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Summary. — Lung cancer is the leading cause of cancer-related mortality in
developed countries. To support radiologists in the identification of early-stage
lung cancers, we propose a Computer-Aided Detection (CAD) system, composed
by two different procedures: VBNACADI devoted to the identification of small nod-
ules embedded in the lung parenchyma (internal nodules) and VBNACADJP devoted
the identification of nodules originating on the pleura surface (juxta-pleural nod-
ules). The CAD system has been developed and tested on a dataset of low-dose and
thin-slice CT scans collected in the framework of the first Italian randomized and
controlled screening trial (ITALUNG-CT). This work has been carried out in the
framework of MAGIC-5 (Medical Application on a Grid Infrastructure Connection),
an Italian collaboration funded by Istituto Nazionale di Fisica Nucleare (INFN) and
Ministero dell’Università e della Ricerca (MIUR), which aims at developing models
and algorithms for a distributed analysis of biomedical images, by making use of the
GRID services.

PACS 87.57.-s – Medical imaging.
PACS 87.59.-e – X-ray imaging.
PACS 87.57.Q- – Computed tomography.
PACS 87.57.R- – Computer-aided diagnosis.

1. – Introduction

Lung cancer is the leading cause of cancer-related mortality in developed coun-
tries [1, 2]. Only 10–15% of all men and women diagnosed with lung cancer live five
years after diagnosis [2, 3] and no significant improvement has occurred in the last 20
years [4]. Early-stage cancer is asymptomatic, so more than 70% of patients diagnosed
with lung cancer are in the advanced stages of the disease, when it is too late for effective
treatments [5]. However, the five-year survival rate for people diagnosed with early-stage
lung cancer (stage I) can reach 70% [6]. In this scenario, the implementation of screening
programs for the asymptomatic high-risk population is an approach that is being tried
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to reduce the mortality rate of lung cancer. It was proved that screening programs with
X-ray radiography do not lead to a reduction in the mortality rate [6-9], due to the
low sensitivity of this technique in the identification of small, early-stage cancers. Lung
cancer most commonly manifests itself with the formation of non-calcified pulmonary
nodules. Computed Tomography (CT) is proved to be the best imaging modality for
the detection of small pulmonary nodules, particularly since the introduction of the heli-
cal and multi-detector–row technologies [10-12]. Therefore CT-based screening trials are
regarded as a promising technique for detecting small, early-stage lung cancers [13, 14].
The ability of low-dose and thin-slice lung CT to make early diagnosis (i.e. a stage of
the disease in which it is still surgically treatable and curable) has been demonstrated,
but one has not demonstrated yet its effectiveness in the actual reduction in the total
mortality linked to the disease, probability due to concurrent causes of death in high-risk
population. The problem is therefore still open. From a technical point of view, the
screening trials have shown that, because of the characteristics of the images to be exam-
ined, the effort required of the radiologists is huge, comprising a lot of time for reporting
and a high level of specialization in this field. The average number of images for these
high-resolution CTs are in fact up to 400, such images are very noisy because of the
low dose of radiation required in screening and because of the presence of non-neoplastic
abnormalities typical of the high-risk subjects. Moreover, the nodules to be found in
the 2D projections are similar to sections of anatomical structures such as airways and
blood vessels. It was indeed demonstrated that a large number of nodules (20–35%)
risks to be missed in screening diagnoses [15]. In this scenario, Computer-Aided De-
tection (CAD) methods could be useful to support radiologists in the identification of
early-stage pathological objects and the interpretation of diagnostic images is expected
to benefit from the advances in computerized image analysis. Although the final di-
agnosis of medical images is made by the radiologists, they can use the output of a
CAD system as a second opinion in detecting lesions and in making diagnostic deci-
sion. Despite the fact that a variety of well-established procedures has already been
presented to the scientific community, the problem of nodule identification in lung CT
is still an open issue. The aim of MAGIC-5 (Medical Application on a Grid Infrastruc-
ture Connection), Italian collaboration funded by Istituto Nazionale di Fisica Nucleare
(INFN) and Ministero dell’Università e della Ricerca (MIUR), is to develop models and
algorithms (see for example [16-20]) for a distributed analysis of biomedical images, by
making use of the GRID services. The MAGIC-5 researchers have developed and vali-
dated different completely automated CAD methods optimized for the identification of
various kinds (in location, dimensions, geometrical shape) of lung nodules in low-dose
and thin-slice CT. In this framework we propose the VBNACAD system, composed by
two different procedures: VBNACADI devoted to the identification of small nodules em-
bedded in the lung parenchyma (internal nodules, see fig. 1), and VBNACADJP devoted
to the identification of nodules originating on the pleura surface (juxta-pleural nodules,
see fig. 2). The VBNACAD system has been developed and tested on a dataset of low-
dose and thin-slice CT scans collected in the framework of the first Italian randomized
screening trial (ITALUNG-CT) [21]. The CAD system was implemented in the ITK
framework [22], an open-source C++ framework for segmentation and registration of
medical images, and the rendering of the obtained results were achieved using VTK [23],
a freely available software system for 3D computer graphics, image processing and vi-
sualization. The neural networks were implemented using FANN (Fast Artificial Neural
Network) [24].
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Fig. 1. – (Colour online) Pictures representing an internal nodule. a) Rendering of the internal
part of a lung, in red is shown an internal nodule. b) A CT image containing an internal nodule.

2. – The VBNACADI system architecture

The strategy we adopted in VBNACADI [25, 26] for the automated detection of pul-
monary internal nodules is based on the selection of nodule candidates by means of a
filter enhancing spherical-shaped objects and on the reduction of the amount of false
positive findings by means of a neural classifier developed according to a voxel-based ap-
proach [19, 27]. These two main steps of the analysis are applied to appropriate regions
of the lung parenchyma, once they have been isotropically resampled and segmented out
of the 3D array of CT data by means of a dedicated segmentation algorithm.

2.1. Segmentation of the lung parenchyma. – The aim of the segmentation algorithm
implemented in our analysis is to allow a conservative identification of the internal re-
gion of the lung parenchyma. In this region we applied the algorithm for internal nodule
detection. The 3-dimensional segmentation algorithm, developed according to the pro-
cedure proposed in ref. [28], is based on four main steps, as sketched in fig. 3. More in

Fig. 2. – (Colour online) Pictures representing a juxta-pleural nodule. a) Rendering of the pleura
surface, in green is shown a juxta-pleural nodule. b) A CT image containing a juxta-pleural
nodule.
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Fig. 3. – Sketch of the 3D segmentation of the lung parenchyma (a slice of the full 3D volume
is shown): a) algorithm input (the original CT scan); b) scan appearance after thresholding;
c) scan appearance after the selection of connected regions of voxels and morphological operators;
d) algorithm output (the segmented lung volume).

details, once the scans have been isotropically resampled, to separate the low-intensity
lung parenchyma from the high-intensity surrounding tissue (fat tissue and bones), the
voxel intensities are thresholded at a fixed value; then, in order to discard all the regions
not belonging to the lungs, the biggest connected component not crossing the boundary
of the volume is considered. A rendering of the surface identified by the so-obtained
mask is shown in fig. 4, the vessel and airway walls are visible in transparency. Vessels
and airways are not in included in the segmented lung at this stage since their volume is
outside the segmented lung volume.

To include them without modifying the pleura surface morphology, i.e. without mod-
ifying the shape of pleura irregularities (including juxta-pleural nodules), a combination
of morphological operators is applied. In particular, a sequence of the dilation and the
erosion operators with spherical kernels rd and re, with re > rd, is implemented. Fi-
nally, the logical OR operation between the so-obtained mask and the original lung mask
provides the final mask P, where the vessels and the airway walls are filled in, while
maintaining the original shape of the lung border.

Fig. 4. – Rendering of the surface identified by the mask obtained in the lung segmentation phase
before vessels and airway walls filling; the vessels and airway walls are visible in transparency.
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2.2. Identification of the nodule candidates . – A very important and difficult task in
the automated nodule detection is the selection of nodule candidates. This step of the
analysis is required to be characterized by a sensitivity as close as possible to 100%, in
order to avoid setting an a priori upper bound to the CAD system performance.

To this aim we followed the approach proposed in ref. [29], where nodules are mod-
eled as spherically symmetrical distributions of intensity having a Gaussian profile. A
dot-enhancement filter has been purposely built to discriminate between these objects
and those with elongated and planar shapes. It determines the local geometrical charac-
teristics of each voxel by evaluating the function zdot from the eigenvalues of the Hessian
matrix:

zdot(λ1, λ2, λ3) =

{
|λ3|2/|λ1|, if λ1 < 0, λ2 < 0, λ3 < 0,

0, otherwise,

where λ1, λ2, λ3 are the eigenvalues of the Hessian matrix for each voxel, sorted so
that |λ1| > |λ2| > |λ3|. Signs are appropriate to search for high-intensity objects on a
low-intensity background.

To enhance the sensitivity of this filter to nodules of different sizes, a multi-scale
approach has to be followed. The filter we used, according to the indications given in
ref. [29-31], combines the zdot function with Gaussian smoothing at several scales. This
procedure is based on the knowledge of the size of target dataset of nodules: assuming
a nodule can be approximated by a 3D Gaussian with scale parameter σ, the nodule
diameter can be denoted with 4σ, thus accounting for more than 95% of the nodule
volume. If the nodule diameters are in the range [dmin, dmax], the scales to be considered
for the Gaussian filter will be in the range [σmin, σmax], where σmin = s · dmin/4 and

σmax = s ·dmax/4 and s =
√

3
2 is the normalization factor that was evaluated in ref. [32].

Within that range, the N intermediate smoothing scales are computed as σi = ri−1σmin

where i = 1, . . . N and r = (dmax/dmin)1/(N−1). The resulting filter value is then

(1) zmax = max(σ2
i zdot(σi)) with i = 1, . . . N.

A peak detection algorithm is then applied to detect local maxima in the filter output
matrix. The final output is a list of locations of nodule candidates sorted according to
the value of the corresponding zmax. In addition to the true nodules, this list is expected
to contain also a large number of false positive findings.

2.3. False positive reduction. – To reduce the amount of false positive findings in
the list of nodule candidate locations, we developed a procedure we called voxel-based
neural approach (VBNA) [33]. First of all, a region of interest (ROI) including the voxels
belonging to the candidate nodule is defined according to a simple relative thresholding
procedure. Each voxel of a ROI is characterized by the grey level intensity values of
its neighborhood. The CT values of the voxel 3D neighborhood are rolled down into a
feature vector to be analyzed by a neural classifier (see fig. 5).

The eigenvalues of the gradient and the Hessian matrices computed for each voxel are
also encoded to the feature vectors. The gradient matrix is defined as

(2) Gi,j =
∑

∂xi
I∂xj

I for i, j = 1, . . . 3,
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Fig. 5. – Basic idea of the Voxel-Based Neural Approach to false positive reduction: each voxel
is characterized by a feature vector constituted by the intensity values of its 3D neighbors and
the eigenvalues of the gradient and the Hessian matrices.

where I(x1, x2, x3) is the intensity function (see fig. 5) and the sums are over the neigh-
borhood area, and the Hessian matrix is

(3) Hi,j = ∂2
xixj

I for i, j = 1, . . . 3.

These six features exploiting the morphology of the voxel neighborhood are added to
the textural features given by the intensity values in order to improve the neural-system–
discriminating power. A standard three-layered feed-forward neural network is trained
at this stage to assign each voxel either to the nodule or to the normal tissue target class.
As the final system performance has to be expressed in terms of the trade off between
the sensitivity and the number of false positive findings per scan, a procedure to derive
the ROI classification from the classification of each single voxel has to be specified: a
degree of suspicion is assigned to each ROI evaluating the percentage of voxels tagged as
nodule tissue in the ROI.

We can evaluate the entire free-response receiver operating characteristic (FROC)
curve for VBNACADI system, by varying this threshold [34].

3. – The VBNACADJP system architecture

The VBNACADJP [25,26] follows a three-step approach: first of all, the pleura surface
is identified; then, the candidate nodules are detected by means of a procedure enhancing
regions where many pleura surface normals intersect. Finally, a classifier exploiting voxel-
based features is implemented to reduce the amount of FP per scan. These three steps
are carefully described in the next sections.

3.1. Pleura surface identification and representation. – The pleura surface is defined
as the surface identified by the mask P found in sect. 2.1. To identify pleural nodules on
the surface identified by P is necessary to represent the surface in some way. Representing
a surface using cubes (i.e. voxels) is an ill-posed problem. To overcome this limit it is
common to use an algorithm to transform a binary mask to a polygon mesh [35]. A
polygon mesh is a collection of vertices, edges and faces that defines the shape of a
polyhedral object in 3D computer graphics and solid modeling. The faces usually consist
of triangles, quadrilaterals or other simple polygons. One of the most used algorithm to
obtain a mesh from a binary mask is the “marching cube algorithm” [36]. The algorithm
proceeds through the scalar field, taking eight neighbor locations at a time (thus forming
an imaginary cube), then determining the polygon(s) needed to represent the part of
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Fig. 6. – Pictures representing the matrix S(x, y, z): each voxel accumulates a score proportional
to the number of normals passing through it.

the isosurface that passes through this cube. The individual polygons are then fused
into the desired surface. This is done by creating an index to a precalculated array of
256 possible polygon configurations (28 = 256) within the cube. By means of reflections
and symmetrical rotations it is possible to reduce the configurations to 15 unique cases.
In this case the marching cube algorithm is applied to the pleura surface found in the
previous step. The output of this procedure is a triangular mesh representing the pleura
surface.

3.2. Candidate nodule selection. – Normal computation: juxta-pleural nodules can be
regarded as concave hemi-spherical objects connected to the pleura surface (see fig. 2).
The strategy we adopted to detect them consists in drawing normals to the pleura surface
and searching for regions where many normals intersect. Normals are evaluated from the
triangular mesh representing the pleura surface. In particular, the normal to each triangle
is calculated by using the vector product between the triangle edges; then the normals
are evaluated for each vertex by averaging all the normals to the neighbor triangles. This
procedure is used in computer graphics to evaluate light reflection on surfaces and it is
called “Gouraud shading” [37].

Normal intersection: since the evaluation of the intersections in the real 3D space
is a complex and computationally intensive operation, it was implemented in the voxel
space. This means that every voxel accumulates a score proportional to the number of
normals passing through it. This information is collected in the score matrix S(x, y, z)
(see fig. 6). To implement this operation a line rasterization algorithm is needed [38], and
the so-called “Bresenhams line algorithm” [39] was chosen. However the intersections in
the voxel space are prone to numerical errors and to errors in the computation of the
normals, it is preferable to consider Gaussian cylinders instead of line segments. This
operation was shown to be equivalent to a Gaussian smoothing of scale σcylinder of the
matrix S(x, y, z) [40]

(4) A(x, y, z) =
∫ ∫ ∫

S(x′, y′, z′)
exp

[
− (x−x′)2+(y−y′)2+(z−z′)2

2σ2
cylinder

]
(σcylinder2π)3

dx′dy′dz′.

At the end of this procedure, it is possible to collect the list of locations of nodule
candidates looking for the local maxima in the matrix A(x, y, z). Of course, in addition
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to the true nodules, this list is expected to contain also a quite large number of false
positive findings, mostly due to irregularities in the pleura surface, for example apical
scars, pleural thickening, plaques and movement artifacts.

3.3. FP reduction. – A procedure similar to the one described in sect. 2.3 was imple-
mented. The main difference is that the candidates are segmented using an opening-based
procedure instead of a threshold. Each voxel of a ROI is characterized by the grey level
intensity values of its neighborhood and the eigenvalues of Hessian and gradient matrix.
A standard three-layered feed-forward neural network is trained at this stage to assign
each voxel of the 3D array either to the nodule or normal tissue target class. A degree of
suspicion is assigned to each ROI evaluating the percentage of voxels tagged as nodule
tissue in the ROI. By varying this threshold it is possible to evaluate the FROC curve.

4. – Merging VBNACADI and VBNACADJP

At the end of the two CAD procedures it is necessary to merge the findings of
VBNACADI and VBNACADJP to obtain the findings for the whole lung. In principle
VBNACADI and VBNACADJP should operate on two disconnected regions, i.e. the in-
ternal part of the lung and the volume outside the pleura surface, but in practice it
is possible that the same object is marked by the two CAD procedures. This happens
because some pleural nodule can be under-segmented by our procedure. In this case, a
part of the nodule is therefore included in the volume of interest of VBNACADI, giving
rise to a double detection by both VBNACADI and VBNACADJP. To prevent having
two marks pointing the same object, a simple clustering rule was applied: we search for
marks with centers closer than 3 mm and, in case of overlapping findings, we delete the
finding with the lowest degree of suspicion. This procedure is justified by the fact that
overlap happens in particular for nodule objects. In the following part of the manuscript
the merged VBNACADI and VBNACADJP procedures will be referred as VBNACAD.

5. – Train dataset

The dataset we used to develop, optimize and test the VBNACAD system consists of
low-dose and high-resolution CT scans acquired by the Pisa center of the ITALUNG CT
trial, the First Italian Randomized Controlled Trial for the screening of lung cancer [21].
The CT scans were acquired with a 4-slice spiral CT scanner according to a low-dose
protocol (screening setting: 140 kV, 20 mA), with 1.25 mm slice collimation. The re-
constructed slice thickness is 1 mm. The mean number of slices per scan is 300 with a
512 × 512 pixel matrix, a pixel size ranging from 0.53 to 0.74 mm and 12 bit grey lev-
els in Hounsfield units (HU). The annotations were marked by experienced radiologists,
using a dedicated annotation and visualization tool we developed [41]. We considered
only non-calcified solid nodules. Some ground-glass opacities had also been selected by
radiologists, but their number was too small to allow a dedicated analysis; therefore this
type of pathological objects was excluded from our target list.

The training data used for VBNACADI consisted of 30 internal nodules contained in
15 CT scans, whereas 28 nodules belonging to 14 CT scans were used for VBNACADJP.

6. – Results on validation datasets

The two presented CAD were validated on three different datasets, using the settings
found during the train session.
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Fig. 7. – FROC curve on a 20 CT dataset of ITALUNG-CT.

6.1. ITALUNG-CT . – The CAD was tested using a dataset of 20 CTs belonging to
the ITALUNG-CT screening trial. The 20 CT scans were completely independent of the
train dataset. The 20 CTs contained 23 internal nodules and 15 juxta-pleural nodules.
Results are shown in terms of the FROC curve in fig. 7.

6.2. LIDC . – The LIDC (Lung Imaging Database Consortium) database is the
biggest publicly available collection of annotated CT. LIDC is a multi-center and multi-
manufacturer database, currently under development, with cases of different collimation,
kVp, tube current and reconstructed slice thickness. At present, about 300 cases of the
LIDC database are available, for this study only the 85 available in may 2009 were con-
sidered. As shown in fig. 8 only few selected cases have slice thickness comparable to that
of ITALUNG-CT database, i.e. slice thickness ∼ 1 mm. Therefore we expected a drop of
performance compared to those obtained on the ITALUNG-CT 20 CT dataset, since, in
our opinion, CAD systems are very sensitive to this parameter. The LIDC consortium
provides, in order to capture the interreader variability, four different annotations made
by four expert radiologists for each case in a two-phase reading modality. The LIDC
annotations contain three kinds of objects [42]: nodules with diameters ≥ 3 mm, nodules
with diameters < 3 mm and “false positives” with diameters > 3 mm. The contours of
the objects marked as nodules with a diameter ≥ 3 mm were provided for every reader
together with eight subjective characteristics in a 1–5 scale: subtlety, internal structure,
calcification, sphericity, margin, spiculation, texture, malignancy. For nodules with di-
ameters < 3 mm and false positives with diameters < 3 mm only a centroid is provided
and no information on the sizes is available. For the evaluation of the VBNACAD perfor-
mance, only nodules with diameter ≥ 3 mm were used, since generally very small nodules
are typically not considered in screening trial. It is common to report the results on this
database using four levels of agreement among the single reader annotations, i.e. con-
sidering the nodules annotated by at least one, two, three and four radiologists. The
correspondence of different findings are not provided in the official LIDC annotations,
for this reason we used the correspondences (see table I) and the diameters evaluated
in [43].
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Fig. 8. – Slice thickness of the 85 LIDC cases of this study.

Since the information about the nodule typology, i.e. internal nodule or juxta-pleural
nodule, was not provided in the LIDC database, it was not possible to evaluate separately
the performance of VBNACADI and VBNACADJP. The results in terms of FROC curves
are shown in fig. 9.

6.3. ANODE09 . – The ANODE09 [44] is an international initiative devoted to com-
pare objectively different CAD systems able to perform automatic detection of pulmonary
nodules in chest CT scans on a single common database, with a single evaluation pro-
tocol. Data is provided by the Nelson study, the largest CT lung cancer screening trial
in Europe. The images have slice thickness between 0.7 and 1 mm and mean number
of slices is 430 per case and were acquired according to a low-dose protocol. Any team,
whether from academia or industry, can join this study. The database of this study
consists in 5 CT examples with publicly available annotations and 50 low-dose thin-slice
CT scans with no public availability of the annotations. The results of the ANODE09
competition and more information on the annotation procedure can be found in ref. [45].

The 50 CTs are intended as a validation dataset, so it is forbidden to use these
data as train set for CAD system. The only thing that is public for the 50 CTs is the
distribution of nodules diameters: the 40% of nodules are below 4 mm in diameter, the
40% have a diameter between 4 and 6 mm and the 20% is larger. Since annotations

Table I. – Number of nodules with diameters ≥ 3 mm for different agreement levels.

Annotated by at least Number of nodules with diameter bigger than 3mm

1 reader 151

2 readers 108

3 readers 77

4 readers 38
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Fig. 9. – FROC for the database LIDC using the four levels (from bottom to top: 1–4) of
agreement.

for the 50 CT scans were not publicly available, all the relevant findings should be
inserted in a file together with their coordinates and degrees of suspicion, and uploaded
on the ANODE09 website [44], to receive in return the FROC curves. The nodules
were divided into 7 categories according to their location and shape (see table II). The
results, achieved on the 50 CTs for the different kinds of nodules, are shown in terms
of mean sensitivity at different FP numbers (1/8, 1/4, 1/2, 1, 2, 4, and 8 FP/CT)
in table II and fig. 10. To extract a single score from the FROC curve, the average
score on all categories was evaluated. The score of the VBNACAD was 0.293. The
discrepancy between the performance obtained on the 20 CT database (60% sensitivity

Table II. – Summary of the sensitivity obtained in the ANODE09 50 CT study at different
FP/CT values.

FPs/Scan 1/8 1/4 1/2 1 2 4 8 average

small nodules 0.107 0.205 0.299 0.393 0.462 0.564 0.624 0.379

large nodules 0.017 0.022 0.089 0.144 0.222 0.333 0.444 0.182

isolated nodules 0.149 0.214 0.405 0.571 0.571 0.677 0.690 0.467

vascular nodules 0.055 0.116 0.198 0.256 0.372 0.453 0.547 0.285

pleural nodules 0.013 0.034 0.068 0.153 0.220 0.356 0.475 0.188

peri-fissural nodules 0.089 0.171 0.229 0.257 0.286 0.429 0.514 0.282

all nodules 0.068 0.126 0.208 0.285 0.357 0.464 0.546 0.293
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Fig. 10. – FROC curves on the 50 CT ANODE09 dataset, for different nodule typologies. In
black is shown the overall curve. Small and big nodules are respectively nodules with diameter
< 5 mm and > 5mm.

at 2.5 FPs/scan on ITALUNG-CT and 43% sensitivity at 2.5 FPs/scan on ANODE09
50 CT) could be explained taking into account the differences between the characteristics
of the images of Nelson study and those of ITALUNG-CT.

7. – Conclusions

We proposed a CAD for lung nodules detection in low-dose CT images. The CAD
shows the “state of the art” performance on ITALUNG-CT dataset (70% of sensitivity
at 3 FP/CT) but shows a decrease of performance if applied on datasets with images
acquired according to different protocols. From table II and fig. 10 is also evident that the
VBNACAD works better with isolated nodules and small nodules while its performance is
worse for nodules bigger than 5 mm. The decrease of sensitivity was partially expected
since big nodules are rarely present in our train dataset. To overcome this limits we
plan in the near future to train and validate the whole system on a multi-center and
multi-manufacturer database as LIDC [46], using all the available scans. Moreover we
plan to validate the VBNACAD in a clinical trial to assess if the CAD, used as a second
reader, is able to help radiologists in reading the images.
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