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Summary. — Gamma-ray emission produced by interactions between cosmic rays
(CRs) and interstellar gas traces the product of their densities throughout the Milky
Way. The outer Galaxy is a privileged target of investigation to separate interstellar
structures seen along the line of sight. Recent observations by the Fermi Large Area
Telescope (LAT) shed light on open questions of the EGRET era about the distri-
bution of CR densities and the census of the interstellar medium. The gradient of
γ-ray emissivities measured in the outer Galaxy is significantly flatter than predic-
tions from widely used CR propagation models, given the rapid decline of putative
CR sources beyond the solar circle. Large propagation volumes, with halo heights
up to 20 kpc, or a flat CR source distribution are required to match the data. Other
viable possibilities include non-uniform CR diffusion properties or more gas than
accounted for by the radio/mm-wave data. γ-ray data constrain the evolution of
the XCO = N(H2)/WCO ratio within a few kpc from the Sun. There is a significant
increase by a factor 2 from nearby clouds in the Gould Belt to the local spur. No
further significant variations are measured from the local spur to the Perseus spiral
arm. At the level of statistical accuracy provided by the LAT data, the most im-
portant source of uncertainty, often overlooked so far, is due to the optical depth
correction applied to derive the column densities of H I. Reliable determinations of
the amount of atomic gas in the plane are key to better probe the properties of CRs
in the Galaxy.

PACS 95.85.Pw – γ-ray.
PACS 98.38.Am – Physical properties (abundances, electron density, magnetic fields,
scintillation, scattering, kinematics, dynamics, turbulence, etc.).
PACS 98.70.Sa – Cosmic rays (including sources, origin, acceleration, and interac-
tions).
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Table I. – Regions seen toward the outer Galaxy and their approximate Galactocentric distances.

Second quadrant Third quadrant

100◦ < l < 145◦ 210◦ < l < 250◦

Gould Belt 8.5–8.8 kpc –

Local arm 8.8–10 kpc 8.5–10 kpc

interarm region – 10–12.5 kpc

Perseus arm 10–14 kpc 12.5–16

outer region > 14 kpc > 16 kpc

1. – Introduction

Interstellar γ-ray emission is produced by interactions of high-energy cosmic rays
(CRs) with the gas in the interstellar medium (ISM) and the soft interstellar radiation
fields. Its observations carry information about CR properties in distant locations and
it provides a tracer of the total interstellar gas densities to be compared with radio/mm-
wave data: the 21 cm line of atomic hydrogen, H I, and the 2.6 mm line of CO, used as a
surrogate tracer of molecular mass.

Open issues in the understanding of the interstellar γ-ray emission concern the iden-
tification and spatial distribution of CR sources and the census of the ISM, notably the
XCO = N(H2)/WCO conversion factor. The outer Galaxy is a privileged observational
target since the Doppler shift of radio/mm-wave lines due to the Galactic rotation un-
ambiguously locates the emitting clouds. There are two longitude windows with a steep
velocity gradient leading to a good kinematic separation [1].

We reported analyses of recent measurements by the Large Area Telescope (LAT)
on board the Fermi γ-ray Space Telescope [2] for the second [3] and third [4] Galactic
quadrants. The component separation based on likelihood fitting allowed us to extract
the emissivities per H atom, qH I, and per WCO unit, qCO, in several regions along the
lines of sight as described in table I. We refer the interested reader to the aforementioned
papers for details about the analysis and we briefly discuss here the implications of the
results for the distribution of CRs in the Galaxy and the calibration of the XCO ratio.

2. – The spatial distribution of CR densities

Provided that the H I column densities are accurately measured from radio data, the
emissivity qH I, i.e. the γ-ray emission rate per hydrogen atom, directly relates to the
average CR densities in each of the regions considered. The qH I profile (integrated above
200 MeV) as a function of Galactocentric distance R is shown in fig. 1 (left panel).

CR densities appear to be uniform within 20% for comparable Galactocentric dis-
tances in the two regions studied. There is a small decrease from nearby complexes
in the Gould Belt(1) to the Perseus spiral arm, but no further significant gradient is
observed beyond R � 11 kpc.

(1) Our measurement of the local emissivity is compatible with expectations based on CR
spectra as they are measured near the Earth [3, 5].
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Fig. 1. – (Colour on-line) Left: qH I (integrated above 200 MeV) as a function of Galactocentric
radius R for different H I spin temperatures, as measured in the second (black) and third (red or
gray) quadrants. Statistical errors are comparable with marker sizes. Right: XCO as a function
of R. The error bars include the uncertainties due to the H I optical depth correction. The
(blue) step function represents the model by Strong et al. [6], the (green) line that by Nakanishi
and Sofue [7].

We assessed the uncertainties due to the optical depth correction applied to the H I

line intensities to derive N(H I). In fig. 1 (left panel) we have explored a range of possible
spin temperatures (TS), showing that the uncertainties in the H I mass, often overlooked
in the past, dominate the errors in the emissivity determination.

3. – The calibration of molecular masses

If subject to the same CR flux, the emissivity of a H2 molecule is two times that of a
hydrogen atom. We can therefore calibrate XCO as qCO/2 qH I. Our results, constraining
XCO over a few kpc from the solar system, are shown in fig. 1 (right panel).

There is a significant increase by a factor ∼ 2 from the nearby clouds of Cepheus and
Cassiopeia in the Gould Belt to the local arm, whereas no further significant variations
are observed up to R ∼ 14 kpc. The increase by one order of magnitude in the outer
Galaxy proposed by Strong et al. [6] is not confirmed. The γ-ray estimates are also
systematically lower than predictions by Nakanishi and Sofue [7] from virial masses.

4. – The cosmic-ray gradient problem

The comparison between the measured γ-ray emissivities and expectations from CR
propagation models has implications for the origin and propagation of cosmic rays in the
Galaxy. We adopted the widely-used GALPROP propagation code [8]. A conventional
model analogous to [6,9] (solid line in fig. 2, left panel) predicts a gradient steeper than
inferred from the LAT measurements.

To alleviate the discrepancy one can increase the CR propagation halo or the radial
scale of the CR source distribution. In fig. 2 (left panel) we varied the halo height(2),
showing that halo heights from 10 kpc to 20 kpc are preferred if the CR source profile is

(2) And correspondingly the diffusion parameters to stay consistent with CR isotopic abun-
dances measured at the Earth.
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Fig. 2. – (Colour on-line) qH I as a function of galactic radius R: bow-ties represent our estimates
for the second (black) and third (red or gray) quadrants. The curves give the predictions by
some GALPROP models, on the left varying the height of the propagation halo from 1 kpc to
20 kpc (the solid line corresponds to 4 kpc, a value often assumed in past studies [9]), on the
right setting the density of CR sources to a constant for R > Rbk = 10–15 kpc.

that derived from pulsar and supernova remnant observations. In fig. 2 (right panel) we
assume a halo height of 4 kpc and we set the CR source density profile to a uniform value
beyond a given break radius. We found that γ-ray data point to a flat source distribution
beyond R ∼ 10 kpc.

The solutions are not unique: alternative CR propagation models can be considered,
with, e.g., a non-uniform diffusion coefficient [10]. On the other hand, qH I might be
overestimated due to large amounts of dark gas in the outer disc of the Milky Way not
accounted for by radio/mm-wave data [11].
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