layers visualized by the localization of
the junctional proteins ZO-1 and β-catenin. The cells were attached to each other without gaps and
had similar immunostaining patterns. An intact, belt-shaped continuous localization around the cell
borders for the junctional proteins was observed both in the control and the treated groups. Only the
PN159 peptide treated group showed a visible change in the staining pattern of β-catenin adherens
junctional protein (Figure 5).Pharmaceutics 2019, 11, x 9 of 13 
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4. Discussion

GLP-1 analogs represent a unique class of antidiabetic peptide drugs with potential clinical
benefits over existing therapies for T2DM treatment [32]. Lira, a lipophilic long-acting GLP-1 analog,
is still subcutaneously administered. Since the oral delivery of Lira can bypass the inconvenience
zone of patients, a smart carrier system that can tackle the challenges hindering the oral peptide
delivery has been aimed for. In a previous work, we formulated and statistically optimized the
formulation and process parameters affecting the quality of Lira loaded PLGA NPs that are designed
for oral delivery. Spherical shaped NPs with homogeneous distribution, 188.95 nm particle size and
51.81% encapsulation efficiency were obtained [25]. As a follow-up study, the aim of this work was
to investigate the potential of the developed PLGA NPs in overcoming the main barriers limiting
the oral peptide delivery, namely, the harsh environment through the GI tract and the absorption
membrane barrier.

The behavior of drug release from polymeric NPs is a complex process attributed to diffusion
followed by degradation and influenced by the drug physicochemical properties in addition to various
formulation and process variables [33]. The Lira release from PLGA NPs showed a biphasic release
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pattern, which was frequently reported for polymeric NPs by previous papers [12,34]. At the burst
release phase (where less than 15% of Lira was released), PLGA NPs are exposed to the gastric media
and the surface of the NPs is hydrated. Then, non-capsulated Lira, or Lira which exists close to
the surface having weak interactions with it is easily accessible by hydration and is released in the
media. Potentially, less than 15% of Lira was released from NPs in the gastric media following a
zero-order model. At the second phase of slow Lira release, the degradation of the polymer matrix took
place, leading to diffusion of the encapsulated Lira, and the release mechanism followed the Higuchi
model, which further confirms the diffusion-controlled release. These results prove that the PLGA
nanosystem is able to hinder the release of encapsulated peptides in gastric simulating conditions
without enzymes (SGFsp), and later sustain the peptide release in intestinal simulating conditions
without enzymes (SIFsp).

The enzymatic stability results were compared between the free Lira and Lira encapsulated in
NPs. There was no Lira detected after the 2-h incubation of free Lira with SGF or SIF, which is due
to the presence of amino acids, especially the aromatic ones, in the Lira structure, which makes it
vulnerable to pepsin–pancreatin digestion [35]. The results revealed that PLGA NPs were effective
in protecting 71% and 87% of Lira from pepsin and pancreatin digestion after a 2-h incubation with
SGF and SIF, respectively. These findings confirm that PLGA NPs can provide a physical barrier
between the encapsulated Lira and the harsh environment in the GI tract, and thereby are promising
for obtaining higher oral peptide bioavailability [12,36].

There was no decrease in cell impedance kinetics regarding the five treatment groups; Lira, Lira
loaded in PLGA NPs, Lira and PN159 peptide in solution, unloaded PLGA NPs or PN159 peptide,
during the 24-h long treatment. These findings proved the biocompatibility of PLGA NPs and showed
that the composition of the nanosystem did not contribute to toxicity in Caco-2 cells. This is in
accordance with previous reports where PLGA nanosystems larger than 100 nm did not trigger any
toxic effects at different concentrations [37–39]. Regarding PN159 peptide, the absence of cytotoxic
effects at the concentration of 3 µM is also in accordance with our previous report [24,40].

To further evaluate the potential of the prepared nanosystem, permeability studies on the Caco-2
cell model were conducted. Lira showed a good apparent permeability through the cell model
compared to what was reported for the native GLP-1 or exenatide, which could be due to the 16-carbon
fatty acid chain that is attached to lysine at position 26 via a glutamic acid spacer [9]. This acylation
leads to higher Lira hydrophobicity [41], which can enhance the intracellular permeability of this
GLP-1 analog when compared to the native GLP-1 or exenatide [42]. The potential of the optimized
polymeric NPs was also investigated to further enhance Lira permeability. Lira encapsulated in NPs
showed 1.5-fold higher apparent permeability as compared to Lira alone. Because PLGA NPs are more
lipophilic compared to the free peptide drug, their transport across the lipid membrane of Caco-2 cells
is better. Furthermore, these optimized polymeric NPs showed a smaller size than 200 nm, and it was
previously reported that NPs within the 100–200 nm size range showed the best properties for cellular
uptake, while smaller-sized (50 nm) or larger-sized (≥500 nm) particles resulted in reduced uptake [43].
Moreover, the prepared NPs were spherical with a smooth surface, as previously confirmed by scanning
electron microscopy [25], which is better for cellular uptake when compared to needle-shaped ones.
The ability of PLGA NPs to enhance the in vitro permeability of the hydrophilic drug alendronate [44],
salmon calcitonin [45], bovine serum albumin [46], and insulin [15,17] through the Caco-2 cell model
has been reported in the literature. In the presence of PN159 peptide, our reference absorption enhancer,
Lira permeability also increased. This finding is consistent with our results, and results from the
literature, on the reversible tight junction opening by the PN159 peptide in biological barrier models,
which effectively improves the permeability of different drugs and hydrophilic marker molecules
through the paracellular pathway [23,24,40]. In addition, it was reported that this amphipathic CPP
can strongly bind to and interact with biological membranes due to electrostatic and hydrophobic
interactions [47,48], and we also confirmed the cell permeabilizing and penetration effects of PN159 on
Caco-2 cells [23].
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The immunostaining for the junctional proteins, ZO-1 and β-catenin, showed that Lira-PLGA
NPs did not change the morphology of interepithelial junctions. The PN159 peptide treated group
showed a change in the staining pattern of the β-catenin adherens junctional protein, which is also
in accordance with our previous results [23,24]. We suppose that an increase in both the paracellular
transport and the membrane permeability in Caco-2 cells by PN159 can contribute to the enhanced
Lira permeability.

5. Conclusions

Being a relatively new GLP-1 analog, there are no reported studies for Caco-2 permeability of
liraglutide alone or encapsulated into a carrier system. In this study we found that the developed
PLGA nanosystem could efficiently protect the encapsulated liraglutide from the conditions simulating
the harsh environment in the GI tract. This polymeric system seems to be promising as it can also
enhance the permeability 1.5-fold compared to free liraglutide solution. These findings reveal that
encapsulation in a polymeric nanosystem holds promise for oral GLP-1 analog delivery.
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ABSTRACT
Purpose To design and stabilize Liraglutide loaded poly (lac-
tic-co-glycolic acid) nanoparticles (PLGA NPs) proper for oral
administration.
Methods PLGA NPs were prepared by means of double
emulsion solvent evaporation method and optimized by ap-
plying 7-factor 2-level Plackett-Burman screening design.
Results Spherical shaped NPs with homogeneous distribu-
tion, 188.95 nm particle size and 51.81% encapsulation effi-
ciency were obtained. Liraglutide was successfully entrapped
in the NPs while maintaining its native amorphous nature,
and its structural integrity as well.
Conclusion Lira-PLGANPs with the required Critical Quality
Attributes (CQAs) were successfully designed by implementing a
7-factor 8-run Plackett Burman design into the extended
Quality by Design (QbD) model, to elucidate the effect of for-
mulation and process variables on the particle size, size-distribu-
tion, encapsulation efficiency and surface charge. As the devel-
oped nanoparticles maintained the native structure of the active
pharmaceutical ingredient (API), they are promising composi-
tions for the further development for the oral delivery of Lira.

KEY WORDS liraglutide . oral delivery . plackett Burman
design . PLGA nanoparticles . quality by design

INTRODUCTION

A current scenario in pharmaceutical development is inclined
towards employing rational Quality by Design (QbD) strategy
(1,2) which has been adopted by the pharmaceutical industry
to guarantee the quality of drug products (3). One of the key
elements of QbD is to identify and thoroughly understand
formulation and process variables and their effects on the crit-
ical quality attributes (CQAs), followed by the optimization of
these variables by applying an appropriate statistical design of
experiment (DOE) which enables the researcher to minimize
the number of runs and helps in identifying the most influen-
tial parameters namely; critical process parameters (CPPs)
and critical material attributes (CMAs) which may highly im-
pact the quality of the product. In addition to that,
DOE helps in identifying the optimum level of each
factor that assures the desired CQAs values, to comply
with the desired Quality Target Product Profile (QTPP)
(4). One of the important questions when implementing
DoE methodology is the selection of adequate experi-
mental design.that matches the experimental objective.
When estimating the main effects of large number of
factors are of interest to be investigated, screening de-
signs such as 2- level Plackett-Burman (PB) is applied.
The main advantage of applying such screening designs
is the minimum number of observations needed to cal-
culate the effect of several variables. If providing further
information on direct and pairwise-interaction effects
and curvilinear variable effects is desired, second order
designs: central composite designs (CCD) and Box
Behncken designs (BBD) are the most widely applied
ones (5,6). CCD provides better prediction capability than
BBD, while the latter requires fewer runs in case of 3 or 4
variables and is applied when combined factor extremes
should be avoided.

Liraglutide (Lira) or NN2211 is a recombinant palmityl-
acylated derivative of glucagon like peptide −1 (GLP1), which
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was approved for the treatment of T2DM (6) in addition to
chronic weight management (7). Lira is currently administered
once daily through subcutaneous injection which is an invasive
route known to be limited by insufficient patient adherence to
the therapy in addition to the fact that this therapeutic route is
not strictly mimicking the physiological secretion route
of GLP1 (8). The oral route should be regarded as the
most desirable choice for the delivery of Lira (9), and
realizing the dream of administering a GLP1 analog
such as Lira orally is still an elusive goal despite all advances
in peptide delivery systems.

Based on our careful evaluation of literature regarding the
emerging developments in oral delivery of antidiabetic pep-
tides (10,11), we found out that PLGA nanoparticles showed
promising results in improving the stability of peptides
through the GIT in addition to other merits of nanocarrier
systems, which can all lead to enhancing the oral bioavailabil-
ity of these peptides (12). Among the applied techniques for
preparing PLGA NPs, the double emulsion solvent
evaporation method was found to be the most prefera-
ble one, which has been efficiently used for encapsulat-
ing peptides and proteins (13–15). Nevertheless, the
physicochemical properties of nanoparticles may be af-
fected by various formulation and process parameters, which
influence the product quality.

To the best of our knowledge, there is no previously report-
ed work considering the application of DOE as a part of the
QbD strategy for the development of PLGA NPs encap-
sulating GLP-1 analog. Here we focus on the optimiza-
tion of the size and EE of the NPs as a crucial demand
along with the polydisperisity index (PDI) and surface
charge. The design space (DS) was established to opti-
mize the level of each of the examined factors, then
surface morphology, compatibility studies as well as
structural and conformational stability tests of Lira en-
capsulated in the optimized formula were conducted on
the optimized formula.

MATERIALS AND METHODS

Materials

Liraglutide was purchased from Xi’an Health Biochem
Technology Co., Ltd. (China), Poly(lactide-co-glycolide)
(PLGA 50:50, Mw= 30,000–60,000 Da), PVA (MOWIOL
4–98, MW~27,000 Da) which is a soluble polymer, and
D-(+)-Trehalose dihydrate (MW= 378.33 g/mol) were
purchased from Sigma Aldrich (Germany). D-(−)-
Mannitol was purchased from Molar Chemicals Ltd.
(Hungary). Sodium acetate anhydrous was purchased
from Scharlau Chemie S.A. (Spain). Ethyl acetate used
for dissoloving PLGA was from REANAL Labor

(Hungary). All other chemicals in the study were of analytical
reagent grade.

Methods

Preparation of Liraglutide Loaded PLGA NPs Using Double
Emulsion Solvent Evaporation Method

The preparation of Liraglutide loaded PLGA nanoparticles
was carried out by means of the double emulsionW1/O/W2-
solvent evaporation method, which is the most commonly
used technique for the encapsulation of peptide drugs within
PLGA NPs due to its simplicity and high encapsulation effi-
ciency (15,16). The amount of PLGA (30 or 60 mg) was dis-
solved in ethyl acetate at room temperature to form the or-
ganic phase. Ethyl acetate was the organic solvent of choice
here as it was reported to increase the rate of encapsulation of
hydrophilic molecules (16). The inner aqueous phase of 0.5–
5 mg liraglutide was dissolved in 0.5 ml of 1% sodium acetate
aqueous solution, it was slowly added to the organic phase,
then water/oil primary emulsion was formed upon sonication
at the power of 90 W for 30 s using a probe sonicator in ice
bath. The obtained emulsion was re-emulsified with external
aqueous phase containing 0.5–2% PVA as stabilizer by soni-
cation in ice bath at the power of 90W for 0.5–2min using the
probe sonicator. The obtained water-in-oil-in-water (W1/O/
W2) double emulsion was subjected to magnetic stirring at
room temperature over the night to allow the complete evap-
oration of ethyl acetate. The nanoparticles were then
collected by centrifugation for 15 min at 16500 rpm,
washed three times with distilled water, and resuspend-
ed in deionized water.

For the lyophilization process, 1.5 ml of each nanoparticles
suspension was poured into semi-stoppered glass vials
with slotted rubber closures and freeze-dried at −40°C
for 72 h. 5–10% mannitol or trehalose was added as
lyoprotectants. The chamber pressure was maintained at
0.01 mbar, and the process was controlled by (Scanlaf
CTS16a02) software.

Design of Experiment Study Using Plackett Burman Design

PB design is the most widely used method among the various
screening designs used for the determination of the most in-
fluential factors affecting the pharmaceutical development as
it has many advantages: it screens a large number of variables
and identifies the highly influential ones with relatively few
runs, while assuring a good degree of accuracy. PB design with
a total of 8 runs involving 7 independent variables was carried
out using STATISTICA 13 software, and analysis of variance
(ANOVA) was applied to determine the statistical significance
of each model coefficient, which was significant at 95% level
(P< 0.05).
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The linear equation of this model is:

Y ¼ b0 þ b1X1 þ b2X2 þ b3X3 þ b4X4 þ b5X5 þ b6X6

þ b7X7

where Y is the response, b0 is the constant and b1, b2…b7 are
the coefficient of factors X1, X2…X7. It is known that a pos-
itive value of the regression coefficient is an indicator of a
positive effect of the factor (X) on the response (Y), while a
negative value refers to an inverse relation between the exam-
ined variable and the response (17).

Depending on our previous risk assessment-based investi-
gation (18–20), the selected independent formulation and pro-
cess variables were: PLGA amount (X1), liraglutide amount
(X2), 2nd sonication time (X3), PVA concentration (X4),
lyoprotectant type (X5), lyoprotectant concentration (X6)
and external aqueous phase to organic phase w2/o ratio
(X7). Particle size (Y1), PDI (Y2), EE (Y3) and zeta potential
(Y4) were selected as dependent variables. The examined low-
er and upper levels of the independent factors X1-X7

(Table 1) were also determined depending on preliminary
experiments and literature survey.. The design was val-
idated by 3 extra center checkpoint formulations and
the bias (%) between predicted and observed values of
response was calculated. The optimized formulation was
prepared within design space (DS) and compared with pre-
dicted results of the responses.

Characterization of the Prepared Liraglutide Loaded PLGA NPs

Particle Size, S ize Distr ibution and Surface Charge
Measurements. Approximately 5 mg of the prepared
freezedried NPs was dispersed in 5 ml of double distilled water
and sonicated to minimize the possible inter-particle interac-
tions. The hydrodynamic diameter (Z-average), PDI and zeta
potential of reconstituted NPs were measured in folded capil-
lary cell by using Malvern Nano ZS Zetasizer (Malvern
Instruments Ltd. UK) equipped with He-Ne laser(633 nm).
The instrument allows the particle size measurement in the
range of 0.3 nm-10.0 μm using patented NIBS (Non-Invasive
Back Scatter) technology, with high accuracy of ± 2%. The
samples were measured at 25°C, the refractive index
was 1.445, and the number of scans was 17. All the
measurements were conducted in triplicate and the average
value of each was used.

Encapsulation Efficiency (EE). The encapsulation efficiency of
liraglutide encapsulated in PLGANPs was determined direct-
ly using the centrifugation method. In this method, 20 mg
from each NPs formulation was dissolved in 2 ml of DCM,
then liraglutide was extracted into 4 ml of PBS (pH = 8.1),
soaked for 30 min and then centrifuged at 16500 rpm at

4οC for 15 min. The supernatant was then collected and the
amount of encapsulated liraglutide in the supernatant was
measured using the RP-HPLC method. Samples were run
in triplicate.

The percentage of EE was calculated using the following
equations:

EE% ¼ encapsulated amount of liraglutide=

total amount of liraglutide added* 100:

Chromatographic Equipment and Conditions. Reversed phase
HPLC (Shimadzu Corporation, NEXERA X2, Tokyo,
Japan) method was developed in our lab to analyze liraglutide.
A Kinetex ® C18 column with dimensions of (5 μm,
150*4.6 mm, (Phenomenex, USA) was used as a stationary
phase. The flow rate of 1.5 ml/min was set over 15min with a
mobile phase comprised of 0.02 M aqueous KH2PO4 solu-
tion (pH= 7.0, solvent A) and acetonitrile (solvent B). The
mobile phase was pumped in a gradient mode as it was
changed from 80:20 (A:B, v/v) to 30:70 (A:B, v/v) in 12 min
then going back to 80:20 (v/v) between 12.1–15 min. The
column temperature was set to 40°C, and the sample tray
temperature was set to 15°C. Fifty microliters of sample vol-
ume was injected. The wavelength of UV detection was
214 nm.. The retention time of liraglutide is 8.65 min.
In our HPLC method, some chromatographic parame-
ters have been calculated. The limit of detection (LOD)
value of the liraglutide is 0.175 ppm, the limit of quan-
tification (LOQ) value is 0,530 ppm, respectively.
Capacity factor (k’) for liraglutide is 5.20, the asymme-
try factor of the peak of liraglutide showed 1.40 value,
respectively. The theoretical plate (N) value is 146,620,
calculated by the Ph.Eur. guideline. The regression of
the linearity (R2) of the liraglutide calibration curve was
0.996, respectively.

Scanning Electron Microscopy Measurements (SEM). To inves-
tigate the surface morphology, sphericity, and discreteness of
the freeze dried NPs containing lira, scanning electron

Table 1 Levels of the Selected Critical Factors

Critical factor Low level High level

PLGA amount (mg) X1 30 60

Liraglutide amount (mg) X2 0.5 5

2nd sonication time (min) X3 0.5 2

PVA (%) X4 0.5 2

Lyoprotectant type X5 Mannitol Trehalose

Lyoprotectant (%) X6 5 10

W2/O ratio X7 2 5
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microscopy (SEM) (Hitachi S4700, Hitachi Scientific Ltd.,
Tokyo, Japan) at 10 kV was used. The samples were coated
with gold-palladium (90 s) with a sputter coater (Bio-Rad SC
502, VGMicrotech, Uckfield, UK) using an electric potential
of 2.0 kV at 10 mA for 10 min. The air pressure was 1.3–
13.0 mPa. 3 repetitions of the optimized formula were tested
by SEM technique and images were captured from different
surface regions of each sample and at two different magnifi-
cations (×15,000, ×45,000).

Compatibility Studies

To investigate the physicochemical compatibility between the
drug and the polymer in the prepared PLGA NPs, FTIR,
DSC and XRD analysis were conducted.

Fourier Transform Infrared Spectroscopy (FTIR). The FT-IR
spectra of pure Lira, PLGA, Lira free/loaded PLGA
NPs were recorded using FT-IR spectrometer (Thermo
Nicolet AVATAR; LabX Midland, ON, Canada) in the
range of 4000 and 400 cm−1 with an optical resolution
of 4 cm−1. The sample was mixed with 150 mg of dry
KBr and compressed to prepare the pellet.

Differential Scanning Calorimetry (DSC). To define the physical
state of the peptide drug in the nanoparticles and assess
any possible intermolecular interaction between the drug
and the polymer in the nanoparticles, DSC studies of
pure Lira, PLGA, Lira free/loaded PLGA NPs were
performed using (Mettler Toledo TG 821e DSC
Mettler Inc., Schwerzenbach, Switzerland). Accurately
weighed samples (3–5 mg) were sealed in an aluminum
pan and an empty pan was used as a reference. The
samples were analyzed at a scanning temperature from
25 to 300°C at a heating rate of 10°C/min under ni-
trogen purge. Data analysis was performed using the STARe

software (Mettler Toledo Mettler Inc., Schwerzenbach,
Switzerland).

X-Ray Diffraction Study (XRD). XRD is a useful technique ap-
plied herein to characterize the physical state of liraglutide
entrapped in PLGA NPs and further to confirm the
stability attributed to polymer-drug interaction. Powder
X-ray diffraction (XRD) patterns of pure Lira, PLGA,
Lira free/loaded PLGA NPs were obtained using an X-
ray powder diffraction (XRPD) BRUKER D8 Advance
X-ray diffractometer (Bruker AXS GmbH, Karlsruhe,
Germany), supplied with a Cu K λ1 radiation source
(λ= 1.54056 A°), with a voltage of 40 kV and a current of
40 mA, in flat plate θ/2θ geometry, over the 2θ ranges 3–40°,
with a scan time of 0.1 s at step size of 0.007°. The sample was
placed on a quartz holder and measured at ambient temper-
ature and humidity.

Stability of Lira Encapsulated in PLGA NPs

Electrospray Ionization Mass Spectrometry. Electrospray
Ionization Mass Spectrometry (ESI-MS) is a valuable tool to
be used to provide information about the molecular weight of
native Lira and compare it to Lira loaded in NPs. Lira was
characterized by an Agilent 1100 LC-MSD trap mass spec-
trometer equipped with an electrospray ion source.

Circular Dichroism. CD was performed to evaluate the confor-
mational stability of Lira loaded into the prepared polymeric
NPs. CD spectra were obtained with a Jasco J-1100 spectro-
polarimeter (Tokyo, Japan). Aliquot of each of PBS (pH =
8.1), native Lira in PBS and Lira extracted from NPs in PBS
was placed in a 10 mm pathway Far-UV quartz cuvette and
the Far-UV CD spectra were collected by an PM-539 CD
spectrometer. Spectra were collected at room temperature
over the wavelength range of 260 nm to 195 nm with
0.2 nm interval. Ellipticity was recorded at scanning speed of
100 nm/min and 1.00 nm band with 5 accumulations. PBS
solution subtraction, noise reduction and data analysis were
performed using standard analysis and temperature/
wavelength analysis programs (Jasco).

RESULTS AND DISCUSSION

Placket Burman Design: Risk Analysis

The QTPP that encompasses the desired CQAs was defined
in our previous paper as following: stable, homogeneous and
spherical shaped freeze dried NPs with particle size of 100-
300 nm and maximum EE. Risk assessment was also conduct-
ed (using LEAN-QbD software) for ranking and prioritizing
CMAs and CPPs likely to have an impact on the quality of
Lira loaded PLGA NPs (20) and the highly influential param-
eters were prioritized and subjected to subsequent screening
using a seven-factor, two-level, eight-run PB screening design
(Table 2) in order to minimize their risk to a low level by
controlling these variables in a specific accepted range.

Herein, the possible effects of these formulation and pro-
cess parameters on four responses namely: mean particle size,
PDI, EE and zeta potential were investigated by applying the
PB screening design where the experimental data were vali-
dated by ANOVA for each factor. ANOVA parameters for
predictingmean particle size (Y1), PDI (Y2), EE (Y3) and Zeta
potential (Y4) are presented in Supplemental Table 1.Surface
response plots are also useful diagrammatic representation of
the values of the response, to project the significance of effects
for each variable and can explain the relationship between
tested independent factors and dependent responses. A
color-scale object along with the surface plot serves as a leg-
end, and the value of the response is dependent on the gradual
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color. Based on this color gradient, these plots can present the
change in response value with different levels of the indepen-
dent variable.

Influence of Investigated Parameters on the Z-Average
Size, PDI, EE and Zeta Potential

Depending on the selected parameters levels, the Z-average
ranged between 160.1 ± 5.6 nm and 235. ± 5.3 (Table 3). The
corresponding coefficients are summarized in Supplemental
Table 2, where the factors a P value<0.05 are regarded as
highly significant, while the ones having nonsignificant
response coefficients with a P value>0.05 are least con-
tributing in the prediction of mean particle size. The
polynomial equation obtained for the fitted full model
explaining the effect of formulation and process variables on
the mean particle size is:

Y1¼197:8021þ9:5079X1 þ 1:5304X2 þ 7:7638X3

−16:9754X4−5:4712X5−3:5429X6−7:0791X7

with R2 ¼ 0:9745; adjusted R2 ¼ 0:9609;

and Mean square MSð Þ ¼ 22:3978

According to this polynominal equation and the Pareto
chart (Fig. 1), the most influential factors in terms of particle
size are the PVA concentration, PLGA amount followed by
sonication time and W2/O ratio at almost the same level of
significance. Then the next important variables include
lyoprotectant type and concentration. The tested levels of
Lira amount were observed to have a non-statistically signifi-
cant effect on the mean particle size.

In all prepared formulations, NPs exhibited a practically
monodisperse or narrow distribution (21) as PDI was ranged
from 0.1 ± 0.003 in PBD-F6 to 0.22 ± 0.01 in PBD-F3
(Table 3) evidencing that the obtained NPs are homogeneous
and stable with no aggregation. Figure S1 shows an example
of PDI = 0.07 with Z-average = 157.1 nm obtained for PBD-
F1. The polynomial equation obtained for the full model

describing the effect of formulation and process variables on
the PDI value is:

Y2 ¼ 0:1568−0:0061X1þ 0:0312X2þ 0:0005X3

−0:0013X4−0:0032X5−0:0031X6þ 0:0291X7

with R2 ¼ 0:9235; adjusted R2 ¼ 0:8828;

and Mean square MSð Þ ¼ 0:0003

Y2 ¼ 0:1568−0:0061X1þ 0:0312X2−0:0032X5

−0:0031X6þ 0:0291X 7………Redcuced modelð Þ
with R2 ¼ 0:92256; adjusted R2 ¼ 0:89522; and

Mean square MSð Þ ¼ 0:0002:

The statistical analysis (Table 3S) along with the Pareto
chart (Fig. 3) revealed that only two of the examined CMAs
namely Lira amount andW2/O ratio were observed to have a
significant effect on the PDI value.

Depending on the tested two levels of each factor, the re-
sults showed that EE varied between 20.1 ± 1.7 in formulation
PBD-F1 and 43.5 ± 3.3in PBD-F4 (Table 3).The polynomial
equation obtained for the fitted full model showing the impact
of the seven examined variables on EE is:

Table 3 Experimental Responses Results in PBD

Run code Z-AVE
(nm)

PDI EE% Z-potential
(mV)

PBD-F1 160.1 ± 5.6 0.10± 0.03 20.1 ± 1.7 −30.6 ± 1.8

PBD-F2 209.8 ± 8.01 0.15± 0.01 36± 1.25 −25± 1.6

PBD-F3 190.0 ± 2.8 0.23± 0.01 41± 2.46 −27.3 ± 0.7

PBD-F4 200.2 ± 3.5 0.16± 0.03 43.5 ± 3.34 −31.2 ± 1.2

PBD-F5 179.5 ± 3.8 0.17± 0.01 32± 4.03 −23.8 ± 1

PBD-F6 235.7 ± 5.3 0.10± 0.003 28.9 ± 2.05 −29.2 ± 0.4

PBD-F7 223.6 ± 3.7 0.17± 0.02 22.2 ± 2.12 −30.4 ± 0.

PBD-F8 183.5 ± 3.03 0.20± 0.01 21± 1.51 −26± 0.2

Table 2 The Input Factor Levels in 7 Factor, 2 Level, 8 Run PBD

Run code PLGA (mg) Lira (mg) 2nd sonication time (min) PVA (%) Lyoprotectant type Lyoprotectant (%) W2/O ratio

PBD-F1 30 0.5 0.5 2 Trehalose 10 2

PBD-F2 60 0.5 0.5 0.5 Mannitol 10 5

PBD-F3 30 5 0.5 0.5 Trehalose 5 5

PBD-F4 60 5 0.5 2 Mannitol 5 2

PBD-F5 30 0.5 2 2 Mannitol 5 5

PBD-F6 60 0.5 2 0.5 Trehalose 5 2

PBD-F7 30 5 2 0.5 Mannitol 10 2

PBD-F8 60 5 2 2 Trehalose 10 5
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Y3 ¼ 30:548þ 1:7683 X1 þ 1:3458X2−4:5825X3

−1:4458X4−2:8408X5−5:7483X6 þ 1:915X7

with R2¼0:9471; adjusted R2 ¼ 0:9189;

and Mean square MSð Þ ¼ 6:5021:

This equation along with the Pareto chart (Fig. 1) and
statistical analysis (Table 4S) show that the lyoprotectant %,
2nd sonication time and lyoprotectant type are the most high-
ly risky factors in terms of EE. This is followed by other factors
which all show a significant impact on the amount of Lira
encapsulated in the PLGA NPs.

The zeta potential was also monitored during the optimi-
zation steps and its values ranged from-31.2 ± 1.2 mV in
PBD-F4 to −23.8 ± 0.95 mV in PBD-F5 (Table 3), and these
expected negative values are attributed to the presence of
carboxyl group end on PLGA. Figure S2 depicts the result
of zeta potential obtained for formulation PBD-F1 as an ex-
ample. The full model describing the effect of formulation and
process variables on the zeta potential is:

Y4¼−28:0596−0:0154X1−0:9071X2 þ 0:4496X3

−0:0646X4−0:4679X5−0:1663X6 þ 2:2846X7

with R2 ¼ 0:9001; adjusted R2 ¼ 0:8468;

and Mean square MSð Þ ¼ 1:1599

Y4 ¼ −28:0596−0:9071X2þ 0:4496X3−0:4679X5

−0:1663X6þ 2:2846X7…………Reduced modelð Þ
with R2 ¼ 0:89946; adjusted R2 ¼ 0:86397;

and Mean square MSð Þ ¼ 1:0:297:

It is obvious from the statistical analysis (Table 5S) and the
Pareto chart (Fig. 1) that only the W2/O ratio and the
lira amount had a significant impact (P < 0.05) on the
surface charge of PLGA NPs. Other examined variables
were observed to have only a non-significant effect on
surface charge.

The effect of the above-explained variables on Y1,Y2,Y3
and Y4 is discussed point by point in the following:

Pareto Chart of Standardized Effects; Variable: SIZE
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Pareto Chart of Standardized Effects; Variable: EE

-.13

2.59

-2.78

3.4

3.68

-5.46

-8.80

-11.04

p=.05
Standardized Effect Estimate (Absolute Value)

(1)Replicat

(3)Lira amount

(5)PVA %

(2)PLGA amount

(8)W2/O

(6)Lyoprotectant type

(4)Sonication time

(7)Lyoprotectant conc.

Pareto Chart of Standardized Effects; Variable: ZETA POTENTIAL
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Fig. 1 Pareto charts of the effects of the examined independent variables on Z-average size (Y1), PDI (Y2), EE (Y3), zeta potential (Y4). Replicate refers to
number of repetitions for each formula which was 3.
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Effect of Polymer Amount

It is apparent from Fig. 2 that when the PLGA amount was
increased, the Z-average increased correspondingly, as sup-
ported by many earlier published papers (22,23) That could
be explained by increasing the viscosity of the organic phase
which leads to a reduction in the net shear stress (24), in ad-
dition to a reduction in the evaporation rate; i.e. the dispersion
rate of the organic phase toward the external aqueous phase
will be slower, thus that incites the formation of larger particles
(25,26). The formation of a more viscous organic phase was
reported to push up the frequency of collisions between par-
ticles during the emulsification and droplet solidification step,
which may lead to the aggregation of the semisolid particles
(5). Regarding the PDI value, it was also observed that size
distribution was slightly decreased by increasing the PLGA
amount which means that a greater level of PLGA would
promote the formation of much more homogeneous NPs.

The positive effect that the PLGA amount has on EE
(Fig. 4) could be again due to the fact of increasing the viscosity
of the organic phase with a higher amount of polymer, which
can retard drug diffusion into the external aqueous phase and
thus increase the amount of drug entrapped inside the NPs
(27,28). It is also known that larger nanoparticles obtained
with a higher PLGA level can provide sufficient surface for
entrapping the peptide drug. Furthermore, higher PLGA
levels give rise to more rapid polymer deposition as ethyl
acetate is removed from the NPs, which is expected to
hinder any undesirable Lira diffusion into the external
phase (29).

Effect of Liraglutide Amount

The positive effect that Lira has on the 2nd emulsification and
both final particle size (Fig. 2) and size distribution as a result
(Fig. 3) would be explained by the influence of the drug on the
droplet size of the inner aqueous phase within the organic
phase in the first water-in-oil (w1/o) emulsion, which may
modify its ability for dispersion in the outer aqueous phase.
However, this effect was only limited and not significant in the
case of particle size, while Lira theoretical loading amount was
a significant influential parameter affecting the PDI and zeta
potential values (Fig. 1, Fig. 3, Fig. 5). The Lira level was also
shown to have a significant positive effect on EE; when loading
higher amount of Lira, EE was even higher (Fig. 4). This
positive trend was previously reported with other peptide
drugs as insulin, and it is explained due to higher amount
of peptide that is associated with the surface of nanopar-
ticles and is electrooptically linked to a greater extent (30),
thus resulting in a higher EE value. However, the studied
levels of the Lira amount in our work were shown to be
the least risky factor affecting EE as presented in the
Pareto chart (Fig. 1).

 > 220 
 < 220 
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 < 200 
 < 190 
 < 180 
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 > 210 
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Fig. 2 Surface plots showing the effect of the significant examined variables
on the Z-average size (Y1).
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Effect of PVA Concentration

PVA has previously proved to be a good choice as a surfactant
used to prepare stable PLGA NPs with a small size and a

narrow PDI due to its ability of minimizing the surface tension
of the continuous phase which is an aqueous phase in our
work. The statistical analysis of the results showed that increas-
ing PVA level played a crucial role in decreasing particle size

 > 0.22 
 < 0.21 
 < 0.19 
 < 0.17 
 < 0.15 
 < 0.13 
 < 0.11 
 < 0.09 

Fig. 3 Surface plot showing the
effect of lira amount andW2/O ratio
on PDI (Y2).
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Fig. 4 Surface plot showing the effect of examined variables on EE (Y3).
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(Fig. 2), and it was the leading factor impacting the size of NPs
as can be seen in the Pareto chart (Fig. 1) which is in agree-
ment with previous reports (31,32) .This result can be expect-
ed from the stabilizing function of PVAmolecules that tend to
align themselves at the droplet surface lowering the free

energy at the interface between two phases and avoiding co-
alescence between nanodroplets, thus stabilizing the smaller
droplets and preventing coalescence into a larger one (33,34).
Hence, at a low PVA concentration, a larger particle size was
obtained due to insufficient reduction in interfacial tension. It

Table 4 The Observed and the Predicted Values of the Response Values of the Center Checkpoints

Experimental 
response

Predicted 
value

Observed value

(F1)

Bias%

Observed value

(F2)

Bias%

Observed value

(F3)

Bias%

Intermediate 
precision (%)

Z-average 
(nm)

197.8 195.8±2.5

1.0

202.7±5.8

2.5

196.4±4.1

0.7

3.8

EE% 30.5 29.5±1.8 

3.3

31.2±2.2

2.3

33.1±3.3

8.5

1.8

PDI 0.20 0.19±0.01

5.0

0.19±0.01

5.0

0.18±0.003

10.0

0.01

Zeta 
potential 

(mV)

-28.1 -28.1±1.1

0

-28.8±1

2.5

-27.7±1.3

1.4

0.6
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Fig. 5 Surface plot showing the
effect of lira amount andW2/O ratio
on zeta potential (Y3).
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was also reported that a fraction of PVA remains associated
with the surface of nanoparticles even after the washing of
nanoparticles (33). Thus, the presence of the PVA layer on
the surface of nanoparticles may also improve their stability
during the freeze-drying process.

It is also clear that as PVA level increased from 0.5% to
2%, EE decreased (Fig. 4). A possible explanation of this neg-
ative impact was discussed in a preceding published work, as it
was proved that the breakdown of the inner aqueous droplets
containing Lira took place along with the fragmentation of the
organic phase because of the cavitation occurs in the complex
system of three phases, the higher level of PVA in the external
aqueous phase is attributed to enhancing the breakdown of
inner aqueous droplets and a higher amount of Lira can es-
cape to the external phase as a result (34). This is sup-
ported by a previous paper in which increasing the
emulsifier concentration had led to lower entrapment
of the protein drug in PLGA NPs, which was explained as a
result of increasing the partitioning of the drug from the inner
to the outer phase (35).

Effect of 2nd Sonication Time

The results revealed that larger and less homogeneous parti-
cles were yielded when increasing 2nd sonication time from
30 s to 2 min (Fig. 1, Fig. 2). This could be explained as
follows: at the beginning, increasing the sonication time led
to the formation of smaller droplets due to the production of
higher energy and higher shearing rates, which are more effi-
cient in breaking large droplets into smaller ones (36).
However, a further elevation in this sonication period resulted
in the re-aggregation of these particles. This trend is in accor-
dance with results obtained by others where they observed the
formation of larger droplets as an outcome of longer sonica-
tion or homogenization time (37). Besides, the longer the 2nd
sonication time, the higher the shear energy input, thus the
higher the leached amount of peptide from W1/O to
the external aqueous phase i.e. the lower the EE. The
Pareto chart (Fig. 1) demonstrates that the prolonged 2nd
sonication time was the 2nd highest risky factor regarding
the influence on EE.

Effect of Lyoprotectant Type and Concentration

Lyoprotectant are commonly used to stabilize the particles
and protect them from degradation during freeze-drying
and storage (38). Regarding the type of lyoprotectant used in
this study, these significant changes in particle size may be
related with the behavior of each lyoprotectant during
freeze-drying, and the adsorption of lyoprotectant on the sur-
face of nanoparticles. It is clear that trehalose is more effective
in obtaining smaller nanoparticles (Fig. 1, Fig. 2).This is in
accordance with previous papers that confirmed that trehalose

which is a non-reducing sugar could be the most preferable
lyoprotectant of choice because of its merits over the other
sugars; including a very low chemical reactivity, a higher glass
transition temperature Tg, less hygroscopicity, in addition to
the absence of internal hydrogen bounds, allowing a more
flexible formation of hydrogen bonds with nanoparticles dur-
ing the freeze-drying process (39). However, mannitol
was proved to be more effective in obtaining a higher
EE value according to our experimental work.
Trehalose was investigated before regarding its effect
on the secondary structure of insulin, and the results
showed that it highly affected the conformational stabil-
ity of the peptide; so it might not be the best choice to
encapsulate peptide drugs (40). In addition to that; man-
nitol is able to form crystal morphology (which is confirmed
later in this paper by DSC and XRD) and this might be
attributed to the stability of peptide.

When it comes to the lyoprotectant level, results revealed
that increasing this level up to 10% significantly reduced the
Z-average and slightly minimized the PDI of the obtainedNPs
(Fig. 1,Fig. 2), which means that at this level the used
lyoprotectants are more efficient in preventing the aggrega-
tion and stabilizing the PLGA NPs the use of an excess
amount of lyoprotectant might eventually make it reach the
limit of its stabilization ability and thus the agglomeration of
NPs is likely to increase (41). It is also apparent from the
statistical analysis presented in the Pareto chart and surface
plot (Fig. 1, Fig. 4) that the lyoprotectant level was the most
influential formulation variable impacting EE. When the level
of lyoprotectant continued increasing, the amount of
entrapped Lira significantly decreased, which could be
the result of smaller NPs obtained with a higher
lyoprotectant level, and thus less sufficient surface area
for entrapping the drug.

Effect of W2/O Ratio

As the volume ratio of external aqueous phase to organic
phase W2/O went on increasing, which was achieved by in-
creasing the volume of the external aqueous phase, the aver-
age particle size was significantly decreased as can be seen
from the Pareto chart and surface plot (Fig. 1, Fig. 2). This
formation of smaller droplets may be due to the higher
amount of stabilizer present as compared to the non-
sufficient amount of stabilizer when using a lower amount of
this phase. It was also recently reported that increasing the
continuous phase volume:organic phase ratio had led to par-
ticle size reduction (27).

Regarding PDI values, a significant increase in size distri-
bution was observed when the volume of the external aqueous
phase was higher, as shown by the Pareto chart and surface
plot (Fig. 1, Fig. 3). This observation might be attributed to a
reduction of shear stress during the homogenization process
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(42). Besides, the phase ratio was the highly influential factor
affecting the surface charge as increasing the external aqueous
phase volume led to a significant increase in the zeta potential
value (Fig. 5).

The EE exhibited a significant upward trend when increas-
ing the volume of the external aqueous phase, as presented in
the Pareto chart and surface plot (Fig. 1,Fig. 4). The impact of
the external aqueous phase/organic phase is controversial, as

X1          X2        X3        X4       X5         X6      X7

Fig. 6 The desirability plots and graphical design space representing the optimum levels of factors required to prepare the optimized formula.

Pharm Res           (2019) 36:99 Page 11 of 16    99 



many papers reported that increasing the W2/O ratio can
lead to minimizing the amount of the encapsulated drug
(31,42). However, other published papers assumed that a rel-
atively higher volume ratio of the external aqueous phase was
beneficial for maximizing the drug encapsulated in the NPs as
a higher outer aqueous phase volume can speed up the solid-
ification time (evaporation of ethyl acetate and formation of
NPs), while the smaller the volume of this outer aqueous
phase, the longer the time required for solidification, thus over
this time Lira may leak to the outer phase due to its hydrophi-
licity (43).

Placket Burman Design: Model Validation

The three replications of center checkpoint formulations were
prepared and evaluated for the particle size, EE, PDI and zeta
potential to evaluate the reproducibility of the generated
models and estimate the experimental error. Table 4 presents
the percentage of bias between predicted and observed
values for each response was calculated by means of the
following equation .

Bias %ð Þ ¼ Predicted value−observed valueð Þ=Predicted value*100

The minor differences between the predicted values and
the average of experimental values confirm the validity of this
design in providing a good prediction of the four tested
responses.

In addition to that, the calculated relative standard devia-
tion RSD% values that are presented in Table 4 prove the
repeatability and intermediate precision regarding the 4 re-
sponses that further confirms high analytical process
variability.

Placket Burman Design: Design Space
and Optimization

After establishing the polynomial equations describing the re-
lationship between the CPPs, CMAs and the examined re-
sponses namely; particle size, EE, PDI and zeta potential,
the optimization process was conducted. Among the four re-
sponses, size and EE were the highly critical quality attributes
of nanoparticles being significantly affected by almost all the
tested variables which is in accordance with the estimated
severity scores of CQAs that was calculated previously at the
initial risk assessment process. Therefore, the deign space (DS)
was optimized (Fig. 6) targeting the following criteria: the par-
ticle size was minimized, encapsulation efficiency was maxi-
mized while PDI and Zeta potential were excluded. Thanks to
the knowledge obtained via the DS, the optimum levels of the
formulation factors were determined: 60 mg of PLGA, 5 mg
of Lira, 0.5 min 2nd sonication time, 1.48% of PVA, 5% of
mannitol and W2/O ratio of 5.As shown in Table 5, the
observed values were comparable to the predicted ones, pre-
senting another confirmation of the validity of the generated

Table 5 The Observed and the
Predicted Values of the response
values of the Optimum Lira
Nanoparticle

Experimental response Predicted value Observed value Residual Bias (%)

Z-average (nm) 197.9 189± 4.99 8.95 4.5

EE% 48.3 51.8 ± 2.39 3.5 7.2

PDI 0.21 0.19± 0.012 0.034 7.8

Zeta potential (mV) −26.5 −27.1± 1.33 0.58 2.2

Fig. 7 SEM images of liraglutide loaded PLGA NPs.
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models and indicating that the optimized formulation is
reliable.

Scanning Electron Microscopy (SEM)

Figure 7 depicts the shape and surface morphology of the
optimized Lira loaded PLGA NPs visualized by SEM. Since

the optimized formula was homogeneous (in accordance with
low PDI) we selected two images as representative for the
sample. The results revealed that Lira loaded PLGANPs were
spherical with quite a smooth surface and they had homoge-
neous distribution which is in agreement with the above-
mentioned results that demonstrated low PDI values for all
formulations.
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Fig. 8 Mass spectra of lira extracted from PLGA NPs compared to native lira.
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Compatibility Studies

Fourier Transform Infrared Spectroscopy (FTIR)

Figure S3. represents the FTIR spectra of pure Lira, pure
PLGA and Lira free/loaded PLGA NPs.

The amide I region (1710–1590 cm−1) is the most represen-
tative region of the spectra to assess peptide or protein based drug
secondary structure (44). In the FTIR of pure Lira, the amide I
band was located at 1655 cm−1 and was assigned to C=O
stretching, while the amide II band was observed at 1541 cm−1

(in-planeN–Hbending component andC–N stretching bands of
the amide bond). Besides, the typical peak at 2928 cm−1 was
ascribed to C-H stretching of CH3, and the peak at 1396 cm−1

is attributed to amide III. When analyzing the FTIR spectra of
Lira loaded PLGA NPs, it was found that the major peaks of
pure Lira assigned to amide I and II and III were masked by the
PLGA bands, and this seems to be a logical result since the
amount of PLGA was much higher than the Lira amount in
these NPs. There were no clear differences between the spectra
of the blank NPs and Lira loaded NPs which is also expected as
the drug loading is very small when compared to the polymer
amount. These observations suggest that Lira was successfully
loaded into the PLGA NPs.

Differential Scanning Calorimetry (DSC)

Figure S4 represents the DSC thermograms for pure Lira,
PLGA, liraglutide free/loaded PLGA NPs. For the temperature
range examined, the PLGA thermogram exhibited a glass tran-
sition point at 49.22°C and no melting endothermic peak was
observed, as PLGA appears amorphous in nature. The DSC
thermogram of pure Lira revealed a peak at 275.46°C, which
is attributed to the thermal degradation of this peptide drug, and
no endothermic peak of melting was shown, which proved the
amorphous nature of the drug. Since the thermogram of Lira

loaded PLGA NPs did not display any extra endo/exothermic
peaks compared to the blank NPs, this is an indicator of the
presence of Lira in the amorphous phase and this drug is suc-
cessfully encapsulated into the PLGA matrix.

X-Ray Diffraction Study (XRD)

XRD studies further verified the amorphous nature of both
PLGA and pure Lira as they showed no characteristic peaks in
their diffractograms which is in accordance with the results of
DSC thermograms (Fig. S4). As depicted in Fig. S5, mannitol
remained in crystalline state after freeze drying which is due to
the property of mannitol to recrystallize at low cooling rates
rather than rapid cooling. The crystallization of this lyoprotectant
could have a negative effect on the stability of NPs as it is able to
limit the formation of these hydrogen bonds (30), and this can
explain why trehalose was more efficient than mannitol at
preventing the aggregation of NPs and thus minimizing the Z-
average. There was no difference between the diffractograms of
the loaded and blank PLGANPs which is explained in literature
as a result of the successful encapsulation of the peptide drug
inside the polymeric nanoparticles without change in its physical
state (45), and this is in accordance with the DSC results.

Structural Stability

ESI-MS

MS was used to compare the molecular weight MW of lira
standard (native) to lira extracted from PLGA NPs. As the spec-
tra in Fig. 8 depicts, the measured MW of native Lira and Lira
loaded in NPs are almost equal, and the spectra confirmed
the presence of Lira with a molar mass of 3751 Da which is
an evidence of the integrity of Lira loaded in PLGA NPs
prepared using the optimized formulation and process
parameters.
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CD

Since the preservation of the secondary structural integrity of
a peptide drug in the nanocarrier is critical for its biological
efficacy, the secondary structure of Lira extracted from NPs
was compared to that of native Lira. The CD spectra of native
Lira (Fig. 9) showed two minima at 208.8 nm and 218.4 nm
indicating the presence of alpha helix elements in the struc-
ture, which is in consistent with previous studies on the typical
structure of the glucagon-like peptide-1 family. No significant
conformational change was recorded for Lira extracted from
PLGANPs (in PBS, pH= 8.1) as the far UVCD spectra for it
showed two minima at 209.4 nm and 219.2 nm, and almost
entirely overlapped with the CD spectrum for the standard.

CONCLUSION AND FUTURE PERSPECTIVES

The present study is the first published work that substantiated
the application of rational QbD-based methodology for the op-
timization of a GLP-1 analog loaded nanocarrier system. This
work demonstrated the importance of implementing DOEwith-
in QbD philosophy in the early stage of Liraglutide containing
NPs development due to the complexity of this system.

After establishing the design space, with the minimum par-
ticle size and maximum EE, the optimized formula was suc-
cessfully prepared meeting the targeted CQAs. This opti-
mized Lira loaded PLGA NPs formula was also successful in
maintaining the native structure of Lira and could be prom-
ising for the oral delivery. Thus, in vitro release kinetics, cyto-
toxicity, intestinal permeability and in vivo studies will be fur-
ther conducted on this formula.
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A B S T R A C T

Risk Assessment (RA) is the key element of the Quality by Design (QbD) approach recommended by the phar-
maceutical regulatory bodies. This research paper aimed to implement the regulatory requirements, the QbD
thinking and the RA from the first steps of the oral peptide formulation development. The authors intended to
give a general recommendation about the application possibilities of this methodology, to demonstrate the risk
factors and the required decision points. Later, this paper presents a concrete development in practice. This case
study shows the QbD and RA based early phase development of the GLP 1 analog, Liraglutide, an antidiabetic
peptide drug mainly used in the treatment of type 2 Diabetes Mellitus. The objective here was to design
Liraglutide encapsulated polymeric nanoparticles for oral delivery and the progress of their RA based devel-
opment is presented. In this case, the particle size, the encapsulation efficiency, and the drug loading were found
as the most critical quality attributes, the polymer concentration, the drug concentration, the w2/o ratio, the
stabilizer concentration and polymer type were identified by the criticality rating as having the greatest impact
on the product quality among the critical material attributes, finally the sonication time and sonication power
were selected as the most critical elements of the production process. The results showed the importance of the
risk factor-focused development in the oral peptide pharmaceutical formulations, and underlined the importance
of the profound planning phase even in such cases. The formulation of an oral peptide delivery system is as-
sociated with several risks, but their priority ranking helps to focus on the resources (human, financial, time)
related to the final product quality aimed at.

1. Background

1.1. Risk Assessment and the Quality by Design

The QbD approach is a holistic, systematic, knowledge and risk
based methodology of pharmaceutical development approach, which is
proactive and focuses on profound preliminary design (Yu et al., 2014;
Yu, 2008). It represents the main stream of the pharmaceutical tech-
nological formulation development nowadays (Pallagi et al., 2015;
Bhise et al., 2017; Pallagi et al., 2016; Lee et al., 2017; Kovács et al.,
2017). QbD has several steps, which are described in the relevant
guidelines of the International Council of Harmonisation (ICH), namely
in the ICH Q8R2, Q9, Q10 papers (Pharmaceuticals International
Conference on Harmonisation of Technical Requirements for
Registration for Human Use, 2009; T. I. C. on Harmonisation, 2008; ICH
Expert Working Group, 2005). The implementation of QbD in the
manufacturing of medicinal products is often called the “GMP of the
21st century”; regulatory authorities strongly force the pharmaceutical

industry to apply this strategic planning approach (Lee et al., 2017;
Kovács et al., 2017). The adaptation and application of this metho-
dology into the early research phases within the R&D activities holds
many advantages, as mentioned in our previous papers. QbD based
early development brings scientific results closer to the practical re-
quirements and has a facilitating effect on industrial scale up and
product transfer to the market. The main elements of QbD are: (1) the
definition of the Quality Target Product Profile (QTPP), (2) the iden-
tification of the quality attributes and the selection of the Critical
Quality Attributes (CQAs) related to the target product, (3) the prior
selection of the production method and the identification of the Critical
Process Parameters (CPPs), (4) performing of the initial Risk Assess-
ment (RA). The results of RA will be the ordered CQAs and CPPs ac-
cording to their calculated risk severity. The next step is the (5) setting
up of the Design of Experiments (DoE) based on the highly risk related
factors calculated previously in the RA step. This DoE is generally a
factorial design and the aim is to determine the process and product
Design Space (DS) (6), which means a multidimensional space and is
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determined by ranges of process elements and material attributes. Then
it is needed to determine the Control Strategy (7), followed by the
evaluation of the possibilities of Continuous Improvement (8). Risk
Assessment is a key element in general, and it is especially advanta-
geous in the case of complex drugs (e.g. peptides) and/or carrier sys-
tems of special risk (e.g. nano-delivery systems).

1.2. Peptide drug delivery and new formulation possibilities

The interest in the pharmaceutical technology utilizing therapeutic
peptides in the treatment of a variety of diseases has dramatically in-
creased over the past few years. However, these peptides suffer from
several drawbacks, including metabolic liability, poor permeability
across biological barriers, and fast hepatic clearance and subsequent
inherent short half-lives, which all lead to the low bioavailability of
such drugs. Hence, peptide administration is usually limited to par-
enteral routes such as subcutaneous, intravenous, and intramuscular
administration, which are regarded as invasive routes associated with
many downsides leading to insufficient patient adherence. Thus, a pa-
tient friendly non-invasive route of administration such as the oral
route is desired in order to overcome the various drawbacks associated
with the invasive delivery route. However, an orally administered
peptide drug encounters numerous formidable obstacles, including
chemical and enzymatic instability in addition to the limited ability to
traverse biological barriers (Ahn et al., 2013). Besides these barriers,
the stability of the peptide drug during formulation and storage is a
crucial aspect to be investigated when developing a peptide delivery
system as peptides are sensitive drugs that can be damaged or become
inactivate almost in every step of the production method (Patel et al.,
2011).

The selected drug for this case study is Liraglutide, a fatty acid
modified glucagon like peptide-1 (GLP-1), which shares 97% amino
acid sequence identity with human GLP-1, and is produced by re-
combinant technologies using yeast. This peptide drug was approved
for the treatment of type 2 diabetes mellitus (Bode, 2012), and Novo
Nordisk has recently begun marketing it for the chronic weight man-
agement for obese or overweight adults who have associated co-
morbidities, such as hypertension, diabetes and dyslipidemia (Mehta
et al., 2017). Since Liraglutide is still delivered parenterally, the oral
route should be aimed at, providing the patient friendly administration
in addition to mimicking the physiological route of GLP-1 from intes-
tine to circulation. Still, enhancing the oral bioavailability of Liraglu-
tide presents an interesting challenge and the development of a novel
oral Liraglutide delivery system is regarded as a high risk and high
reward process.

Tremendous efforts have been devoted over the past decades to the
oral administration of antidiabetic peptides. Based on our previous re-
view and the evaluation of recently published papers in the field of
antidiabetic peptide oral delivery (Ismail and Csóka, 2017; Ismail and
Csoka, 2017a), it can be concluded that among several techniques to
improve antidiabetic peptide oral bioavailability, much of the success
was recorded when using polymeric nanoparticles (NPs). And among
the numerous polymers used to obtain polymeric NPs, poly lactic-co-
glycolic acid (PLGA) is the most widely used one, as it is a biodegrad-
able and biocompatible synthetic polymer approved by the Food and
Drug Administration (FDA, USA) (Malathi et al., 2015). PLGA NPs were
found to be successful in the protection of peptides from harsh en-
vironment in the gastrointestinal tract, thus enhancing stability, in
addition to other merits of nanocarrier systems, which can all lead to
improving the oral bioavailability of these drugs as in insulin, GLP-1 or
its analogs (Ismail and Csoka, 2017a; Sharma et al., 2015; Araujo et al.,
2016; Ismail and Csoka, 2017b).

The aim of this study was to evaluate the role of RA in the case of

the development of a Liraglutide drug delivery system for oral admin-
istration. Based on a careful collection, selection and evaluation of the
relevant literature together with the previous developments of the re-
search group in this field (Kovács et al., 2017; Karimi et al., 2016;
Kovács et al., 2016), we aimed to set up a strategic flow chart with
proposed RA function and decision steps. The selected pilot study fo-
cused on novel Liraglutide loaded PLGA NPs prepared by means of the
double emulsion solvent evaporation method and the application of the
QbD concept in order to optimize the formulation by evaluating the
effect of different formulation and process parameters on the quality of
the aimed product.

2. Materials and methods

2.1. Materials

Liraglutide was purchased from Xi'an Health Biochem Technology
Co., Ltd. (China), Poly(lactide-co-glycolide) (PLGA 50:50,
Mw=30,000–60,000 Da), PVA (MOWIOL 4–88, MW=27,000 Da),
and D-(+)-Trehalose dihydrate (MW=378.33 g/mol) were purchased
from Sigma Aldrich (Germany). D-(-)-Mannit was purchased from
Molar chemical KFT (Hungary). Sodium acetate anhydrous was pur-
chased from Scharlam Chemie S.A. (Spain). Ethyl acetate which used
for dissolving PLGA was from REANAL Labor (Hungary).

2.2. Methods

2.2.1. Knowledge space development
According to the QbD nomenclature, the collection and system-

atization of the relevant scientific literature and experience from the
previous research is called “knowledge space development”. The
methodology was the analysis of the relevant scientific literature,
structural development of data-collection. Modern quality management
tools were used for visualization, such as preparation of Ishikawa dia-
grams (Ishikawa, 1976) and building up of flow charts for process de-
scription and systemic evaluation (Iso Iec, 1985).

2.2.2. Definition of QTPP
The QTPP forms the basis of product development design. It should

include patient-relevant product performance and characteristics re-
lated to the aimed therapeutic or clinical use. Considerations for QTPP
selection are described in the ICH Q8R2 guideline, e.g. the route of
administration, dosage form, delivery system, pharmacokinetic and
other product quality criteria (e.g. sterility, stability and drug release),
etc. The QTPP is always unique depending on the target.

2.2.3. Determination of the CQAs
Those factors which have critical influence on the QTPP linked with

safety, quality or efficacy are CQAs. CQAs are generally associated with
the drug substance, excipients, intermediates (in-process materials) and
drug product. A CQA is a physical, chemical, biological, or micro-
biological property or characteristic of the output material (product)
that should be within an appropriate limit, range, or distribution to
ensure the desired product quality. CQAs are connected strictly to the
product. The selection of CQAs needs carful design and a holistic view
of the formulation development and is based on previous knowledge
and experience.

2.2.4. Determination of the CMAs and CPPs
CMAs are critical material attributes, physical, chemical, biological,

or microbiological properties or characteristics of an input material
(Zhang and Mao, 2017). CPPs are process parameters whose variability
has a critical effect on the aimed product performance. CPPs and CMAs
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are linked to the selected production/formulation process. The selection
of the CMA and CPP is based on prior knowledge, previous practical
investigations and data from the relevant literature.

2.2.5. Initial Risk Assessment
Initial Risk Assessment aids in identifying which material attributes

and process parameters potentially have an effect on product CQAs
(ICH Q8R2). On the basis of prior knowledge and initial experimental
data, RA tools can be used to identify and rank parameters (e.g. process,
equipment and input materials) with the potential of impacting on final
product quality. The initial RA was performed with Lean QbD Software
(Lean QbD® Software, QbD Works LLC. USA, CA, Fremont) to evaluate
the risks and get the Risk Priority Number (RPN) data. First, the in-
terdependence rating was performed between CQAs and CMAs, CQAs
and CPPs on a three-level scale and categorized as “high” (H),
“medium,” (M) or “low” (L). After the interdependence rating, an oc-
currence rating related to the selected CQAs, CMAs and CPPs was also
made. The whole risk estimation resulted in calculated and ranked se-
verity scores of CQAs, CMAs and CPPs, presented in Pareto charts
generated by the software. The software also generates the relative
occurrence-relative severity chart, depicting the critical factors in four
different groups according to their estimated occurrence and severity
(or the degree of their impact if they occur) estimated as the result of
the RA. This affords a different presentation mode of the RA results. In
this manner the upper right corner of the generated figure needs the
highest attention as it represents those critical factors which have the
highest risk of occurrence and have great impact on quality.

Generally, RA results show the factors with the highest impact on
product quality, which are usually the key elements of the systemic
designed experiments in practice.

2.2.6. Preparation of nanoparticles by double emulsion solvent evaporation
technique

The process of the Liraglutide encapsulation by double emulsion
solvent evaporation technique includes the following steps: first, for-
mation of a primary w1/o emulsion, where the aqueous solution of the
peptide drug is added to the polymeric organic solution upon sonication
in ice bath. This was followed by the formation of a double emulsion
(w1/o/w2) by dispersing the primary emulsion in an external aqueous
phase containing poly vinyl alcohol PVA as a stabilizer, with the use of
sonication in ice bath. Finally, organic solvent evaporation resulted in
the formation of Liraglutide loaded nanoparticles.

3. Results

3.1. Theoretical evaluation of the Risk Assessment based oral peptide drug
formulation development - General considerations

Oral peptide drug delivery has several challenges and many risks
because peptide drugs are more complex and heterogeneous in nature
than chemical drugs (Fosgerau and Hoffmann, 2015; Muheem et al.,
2016; Lennernäs et al., 2014). Every product is unique with several
risks related (Bak et al., 2015). Also, the European Medicine Agency
(EMA) says that: “Biological products possess such a large number of
quality attributes that it might not be possible to fully evaluate the
impact on safety and efficacy of each one. Risk assessments can be
performed to rank or prioritize quality attributes”. So RA is a key ele-
ment in the formulation of biological and even in the oral peptide de-
livery preparations. Fig. 1 presents the collected potential risk factors
which should be taken into consideration when developing a new oral
peptide dosage form (Fig. 1A).

It is very important to note that besides the guidelines which de-
scribe the classical QbD (ICH Q82R, Q9 and Q10), an extension has to

be made with the ICH Q11 guideline (European Medicines Agency,
2016) about the development and manufacturing of drug substances as
shown in Fig. 1, part B., since special attention needs to be paid when
the active pharmaceutical ingredient is biological, like peptide.

In the next step of the knowledge space development phase of this
study, the following Ishikawa diagram was set up as a result (Fig. 2.).
The Ishikawa diagram, as a quality management tool, can help to ex-
plore the cause and effect relationships. The diagram marks all the
influencing factors related to peptide formulation for oral delivery in a
detailed manner. These influencing factors can be the potential risks,
namely CQAs, or CPPs depending on the aimed product. On the other
hand, in the case of biologicals, the effect of the CQAs and CPPs on the
QTPP are more difficult to understand, and the interactions are more
complex with other risk aspects related to the safety, efficacy, im-
munogenicity, pharmacokinetics, bioactivity, etc. of the final drug
product (Rathore, 2009). Rathore A. gives a thorough description of the
relationships between the quality criteria of the biotechnology product
and their safety and efficacy (Rathore and Winkle, 2009). On the other
hand, the monoclonal antibody formulation study by Awotwe-Otoo
et al. draws attention to the special elements of a biologic QTPP, such as
elements regarding the reconstitution of previously lyophilized formula
(e.g. reconstitution time, isotonicity, aggregation, etc.), which under-
lines the need for complex and careful thinking in this field (Awotwe-
Otoo et al., 2012).

Besides the several different CQAs of a peptide formula, the for-
mulation process development could have many additional problems,
i.e. the technology transfer may be difficult due to the sensitive nature
of the peptide drug as small changes in either the formulation compo-
sition or in the manufacturing steps can have great effect on the final
quality (Winkle and Nasr, 2011; Jain, 2014).

The flow chart, prepared by the authors illustrates the suggested
decisions and their order when formulating a new dosage form con-
taining a peptide drug substance (Fig. 3).

The therapeutic target area (“unmet clinical need”) should be de-
fined first, which gives the main framework for the drug substance
(active pharmaceutical ingredient, API) selection. The peptide type
drug has to be characterized next, namely the physio-chemical prop-
erties, therapeutic activity profile, physical, chemical or structural
stability, impurities, and the fact whether a surface modification is
needed or not in order to fit the purpose. In connection with API profile
building, it is required to define the desired therapeutic targeted place,
either local or systemic. If the aimed effect is local, the drug size is not
critical, immunogenicity is reduced, and there is no need for using
permeability enhancers. If the new peptide formula is designed to have
a systemic effect, the size is critical because of absorption, and the risk
of immunogenicity is also increased. Immunogenicity is one of the most
critical elements, so each aspect that has an influence or a potential
influence on it needs special attention. Excipients could also be risk
factors, as it is necessary to use permeability enhancers for better ab-
sorption, and enzyme inhibitors in order to protect the peptide from
inactivation. This is also the point where the administration route of the
planned new dosage form has to be decided. If the oral route is targeted,
the following characteristics could be critical, for example: size, charge
or electrostatic interactions, surface polarity, bioadhesive properties,
lipophilicity, PEGylation, surface ligands. The dosage form selection is
also part of the development design, and will be part of the QTPPs at
the end as well. Depending on the targeted dosage form (e.g. conven-
tional capsule, tablet like solid forms or emulsion, suspension, liquid
formulas etc.), special considerations have to be made regarding ex-
cipients (permeation enhancers, protease inhibitors, enteric coating
materials, artificial proteins, protective antibodies, etc.) and the proper
production process has to be selected. Related to that phase of the de-
sign, the preliminary definition of other requirements is essential. These
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requirements include the dissolution profile, stability, impurities, per-
meability related characteristics, etc. The production process is also
highly critical in the case of peptide formulation, due to their sensi-
tivity. In this consideration, the selected manufacturing process has to
be evaluated carefully from the risky aspects and the CPPs have to be
selected. Other decisions should be made concerning regulatory and
industrial expectations. From these aspects, costs planning can be a
critical point of decision as there could be great differences in the
marketing authorization costs between an originator and a biosimilar
medicinal product.

The left part of Fig. 3 will generally give the basis of the QTPP
definition, and the other sections of the chart could give the basis of the

CQA and CPP selection for the different targeted peptide formulations.
After the selection step the RA can be performed.

3.2. Practical implementation: Results of the Risk Assessment of a
Liraglutide containing drug formulation development for oral delivery -
Practical findings

The study presented below is intended to show how the previously
introduced risk based theoretical model can be applied in the early
phase of peptide drug containing formulation development. Based on
reviewing the most relevant strategies (Ismail and Csóka, 2017), Lir-
aglutide loaded PLGA NPs are to be prepared by using the double

Fig. 1. Potential risks to be considered in the development of a new oral peptide containing drug (A) and steps of the extended QbD method (B).

Fig. 2. Ishikawa diagram for evaluating risks in general, related to the quality of an oral peptide drug development.
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emulsion solvent evaporation method, well-known (Sipos et al., 2005)
as a suitable choice for encapsulating hydrophilic drugs, particularly
protein and peptide drugs (Ramalho and Pereira, 2016; Iqbal et al.,
2015).

According to the guideline, the initial step of this QbD based study
aiming to design oral Liraglutide loaded PLGA NPs was to set up the
QTPP as shown in Fig. 4.

Then, the proposed CQAs that could critically affect the desired
QTPP were identified. This was followed by selecting CMAs and CPPs
that may have a significant effect on the CQAs of the lira-PLGA NPs, and

the Ishikawa fish bone diagram (Wang et al., 2014) was constructed to
illustrate these potential formulation and process variables likely to
impact the quality of the lira-PLGA NPs (Fig. 5).

The initial RA study was achieved by means of the “Lean QbD”
software. Fig. 6 depicts the interdependence rating on the three-point
scale between the selected CQAs and CMAs on the one hand, and CQAs
and CPPs on the other hand.

The calculated and ranked severity scores for the CQAs, CMAs and
CPPs are presented in Pareto charts generated by the Lean QbD
Software as shown in Fig. 7.

Fig. 3. Flow chart of decision steps involving Risk Assessment for the development of a peptide formulation.
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Fig. 4. Defining the QTPP for Liraglutide loaded PLGA NPs.

Fig. 5. Formulation and process parameters affecting the CQAs of lira-PLGA NPs.
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Besides, Fig. 8 presents the occurrence rating of the CMAs and CPPs,
and here we selected the most potential factors with the highest oc-
currence and severity rate to be subjected to further investigation, ap-
plying a suitable design of experiment that enables the statistical op-
timization of the Liraglutide containing nanoparticles by defining the
optimal value of each examined variable.

4. Discussion

The main steps and elements of oral peptide formulation develop-
ment were evaluated as peptide type drug substance containing for-
mulations can be handled as high risk dosage forms due to their com-
plexity in both composition and preparation design. Initial Risk
Assessment should be considered as a crucial part of the development
process.

Classic drug development works with small, chemically manu-
factured active substance molecules. Biologic drugs, such as peptides,
are biologically produced large molecules. Compared with conventional
small drug formulation, peptide containing dosage form development
has many challenges. For example, oral delivery systems for peptides
need special considerations as the active agent has to be protected
against digestion in the stomach and intestines, whereupon they be-
come ineffective. The right technological formulation technique in ad-
dition to the proper selection of the excipients (permeation enhancers,
protease inhibitors if needed, coating materials, etc.) could be the so-
lutions to peptide stability and protection. The sensitivity of the bio-
logicals should be the most focused area during their formulation de-
velopment. In this regard, the main findings are the following: the prior
ranking of the CQAs and CPPs which are mainly related to stability in

the peptide formulation helps in more effective experimental design
and the prioritization of the limited development sources. The identi-
fication of the relative risk levels at the beginning of product devel-
opment has great advantages in such complex formulation.

The highly focused RA fields in peptide drug formulation are the
following: (1) The drug substance, especially characteristics related to
its stability and quality. (2) The manufacturing process, also related to
the drug substance and product stability. Small changes in the pro-
duction process could have a great effect on quality thus influencing the
safety, efficacy and side effects related to the therapeutic application.
These are strongly connected to the immunogenicity aspects (3).

Regarding the RA based study of Liraglutide encapsulated in PLGA
NPs system prepared by double emulsion solvent evaporation technique
for enhancing the oral bioavailability of this peptide drug, the QTPP
was set up as presented in Fig. 6 based on prior knowledge regarding
the peptide delivery, PLGA NPs formulation and methods of prepara-
tion, in addition to our initial experimental data. This was followed by
the identification of CQAs, namely: particle size, zeta potential, poly-
dispersity index (PDI), encapsulation efficiency (EE) and drug loading
(DL). Then, initial RA was performed by identifying the CMAs and CPPs
(regarding the double emulsion evaporation method) that may have a
high risk of impacting the CQAs of the Liraglutide loaded PLGA nano-
particles (Yerlikaya et al., 2013). Here, the Ishikawa fish bone diagram
was constructed to configure the risk analysis process for defining the
cause and effect relationship between the significant variables and the
CQAs of the desired lira-PLGA NPs (Dhat et al., 2017), and it can be
seen from Fig. 7 that six main formulation (outer aqueous phase, inner
aqueous phase, organic phase) and process (homogenization, cen-
trifugation, freeze-drying) causes were identified. Further RA using

Fig. 6. RA interdependence ratings: (A) the interdependence rating matrix between the selected CQAs and CMAs, and (B) between the CQAs and CPPs.
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Lean QbD software showed that the most highly influential CPP
(Figs. 6B, 7C, 8B) is sonication time, while the most highly influential
CMAs (Figs. 6A, 7B, 8A) are polymer concentration, drug concentra-
tion, stabilizer concentration, cryoprotectant type, cryoprotectant
concentration and external aqueous phase to organic phase ratio w2/o.

To optimize process and formulation parameters, all these potential
parameters will be subjected to further investigation with the use of a
screening statistical design of experiment (Narayanan et al., 2014) in
order to minimize their risk to a low level by controlling theses vari-
ables in a specific accepted range in order to obtain design space, thus
assuring the desired CQAs values, to comply with the QTPP.

5. Conclusion

Several challenges and many risks are entailed in formulating do-
sage forms containing peptide drugs, which are more complex and
heterogeneous in nature than chemical drugs. Thus, it is advisable to
apply QbD based formulation development in order to save time and
effort by directing the effort toward building the quality in each step of
peptide delivery system development, which includes RA as an initial
part of this QbD based process. This RA focused approach of the peptide
pharmaceutical formulation development is essential as it results in
ranked and prioritized risk factors, thereby leading to an effective for-
mulation development. This study can help researchers to implement
RA focused thinking and the QbD approach in their peptide formulation
development if they follow the general steps of decisions presented

Fig. 7. Pareto charts A- Estimated severity scores of the proposed CQAs, B- Estimated severity rating of the proposed CMAs, C- Estimated severity rating of the
proposed CPPs (PDI: polydispersity index, EE: encapsulation efficiency, DL: drug loading).
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previously. In our pilot study, QbD oriented development was suc-
cessfully implemented to gain understanding of critical parameters in-
fluencing the quality of the Liraglutide loaded PLGA NPs. Furthermore,
the next step will be the application of a reliable and robust statistical
DOE to investigate the effect of the most critical factors on CQAs with
minimum number of runs, then determining the best optimum level of
each variable which should be used to prepare an optimized formula-
tion that assures the required CQAs.

Abbreviations

API Active Pharmaceutical Ingredient
CMAs Critical Material Attributes
CPPs Critical Process Parameters
CQAs Critical Quality Attributes
DL Drug loading
DoE Design of Experiments
DS Design Space
EE Encapsulation Efficiency
EMA European Medicine Agency
FDA Food and Drug Administration
GLP-1 glucagon like peptide −1
ICH International Council of Harmonisation
Lira Liraglutide
NPs Nanoparticles
PDI Polydispersity Index
PLGA NPs Poly lactic-co-glycolic acid -nanoparticles
PLGA Poly lactic-co-glycolic acid
QbD Quality by Design
QTPP Quality Target Product Profile
RA Risk Assessment
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As diabetes is a complex disorder being a major cause of mortality and morbidity in epidemic rates, con-
tinuous research has been done on new drug types and administration routes. Up to now, a large number
of therapeutic peptides have been produced to treat diabetes including insulin, glucagon-like peptide-1
(GLP-1) and its analogs. The most common route of administration of these antidiabetic peptides is par-
enteral. Due to several drawbacks associated with this invasive route, delivery of these antidiabetic pep-
tides by the oral route has been a goal of pharmaceutical technology for many decades. Dosage form
development should focus on overcoming the limitations facing oral peptides delivery as degradation
by proteolytic enzymes and poor absorption in the gastrointestinal tract (GIT). This review focuses on
currently developed strategies to improve oral bioavailability of these peptide based drugs; evaluating
their advantages and limitations in addition to discussing future perspectives on oral peptides delivery.
Depending on the previous reports and papers, the area of nanocarriers systems including polymeric
nanoparticles, solid lipid nanoparticles, liposomes and micelles seem to be the most promising strategy
that could be applied for successful oral peptides delivery; but still further potential attempts are
required to be able to achieve the FDA approved oral antidiabetic peptide delivery system.
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1. Introduction

Proteins and peptides are the building blocks of life and are now
evolving as a very promising brand of therapeutic drugs [1]. They
have gained much interest because they can be used for the treat-
ment of several diseases due to their ability to provide effective
and potent action [2–4]. More than that, peptides and proteins
are highly selective [5] that can lead to a significant decline in tox-
icity. ‘‘Diseases that might be treated with this type of therapeutics
include auto immune diseases, cancer, mental disorder, hyperten-
sion, and certain cardiovascular and metabolic diseases” [6]. A
wide variety of peptide and protein drugs is now developed as a
result of advances in the biotechnology field [7].

Diabetes mellitus is an endocrinological and/or metabolic disor-
der [8], and the worldwide prevalence and incidence of it has con-
tinued to increase dramatically. Currently, more than 250 million
people in the world have diabetes and it is predicted that this num-
ber will double over 20 years [9]. The disease results in hyper-
glycemia which may cause multi-organ damage. The debilitating
effects of diabetes mellitus include various organ failures, progres-
sive metabolic complications such as retinopathy, nephropathy,
and/or neuropathy [9–11]. The main aim for the treatment of type
I and type II diabetes is to cure the symptoms related to hyper-
glycemia [12].

Over the last years, the interest of the pharmaceutical technol-
ogy utilizing therapeutic peptides in diabetes treatment has been
increased. However, these peptide drugs have several drawbacks,
including low bioavailability, metabolic liability and short half-
lives [13–15]. Hence, these drugs are usually administered by par-
enteral route [16–18]. However, since injections are associated
with pain and low patient compliance [19], researchers in the
pharmaceutical technology field believe that alternative routes of
non-invasively delivery ways such the oral, pulmonary, nasal,
transdermal and buccal routes are highly desirable for peptides
and proteins delivery [20–22]. Among these non-invasive routes,
the oral route is often the most preferred route.
2. Delivery of the most common antidiabetic peptides

2.1. Insulin

Insulin is a life-saving drug for diabetes as it has the ability to
control the blood glucose level by facilitating the uptake of glucose
[23]. Until now, insulin is the first line treatment of type 1 diabetes.
It is also used to treat type 2 diabetic patients (especially in late-
stage disease) [24]. Human insulin is consisted of two amino acid
chains: A chain (21 amino acid residues) and B chain (30 amino
acid residues) linked by disulfide bonds. Insulin can be isolated
from human, porcine, bovine or sheep sources [25]. Currently;
insulin is still administered by subcutaneous injection because of
its instability in the gastrointestinal route, due to stomach acid
and proteolytic enzymes present in the intestine, and low perme-
ability through the intestinal mucosa [26] in addition to the hep-
atic first pass effect [27].

However, multiple daily insulin injections can lead to infection
at the injection site in addition to psychological stress leading to
poor patient compliance [26,28], and as a result non-effective
treatment.

All of these drawbacks have motivated researchers to develop a
safe and effective noninvasive route for insulin delivery. Among
different noninvasive routes, oral insulin delivery not only
improves the quality of life of diabetes patients who routinely
receive insulin by the subcutaneous route, but also offers many
advantages: rapid hepatic insulinisation in addition to avoidance
of peripheral hyperinsulinemia and other adverse effects such as
possible hypoglycemia and weight gain [29,30].
2.2. Glucagon-like peptide-1 and its analogs

The incretin hormone glucagon-like peptide-1(GLP-1) is a 30
amino-acid peptide derived from a proglucagon gene that is
secreted by neuroendocrine L cells of the ilium and colon [31].
Food intake is the primary physiological stimulus of GLP-1 release
from enter-endocrine cells [32]. The main effect of incretins is the
reduction of blood glucose, mediated by the regulation of hor-
monal pancreatic secretions, inhibiting gastric emptying and
reducing appetite and food intake [33]. The half-life of bioactive
GLP-1 in the circulation is less than 2 min due to rapid inactivation
by the ubiquitously expressed dipeptidyl peptidase-4 (DPP-4)
which is mainly located on the luminal surface of the endothelial
cells [31]. To overcome premature GLP-1 metabolism, long-acting
GLP-1 analogs have been developed to resist DPP-4 degradation.
Currently, six glucagon-like peptide-1 receptor agonists (GLP-
1RAs) are approved for treating type 2 diabetes. These fall into
two classes based on their receptor activation: short-acting exe-
natide twice daily and lixisenatide once daily, and longer-acting
liraglutide once daily, exenatide once weekly, albiglutide once
weekly and dulaglutide once weekly [34].

Both exenatide and liraglutide are delivered parenterally and
have been proven to improve glycemic control. Therefore an oral
route is preferable as it could prove safe and effective, it would
mimic physiological route of GLP-1 from intestine to circulation
to avoid potential side effects, and provide more convenience, ease
of administration, and comfort, which would increase patients’
compliance to the treatment and thus increase the treatment effi-
cacy [35,37].
3. Major obstacles associated with oral delivery of therapeutic
peptides

Peptides and proteins could be transported across the GIT
epithelium via either transcellular or paracellular pathway. How-
ever, these molecules are hydrophilic with large size. So, they
would not be expected to follow the transcellular route of absorp-
tion by means of passive diffusion. Alternatively, the paracellular
route is an aqueous extracellular route that may be interesting
for peptides and proteins delivery due to possible deficiency in
proteolytic enzymes. It was demonstrated that the paracellular
route is not an option for absorption of proteins and peptides
because they cannot fit in these spaces [38–40]. Another major
obstacle that contributes to the extremely low bioavailability of
proteins and peptides is the presystemic enzymatic degradation
in the harsh environment of the GI tract as well as presystemic
elimination in the liver [38–42]. Besides, efflux transporters such
as P-glycoprotein (P-gp), a 170-kDa protein, might contribute sig-
nificantly to the poor bioavailability of peptides and proteins
[43,44] as this protein acts in reverse to transcellular drug absorp-
tion [45,46].

Thus, the barriers that limit oral peptide delivery can be sum-
marized as follow:

� Low pH environment of the gastric media.
� Enzymatic barrier.
� Viscous mucous layer.
� The intestinal epithelium cells.

As the possibilities in their oral delivery and the main chal-
lenges in their development, current and future prospects, with
focus on technology trends in the market has been summarized
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recently in general [1]; therefore now we focus on antidiabetic
peptides and their challenges.
4. Most recent attempts for oral antidiabetic peptide delivery

Tremendous efforts have been devoted over past decades for
oral administration of antidiabetic peptides. Up to date, several
strategies - from very simple to more complex ones - have been
developed to improve the oral bioavailability of those peptides.
These include incorporating absorption enhancers, enzyme inhibi-
tors into the formulations, development of mucoadhesive poly-
meric and particulate delivery systems; modification of the
structure of macromolecules in addition to site specific delivery
to colon and recently by mean of cell penetrating peptides.

As the oral route of administration is closer to the natural phys-
iological route of insulin, therefore the most recent developments
in this domain are detailed and evaluated in the following section.

These developments should solve at least one from the two
main challenges: (1) to protect the protein/peptide from enzymatic
degradation and (2) to enhance absorption without altering biolog-
ical activity.

This review goes from the simplest to the most complex solu-
tions available in the literature, where examples contained antidi-
abetic peptide examples for possible oral administration.
4.1. Modifying the structure of peptides

Chemical modification offers great potential for enabling the
oral delivery of a macromolecule drug [47]. Many strategies of
chemical modification were developed such as cyclization, lipida-
tion, inclusion of unnatural amino acids, PEGylation and
biotinylation.
4.1.1. Pegylation
Even cyclization can stabilize oligopeptides and improve their

lipophilicity by reducing their charges and hydrogen bonding
potential, its widespread use is limited when larger peptides and
proteins are needed for therapy. Thus, PEGylation is one possible
modification strategy for peptides that could not be cyclized
[48,49]. This technology was first reported in the 1970s, and it is
achieved by attaching polyethylene glycol (PEG) covalently to a
protein or peptide drug [50,51]. There are several reasons for
PEGylation of peptides and proteins such as preventing recognition
and degradation by proteolytic enzymes, enhancing the stability
and potency of proteins and peptides [52–54]. PEGylation of com-
pounds have also proved to reduce immune responses [53] which
usually minimize half-life of drugs in the body. Researchers con-
cluded that the PEGylation of insulin was able to remove the resul-
tant conjugate’s immunogenicity, allergenicity, and antigenicity.
Moreover, the (monomethoxypoly (ethylene glycol) mPEG attach-
ment was observed to remarkably improve insulin’s resistance to
aggregation [55].

The effect of PEG on biotinylated GLP-1 (DBP-GLP-1) was shown
to be better in enhancing absorption and enzyme resistance than
just biotinylation (its plasma concentration increased quickly
30 min after oral administration), with as good results as native
GLP-1 in peptide bioactivity and decreased glucose concentration
[56]. Other study proved that loading of PEGylated insulin (in
which a 5000 Da PEG chain conjugated to the PheB1 site of insulin)
into a pH responsive poly(methacrylic acid-g-ethylene glycol) (P
(MAA-g-EG)) hydrogel maintained the bioactivity of the insulin
and significantly sustained the duration of the hypoglycemic effect
[57]. A recent study showed that insulin loaded deoxycholic acid
conjugated PEGylated polyhydroxybutyrate co-polymeric
nanoparticles was able to sustain the release of insulin and showed
enhanced its oral bioavailability [58].

However; even PEGylation is a crucial strategy for chemical
modifications of peptides, safety and efficacy of newly developed
PEGylated peptides should be well investigated. On one side, PEG
polymers are mixture of polymers of different molecular mass,
and on the other side, peptide drugs contain several accessible sites
for PEGylation which allow product heterogeneity that could lead
to changing of the efficacy of the drug.

4.1.2. Lipidization
By increasing the lipid character of the hydrophilic peptide

drug, both the membrane penetrative and stability properties
may be enhanced, and as a result the oral bioavailability will
increase. Peptide lipidization has been applied as a strategy to
enhance the oral bioavailability of peptide based drugs [59,60].
For example, long fatty acid chains have been commonly used to
improve peptides uptake by increasing the lipophilicity of these
drugs [59], protecting an unstable peptide from enzymatic degra-
dation [61], and demonstrating higher stability. In addition to that
being lipophilic, these peptides will most likely be solubilized by
albumin or serum lipoproteins, both of which can contribute to
stabilization and increased circulatory half-life [62]. The lipid is
attached via either a stable linkage, or a labile one, creating a
pro-drug [63,64]. An example of hydrophobization to increase
lipophilicity of insulin is palmitoylation. Results of one study of
demonstrated that the attachment of 1,3-dipalmitoylglycerol to
insulin by an ester bond could lead to remarkable improvement
in both intestinal penetration and stability against enzymatic
degradation [65].

All of the studies have shown that, compared to unmodified
peptide, the lipidized peptidyl drugs proved enhancement in the
pharmacological activity in addition to an increased mucosal per-
meability, plasma concentration, and area under the curve (AUC)
[66]. But one of the major obstacles of using lipidized peptides
for oral delivery is the lack of a systematic study of the mechanism
of enhanced oral absorption. In addition, there are many factors,
such as the linker used in lipid-conjugation, the formulations for
oral administration, and the presence of other excipients that can
influence the oral bioavailability of a lipidized peptide.

4.1.3. Unnatural amino acids
The physio-chemical properties of peptides can be improved by

the substitution of natural amino acids with unnatural ones
[66,67]: D-conformation, N-methylation, tetra-substitution, -
amino acids, and side chain methylation(s). Such modifications
creates a peptide sequence which is more resistant to enzymatic
degradation as naturally occurring proteases are designed to cat-
alyze reactions involving natural peptides. Studies showed that
Glucagon-like peptide-1 is enzymatically cleaved at ala2. So,
replacement of ala2 with D-ala2 was proved to improve drug sta-
bility, prolong half-life and increase activity [68]. One difficulty in
this approach is the activity of the drug must be retained when
altering of the amino acids sequence.

4.1.4. Biotinylation
Another reported technique for successful oral GLP-1 delivery

was by peptide surface modification using biotin (vitamin H),
which proved to actively traverses the intestine membrane via
sodium-dependent multivitamin transport. Based on a published
study, Lys34- and Lys26,34–biotin–GLP-1 derivatives were pre-
pared and evaluated to investigate their protective effect against
enzymatic degradation in addition to oral absorption enhancing
ability. Results depicted that Lys26,34–biotin–GLP-1 proved oral
hypoglycemic efficacy approximately 9 folds compared to the
native GLP-1 [69]. One year later, another research was published
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on designing different biotinylated exendin-4 analogs as oral exe-
natide carrier systems. Based on in vitro and in vivo studies, Lys12,
27-Biotin-Exendin-4 showed the best stability efficacy against
intestinal enzymes and was remarkably effective in increasing
the intestinal absorption of GLP-1 and its hypoglycemic effect as
a result [70].

4.2. Absorption enhancers

The use of permeation enhancers that modify the properties of
the intestinal epithelium by either paracellular or transcellular
permeation is one possible method to promote permeation of pep-
tides and proteins across the epithelial membrane [69]. These
absorption enhancers may break up the structural integrity of
the intestinal barrier, open the tight junctions, decrease the mucus
viscosity or increase the membrane fluidity [70–72]. Ideally, the
absorption enhancer should be reversible, safe and it should be
able to enhance the permeation immediately and coincidentally
with the presence of the drug at the absorption site [71]. And it
is suggested that the most common drawback of absorption
enhancers in the case of long-term usage is that they may damage
the bio-membrane and lead to local inflammation [15,73,74], in
addition to the lack of specificity, i.e., they facilitate the penetration
of all contents of the intestinal tracts including toxins and patho-
gens so they easily access to the systemic bloodstream [74–76].

That is why many studies aimed to modulate tight-junction
permeability in order to increase paracellular transport [77–79].
Many available absorption enhancers can cause opening of tight
junctions in order to allow hydrophilic peptides and proteins to
pass; including: for example, chitosan has shown good permeation
enhancing capacity via the paracellular pathway [80,81] through
opening the inter-epithelial tight junction and thus facilitates sys-
temic peptides and proteins transport. Chitosan and its derivatives
have been used, as we mentioned before, as penetration enhancers
for oral insulin delivery, and have resulted in an effective reduction
of glucose levels in the body [82–90]. Moreover, the permeation of
peptides through the GI mucosa can be improved by the use of thi-
olated polymers or so-called thiomers. Thiomers have been studied
as penetration enhancers for oral insulin delivery, and have
resulted in effective reduction of glucose levels in the body [76,91].

Besides, fatty acids and bile salts, surfactants, tri-sodium
citrates, glycerides and chelating agents, Labrasol have also shown
the capacity to enhance the permeability across the mucosal walls
[92,93]. Surfactants can improve the transcellular transport of
macromolecules by breaking up the lipid bilayer and making the
cell membrane more permeable [77,92]. For example, both di-
stearyl-dimethyl-ammonium bromide (DSAB) or soybean phos-
phatidylcholine (SPC) were proved to be able to improve insulin
loading into different lipid-based drug delivery systems, facilitate
the oral insulin absorption and hence increase its oral bioavailabil-
ity when complexes between insulin and one of these surfactants
were prepared by freeze-drying [94].

Chelating agents like EDTA form complexes with calcium ions
and break tight junctions to enhance paracellular transport of pro-
teins and peptides [95]. Besides; diethylene triamine pentaacetic
acid (DTPA) which belongs to the polyamino carboxylic acid family
of complexing agents, was proved to possess a protease inhibitory
activity, due to the withdrawal of essential metal ions out of the
enzyme structure, and a tight junction opening capacity, as DPTA
can chelate metal cations through its amines and carboxylates
[96]. Incorporation of DTPA in functional NPs which were prepared
by mixing cationic chitosan (CS) with anionic cPGA-DTPA conju-
gate was able to enhance the absorption of insulin throughout
the entire small intestine in addition to providing a prolonged
reduction in blood glucose levels [97]. Salts of Medium chain fatty
acids including caproate, caprylates, caprates and laureates, have
also proven capacity to improve absorption via transient opening
of tight junction [98–100].

4.3. Enzyme inhibitors

One of the well-known key challenge in oral peptide and pro-
tein delivery is to ensure their protection against the degradation
by numerous types of endopeptidases (such as pepsin, trypsin,
chymotrypsin, elastase) and exopeptidases (such as carboxypepti-
dases A and B) along the GIT [101,102]. Hence each and every pep-
tide bond in a molecule had to be protected from these proteolytic
enzymes. Thus, one strategy to improve the oral bioavailability of
peptides and is to use enzyme inhibitors [78].

Several enzyme inhibitors were used to improve oral insulin
stability against enzymatic degradation including trypsin or a-
chymotrypsin inhibitors, such as soybean trypsin inhibitor [103],
FK-448 [104], camostat mesylate [104], and aprotinin [103–105].

However, based upon previous scientific papers, using enzyme
inhibitors in long-term therapy is still controversial due to the
probability of absorption of undesired proteins and peptides, dis-
turbance of nutritive proteins digestion in addition to enhancing
protease release [106].

4.4. Cell penetrating peptides

Cell penetrating peptides (CPP) have obtained increased impor-
tance due its ability to improve the delivery of proteins and pep-
tides over the plasma membrane and thus CPP demonstrate
promise for therapeutic purposes [107–109]. Many recent studies
have demonstrated that the combination of peptides with CPPs is
a potential approach for oral delivery of these macromolecular
drugs [110]. CPPs can be grouped according to their physicochem-
ical properties, such as being cationic or amphipathic, or according
to their origin, being naturally derived, synthetic or chimeras.
acids), To generalize, the CPPs are Short peptides sequences rich
of basic residues [i.e. arginine (Arg) and lysine (Lys)], which
enables electrostatic interactions with negatively charged cell sur-
face molecules [16]. In addition to the cationic Arg and Lys resi-
dues, the presence of hydrophobic amino acid residues,
especially tryptophan (Trp), positively influences membrane
translocation of the CPP through interaction with the lipid bilayer
[17]. Trp residues may furthermore improve the interaction with
cell surface GAGs, thereby facilitating cellular CPP uptake by endo-
cytosis [18]. Not only the presence, but importantly also the speci-
fic positioning of Trp residues in a CPP sequence influences the
cell-penetrating propensity of the CPP [17].

One recent research aimed to evaluate the effectiveness of one
amphipathic CPP (penetratin) (RQIKIWFQNRRMKWKK) in enhanc-
ing the epithelial permeability of insulin. It was proved that phys-
ically blending penetratin with insulin could be successful way for
oral delivery of insulin under harsh intestinal environment, and the
electrostatic and hydrophobic interactions between CPP and the
drug is related to the enhancing effect of the CPP on the intestinal
absorption of therapeutic peptides and proteins [111].

Recently, GLP-1 loaded PLGA nanoparticles were prepared
through the modified solvent emulsification–evaporation method,
and these NPs were added into chitosan (CS) solution. These pre-
pared NPs were conjugated to CPP which was R9 using EDC/NHS
coupling chemistry in order to conjugate the free amine groups
in the CS structure with the carboxylic group of CPP. After that;
the GLP-1 loaded NPs were encapsulated within the HPMC-as
pH-sensitive polymer, loaded with the dipeptidyl peptidase-4 inhi-
bitor (iDPP4), using a double emulsion technique through a
microfluidic flow focusing glass device [112]. It was reported that
Glp-1/iDPP4 delivery multifunctional composite system was useful
in providing enhanced, controlled and prolonged hypoglycemic
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effects in diabetic rats. Thus researchers suggested that this novel
system has a potential in development of oral protein/peptide
delivery systems for Type 2 diabetes mellitus therapy. Another
research showed that conjugation of insulin with CPP that is low
molecular weight protamine (VSRRRRRRGGRRRR) followed by
encapsulation in mucoadhesive (N-trimethyl chitosan chloride-
coated PLGA) NPs was able to protect insulin and enhance its per-
meability as well. Thus, this developed system provided high oral
bioavailability of insulin in diabetic rats compared with that for
insulin loaded MNPs [113].

However, using CPPs has a limitation due to their inherent
chemical instability as they could degrade by extracellular and
intracellular enzymes [109]. Several strategies have been
employed for improving the CPP stability by alteration of the
amino acid stereochemistry which may negatively affect the
resulting cell-penetrating propensity of the CPP and/or its ability
to act as a delivery vector. For example, a previous study reported
the ability of L- and D-penetratin (RQIKIWFQNRRMKWKK) to
mediate delivery of exendin-4, GLP-1 across nasal and intestinal
epithelia. It was observed that L-penetratin increased the plasma
concentration of exendin-4 and GLP-1 to a greater extent than D-
penetratin, as Cmax for orally administered exendin-4 and GLP-1
(with L-penetratin) was 57 and 5 times higher than the Cmax val-
ues of these two peptides, respectively, when using D-penetratin.
Thus, changing CPP amino acid stereochemistry from L to D may
improve the stability and membrane permeation of the CPP, but
does not necessarily increase delivery of all cargo drugs [114].

4.5. Mucoadhesive polymeric systems

Mucoadhesive polymeric systems are the most promising
approach among other developed ones [115]. These systems
demonstrate noticeable alteration in mucoadhesion properties
with regards to changes in environmental factors, including pH,
temperature, enzymes, light, electric field or ionic strength. In
addition to that, Mucoadhesion may be affected by hydrophilicity,
molecular weight, cross-linking and swelling. The lower the cross-
link density, the higher the flexibility and hydration rate, the
higher the degree of swelling, the larger the surface area of the
polymer, and thus, the better the mucoadhesion [116].

Mucoadhesive polymeric system can be also used to reach site-
specific drug delivery, as mucoadhesive properties can maintain a
close contact with the mucosa at the site of drug uptake hindering
a presystemic metabolism and increasing the oral bioavailability of
peptides and proteins [117,118]. Besides, these systems are able to
decrease the drug clearance rate from the absorption site, and as a
result extend the time available for absorption [119].

One of the most widely used polymers is chitosan which is a
mucoadhesive polymer that has shown good permeation enhanc-
ing capacity via the paracellular pathway [119,120] through open-
ing the inter-epithelial tight junction and thus facilitates systemic
peptides and proteins transport. Chitosan is nontoxic, biocompati-
ble and biodegradable FDA-approved polymer and it is able to
improve the absorption of hydrophilic macromolecule drugs
[84,85,119]. Chitosan and its derivatives have all been studied as
penetration enhancers for oral insulin delivery, and have resulted
in effective reduction of glucose levels in the body [82,87,88].
Besides, oral exenatide-loaded nanoparticles were prepared using
e ionotropic gelation method with modified chitosan which was
conjugated with CSKSSDYQC (CSK) peptide. Results of this research
depicted that the transport of exenatide across a co-cultured Caco-
2 and HT29 cell membrane was significantly enhanced and the rel-
ative bioavailability of CSK-chitosan was also improved when com-
pared to non-modified chitosan. That could be due to the ability of
chitosan to adhere well to the mucus coat of epithelial tissues in
addition to the affinity of CSK for the globet cells, an important
component of intestinal epithelial cells [121]. In another recent
research, the oral negatively charged insulin carboxymethyl chi-
tosan/chitosan nanogels prepared using the simple ionic gelation
method proved to have excellent mucoadhesion on the jejunum
and ileum which were important intestinal segments for nutrient
absorption and thus were effective in controlling the blood glucose
levels in diabetic rats [122].

Also, researchers reported a self-assembled trimethyl chitosan
(TMC) nanoparticles with a dissociable ‘‘mucus-inert” hydrophilic
coating of N-(2-hydroxypropyl) methacrylamide copolymer
(pHPMA) derivative as a promising oral delivery of insulin by facil-
itating the permeation through mucus layer and epithelium via
opening tight junction [89]. Based on a new published paper, a
multistage dual-drug delivery nanosystem was developed to deli-
ver GLP-1 and DPP4 inhibitor simultaneously. This developed sys-
tem composed of chitosan-modified porous silicon (CSUn)
nanoparticles, which were further coated using hydroxyl-propyl-
methylcellulose acetate succinate MF. The orally delivered NPs in
diabetic rats exhibited hypoglycaemic activity without initial
increase in the blood glucose levels as observed for controls [123].

Furthermore, the potential of mucoadhesive devices prepared
with a blend of Carbopol 934/pectin/sodium carboxy-methyl-
cellulose in enhancing intestinal absorption of both exenatide
and insulin was investigated. Results demonstrated that the novel
devices not only increased systemic oral peptide drug absorption,
but also extended glycemic control by controlled insulin/exenatide
release [124].

Thiolated polymers (thiomers) have been considered as a hope-
ful alternative for non-invasive peptides and proteins delivery
[125,126]. It was shown that the additional covalent bonds
between thiol groups of thiomers and cysteine-rich subdomains
of mucus glycoproteins are responsible for strong mucoadhesive
properties of thiolated polymers [126,127]. Thiolated insulin deliv-
ery system was developed using Chitosan–6 mercaptonicotinic
acid (chitosan–6-MNA) which is a strong mucoadhesive polymer
with pH-independent reactivity. This developed system resulted
in a significant serum insulin concentration and a blood glucose
reduction after oral administration as the areas under the concen-
tration–time curves (AUC) of human insulin in plasma was
improved up to 21-fold compared with unmodified chitosan and
up to 6.8-fold compared with aliphatic thiolated chitosan [90].
Researchers suggested that chitosan 6-MNA could be a useful tool
for the oral delivery of other peptide drugs as well.

In addition to that, alginate (Alg) is one of the most common
water-soluble anionic biopolymers, which is a biocompatible,
mucoadhesive, biodegradable, pH sensitive polysaccharide that
was used as oral carrier for peptides and proteins [84]. However,
there is a problem of drug by leaching through the pores in the
microbeads during the preparation of calcium alginate microbeads
[128]. Thus; many researchers tried to overcome this obstacle by
coating the alginate microbeads with chitosan layers in order to
be able to control both of diffusion and release rates of the
entrapped drugs/proteins. It was shown that the coated alginate
microbeads containing higher concentrations of aminated chitosan
were more stable at the higher pH 7.4 when compared to alginate
microbeads, and this new pH sensitive system could be success-
fully administered orally for site-specific release of insulin and
other protein drugs in the intestinal and colon tracts [129].

4.6. Oral microparticles delivery systems

Microparticles can be classified as particles between 1 and
1000 lm. It is known that microencapsulation of therapeutic pep-
tides have proved to be able to deliver various peptide and drugs
efficiently by protecting them from harsh gastric milieu of the gas-
trointestinal tract and enhancing their intestinal absorption
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[1,130]. b-cyclodextrin insulin microparticles that were prepared
by one-step spray-drying technique and stabilized using enteric
retardant polymers (ethylcellulose and EC and hydroxypropyl
methylcellulose acetate succinate HPMCAS), were effective in low-
ering the blood glucose in a diabetic rat model and had almost
comparable hypoglycemic activity when compared to insulin
administered by SC injection [131]. In another study, PLGA
microparticles containing insulin Poly (e-caprolactone) PCL
nanoparticles (so-called composite microparticles) were prepared
by the W/O/W solvent extraction method. The results confirmed
that the prepared composite microparticles have succeed in
obtaining high insulin encapsulation efficiency, limited burst effect
in addition to controlled insulin release which was extended up to
24 h [132].

Moreover, exenatide was encapsulated in microparticles pre-
pared by chemical cross-linking of alginate and hyaluronate. After
the oral administration, the prepared system could keep intact in
stomach and then release loaded exenatide in small intestine for
absorption, depending on pH responsive mechanism. Besides, this
system showed a blood glucose lowering activity that mimic the
effects of SC injection of exenatide. However, the authors sug-
gested further systemic studies to evaluate the safety of the pre-
pared microspheres for human [133].

4.7. Oral nanoparticle delivery systems

According to the definition from NNI (National Nanotechnology
Initiative), nanoparticles are structures of sizes that range from 1 to
100 nm in at least one dimension [134]. Nano-carriers composed of
biocompatible, stable and nontoxic polymers [134,135] with opti-
mized physicochemical and biological properties can facilitate
transport across intestinal epithelial cells [134–136], so they can
be successfully used as a promising method for oral delivery of
macromolecules [137,138]. Additionally, an optimized nanoparti-
cle carrier offers the prospect of protecting the peptide or protein
from hydrolysis and enzymatic degradation in the GIT [139–142],
and it was demonstrated that polymeric nanoparticles (NPs) can
be an excellent drug delivery systems to evade the efflux route
as P-glycoprotein (Pgp) is incapable of recognizing NPs [143,144].
Actually, many factors can affect the absorption of proteins or pep-
tides incorporated in nanoparticles such as particle size, surface
charge, ligands in addition to the dynamic nature of particle inter-
actions in the gut [142].

Different nanoparticles were developed to formulate stable and
efficient peptides delivery system. Indeed, the potential of poly-
meric nanoparticles, solid lipid nanoparticles, liposomes and
micelles for oral peptide and protein administration has been
recently reported in many research papers [28,145].

Many attempts to develop oral polymeric nanoparticles for exe-
natide were reported, for example, the oral bioavailability of exe-
natide which was embedded in NPs composed of chitosan and
poly (c-glutamic acid) was found to be 14% when compared to
SC injection, and the prepared nanoparticles were able to provide
a prolonged glucose-lowering effect [146].

Moreover, polyethylene imine-based nanoparticles applying
three-layer release technology platform which consists of a flexible
film composed of neutral polymethacrylate Eudragit� NE and
superdisintegrant sodium starch glycolate Explotab�, added as a
pore former, applied to a hydroxyl-propyl methylcellulose (Metho-
cel� E50, HPMC) coating [147]. In the three-layer system, the
hydrophilic layer based on Methocel� E50 was demonstrated to
delay the drug release by a swelling/erosion mechanism, while
the Eudragit� NE/Explotab� CLV film was aimed at prolonging
the duration of the lag phase as imparted by the underlying HPMC
coat. Results showed that this systemwas successful in oral colonic
insulin delivery in diabetic rats.
In order to enhance the oral delivery efficiency of insulin,
researchers in another study prepared insulin-loaded glucose
responsive nanocarriers that were further encapsulated into a
three-dimensional (3D) hyaluronic acid (HA) hydrogel environ-
ment for multi-protection of insulin through the GI tract. The
released insulin from prepared systems showed an effective hypo-
glycemic effect for longer time when compared with insulin-
loaded nanocarriers [148]. Another L-valine modified chitosan-
based multifunctional nanoparticles exhibited a promising oral
insulin delivery system as the prepared nanocarriers are glucose-
sensitive and capable of preventing the rapid release of insulin
from nanocarriers in the stomach, and increase the oral insulin
bioavailability by enhancing the transportation and absorption in
the intestinal cells [82]. Other efforts were reported to increase
the permeability of insulin across the intestinal wall as applying
double coating with chitosan (CS) and albumin (ALB) to the surface
of insulin-loaded alginate/dextran sulfate (ADS)-nanoparticles, and
this approach approved enhancing of the NPs’ electrostatic interac-
tions with the intestinal cells [83].

Solid lipid nanoparticles (SLN) are submicron colloidal carriers
(50–1000 nm) that contain solid lipids and distributed either in
water or in an aqueous surfactant solution [149]. Many examples
of these lipids include highly purified tri-acyl-glycerols, waxes or
complexes of acyl-glycerol mixtures [150]. Frankly, SLN depict
more merits as drug delivery system when compared with other
nanosystems, including a good tolerability, biodegradation and
the possibility of production on large scale [151,152]. This system
can act as an effective tool for protecting peptides and proteins
against enzymatic degradation [153]. However, their hydrophobic
nature generally accounts for low peptide entrapment efficiency
(EE%). So there has been much efforts to solve the problem of poor
peptide entrapment and stability. Researchers prepared a novel
oral insulin delivery system that aimed to improve the peptide
EE% by incorporating a hydrophilic viscosity-enhancing agent:
propylene glycol (PG), polyethylene glycol (PEG) 400 and PEG
600, within SLN cores to increase the viscosity of the aqueous
internal phase of the w/o/w double emulsion system, and thus
develop viscosity enhanced nanocarriers (VEN). These agents. and
the highest EE% was achieved by using 70% w/w of PG and the pre-
pared systems were able to reach a good hypoglycemic effect in
fasted rats with an oral bioavailability of about 5% and a lower cel-
lular toxicity compared to conventional SLN [154]. In another
study, incorporating of Methocel in insulin SLN has proved to
enhance the peptide entrapment and provide the advantages of
SLN system as well. Researcher suggested that this mentioned
hybrid system could be effective for oral delivery of other peptide
drugs [155].

Three different nanosystems loaded with GLP-1 and composed
of (poly(lactide-co-glycolide) polymer (PLGA), Witepsol E85 lipid
(solid lipid nanoparticles SLN) and porous silicon (PSi) were pre-
pared in order to deliver GLP-1 orally [156]. Those systems were
compared according to their ability to sustain the release of GLP-
1 through the simulated GI tract conditions, and the interactions
between these nanosystems and the intestinal cell lines were stud-
ied. Results showed that chitosan-coated nanosystems were better
than uncoated nanoparticles as they were more able to sustain
GLP-1 release and improve the interaction with the intestinal cells.
Chitosan CS was reported in previous reports to have good perme-
ation enhancing capacity via the paracellular pathway through
opening the inter-epithelial tight junction and thus facilitates sys-
temic peptides and proteins transport, in addition to improving the
positive surface charge that facilitate the interaction with the neg-
ative charge moieties of the cell membrane and lead to internaliza-
tion [119,157]. In addition to that, PLGA CS and PSi CS were the
best nanocarriers as novel oral GLP-1 delivery systems and the
highest GLP-1 permeation across the intestinal in vitro models



Table 1
Advantages and Limitation of several techniques utilized for oral antidiabetic peptides delivery.

Technique Advantages Limitations

Chitosan/PLGA/PCL
based
nanoparticles

– Biodegradable polymers that enhance the stability
– Control and target the drug release
– Control the pharmacokinetic parameters
– Reduced toxicity in the peripheral healthy tissues [171,172]

– Chitosan: instability in acidic environments of GI tract [173,19]
– PLGA/PCL: poor drug loading, higher cost of production, protein

or peptide drugs instability problems like denaturation or
aggregation [174–176]

Solid Lipid
Nanoparticles

– Protection of peptides from degradation, controlling drug release
– Biocompatibility
– Ease of large scale production [151,177,178]

– Low peptide entrapment efficiency (EE%) [154]
– Lack of an in-depth understanding interaction with biological

barriers [179]

Liposomes – Improve stability against oxidation and deamination
– Provide protection against enzymes degradation [1,171]
– Safety and low toxicity
– Flexibility, biocompatibility
– Entirely biodegradability and non-immunogenicity [171,179]

– Low stability against acidic pH of stomach, bile salts and pan-
creatic lipase [42]

– Low hydrophobic drug loading
– Leakage of entrapped drug and high production cost [180]

Polymeric Micelles Increase the intestinal absorption of the peptide [74,181] Nucleic acids are more stable incorporated into polymeric micelles
than peptides and proteins [182]

Microspheres Controlled and Targeted peptide delivery, protection of encapsulated
peptides against degradation [183,184]

Limit precise control and possible burst release [1,185]

Microemulsions – Increase protection against luminal enzymatic degradation
– Enhance induced structural and fluidity changes in the mucosal mem-

brane [186]
– No intestinal tissue damage or irritation is detected [187]

– Stability is influenced by environmental parameters such as
temperature and pH [40,188,189]

– Suffer from limitations of phase separation [189,190]

Mucoadhesive
polymers

– Site–specific delivery
– Improve membrane permeation [191]

Mucus turnover in absorption sites (intestine) [71,192]

Cell penetrating
peptide

Enhance intracellular permeation of peptides [193] – High cost
– Toxic side effects and immunological response
– Requirement of knowledge of conjunction chemistry in addi-

tion to indiscriminate transduction of CPPs [194,195]
Absorption

enhancer
Enhance oral bioavailability by increasing membrane permeation [196] – Cause altered cell morphology and cell membrane damage

– Lack of specificity [197,198]

Enzyme inhibitors Retard the rate of peptide degradation by enzymes [199] – Severe side effects in the long term therapy, may affect the nor-
mal digestion of nutritive proteins [42,198,199]

Modifying the
structure of
peptide

Increase peptides oral bioavailability by reducing the enzymatic
degradation of peptides/improving the permeability across membrane
[168,200,201]

– PEG its self has some major safety risks: PEG is both immuno-
genic and antigenic [201,202]

– Conjunction method could be complex [200]
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was noticed with PSi CS nanoparticles. In another study, Exendin-
4-loaded SLNs using precirol, a glycerol palmitostearate, were pre-
pared and results showed low particle size, high encapsulation and
loading efficiency, and long-term physical stability with similar
effects on insulin secretion compared to those of native Ex-4. Thus,
it was suggested that the prepared SLNs can be applied for success-
ful oral Exendin-4 delivery [36].

Recently, polymeric micelles have received growing scientific
attention. Micelles are formed by amphiphilic copolymers which
self-assembled to nano-sized aggregates above the critical micellar
concentration. The hydrophobic moiety forms the core of micelles
whereas the hydrophilic moiety forms the corona in the shell of
micelles [158]. It was concluded that using N-octyl-N-Arginine chi-
tosan (OACS) micelles for the enhancement of oral insulin delivery
is a promising approach for the oral insulin delivery [159].

Moreover, liposomes – closed bilayer vesicles made up of lipids
containing an aqueous core – are considered to be the best class of
organic nanoparticles for the treatment of many diseases [160].
Liposomes have been widely prepared as oral insulin delivery sys-
tems due to its ease of preparation, versatility of its composition, in
addition to its biocompatibility [161]. However, the conventional
liposomes suffer from instability in the gastrointestinal tract and
poor permeability across the epithelial membrane. Thus, modifica-
tion of this system was developed to overcome these challenges
[162]. Many studies aimed to investigate the potential and effec-
tiveness of liposomes containing bile salts as oral peptide delivery
systems. One examples of these bile salts is sodium glycocholate
that is reported to have good permeation-enhancing properties,
with relatively low toxicity, in addition to protease-inhibiting
effect. Insulin loaded sodium glycocholate liposomes were pre-
pared by a reversed-phase evaporation method followed by
homogenization. Results showed that the both conformation, and
bioactivity of insulin was preserved under preparative stress, and
the prepared liposomes were able to protect the drug against enzy-
matic degradation by pepsin, trypsin, and a-chymotrypsin depend-
ing on in vitro studies [163]. Another published paper showed that
when comparing insulin loaded liposomes containing different
types of bile salts [sodium glycocholate, sodium taurocholate, or
sodium de-oxy-cholate] or cholesterol, the highest oral bioavail-
ability can be achieved by SGC-liposomes as they were the most
effective in protection against enzymatic degradation [164]. In
addition to incorporating bile salts in liposomes structure,
researchers examined the effectiveness of biotinylated liposomes
as oral insulin delivery systems. Results of this study proved a sig-
nificant hypoglycemic effect and enhanced absorption after treat-
ing diabetic rats with the BLPs, and the oral bioavailability was
double compared to that of conventional liposomes [165].

4.8. Other particulate delivery systems (emulsions, microemulsions)

Microemulsions are defined as ‘‘isotropic, thermodynamically
stable transparent systems composing of oil, water, surfactant
and sometimes, co- surfactant forming particles with droplet size
of <200 nm” [166]. These systems are typically grouped into three
classes: oil-in-water (o/w), water-in-oil (w/o) and bicontinuous
[167]. Microemulsions encapsulating insulin was prepared using
a reverse micellar approach under low shear process conditions
that are able to maintain the secondary structure of insulin in
the short term. In this study. Di-doceyl-dimethyl-ammonium bro-
mide (DMAB) was the surfactant, propylene glycol (PG) was the co-
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surfactant, triacetin (TA) was the oil phase and insulin solution was
the aqueous phase. This developed device was able to improve the
oral insulin bioavailability and displayed a potential hyper-
glycemia controlling activity in streptozotocin induced diabetic
rats [168]. In addition to that, researchers invented a novel stable
water-in-oil microemulsion formulation for oral delivery of many
therapeutic peptides including insulin and exenatide that was able
to enhance their absorption via mucous membrane [169]. Gener-
ally, the oil phase (20–40% v/v) was composed of a medium-
chain triglyceride with a low HLB surfactant (pH between 3 and
8) and an aqueous phase consisting of the drug dissolved in protein
stabilizing buffer. Another novel patent demonstrated that prepar-
ing oil-in-water microemulsions could be ‘an interesting approach
for improving both the bioavailability and permeability of insulin
and GLP-1 analogs [170].
5. General opinion and comments

Based on previous published papers, each of the aforemen-
tioned technologies, which were developed to provide successful
oral antidiabetic peptides delivery, has its ownmerits in enhancing
the oral bioavailability of peptide drugs either by protecting the
peptides from enzymatic degradation within the GIT or by enhanc-
ing their transport across intestinal cell barriers.

However, each strategy also has disadvantages that may limit
its efficacy in oral antidiabetic peptide delivery as shown in Table 1,
which summarizes the advantages and limitations of the most
recent applied techniques.

A proper combination of these techniques seems to be the solu-
tion for this complex problem, e.g. carefully selecting the excipi-
ents or additives for absorption enhancement, parallel with
incorporating into a carrier system with long term stability and
patient acceptance for chronic therapy.

There is an urgent need to ensure and prove that the benefits of
these developed oral carrier systems overweight their risks, further
in vivo and human studies must be conducted to know more about
the effect of these carriers on the pharmacokinetics and efficacy of
antidiabetic drugs, and their possible interactions with biological
barriers as well.

The complexity in these formulations is the consequence partly
of the nature of the drug (peptide) and also the challenge in incor-
porating the modifiers and/or formulating these carrier systems.

Based on the recent research experiences of our research group
[203–208], a model is proposed after reviewing the relevant arti-
cles in the field. This model is briefly summarized as the graphical
abstract of this work. Quality by Design approach - implemented
by the International Conference on Harmonization (ICH) Q8 (R2),
Q9, and Q10 guidelines [208–212] – is advised to use, when eval-
uating and selecting among the possibilities and prior risk assess-
ment as well, before product development.
6. Conclusion and future perspectives

Current progresses in pharmaceutical biotechnology have led to
the discovery of numerous antidiabetic peptides. However, these
drugs like insulin, GLP-1 and its analogs are still delivered par-
enterally due to numerous potential physiochemical and enzy-
matic barriers that limit their absorption in the GI tract.

Because of its several advantageous properties, many attempts
have been made to achieve oral delivery of these aforemen-
tioned peptides using various strategies. There has been a remark-
able advance in this direction as seen based on the articles
collected in this review.

It can be concluded, that much of the success was recorded
using nanoparticles as carrier systems for these peptides, each of
these developments is still associated with further challenges
and have limitations.

Despite these significant research efforts in this field, there is
still no FDA approved oral insulin or Glp-1 analog on the market.
Thus research in this area should be continued at even a higher
pace to investigate novel methods to enhance the stability and
safety of these developed delivery systems in addition to overcom-
ing other possible limitation accompanied, and researchers must
avoid repeating others’ findings because we undoubtedly need
novelty in oral antidiabetic peptides delivery in order to access a
safe and effective delivery system that could be completely
accepted for chronic treatment of diabetes; the epidemic of the
21st century.
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