Measurement of Collins asymmetries in the inclusive production of hadron pairs

I. Garzia for the BaBar Collaboration
INFN, Sezione di Ferrara and Università di Ferrara - Ferrara, Italy

(ricevuto l' 8 Ottobre 2010; pubblicato online l'8 Febbraio 2011)

Summary. - Transversity distribution, which describes the quark transverse polarization inside a transversely polarized nucleon, is the last leading-twist missing piece of the QCD description of the partonic structure of the nucleon. Transversity can be extracted from semi-inclusive deep inelastic scattering (SIDIS) where it couples to a new, unknown fragmentation function, called Collins function. The aim of the analysis is a measurement of the azimuthal xasymmetries in $e^{+} e^{-} \rightarrow \pi \pi X$ (inclusive hadron production), based on the full BaBar data sample in order to extract the Collins fragmentation function from the measured asymmetries.
PACS 13.66. Bc - Hadron production in $e^{-} e^{+}$interactions.

1. - Motivation for extraction of Collins function in $e^{+} e^{-}$annihilation

Transversity $\left(h_{1}\right)$ is the less known function [1] of the three parton distribution functions needed for a complete description of the momentum and spin distribution of the quark inside the nucleon. We can measure h_{1} in SIDIS experiment where, thanks to factorization theorem, we have

$$
\begin{equation*}
\sigma^{e p \rightarrow e h X}=\sum_{q} D F \times \sigma(e q \rightarrow e q) \times F F, \tag{1}
\end{equation*}
$$

where $D F$ is the unpolarized Distribution Function and $F F$ is the Collins Fragmentation Function which is yet unknown. In $e^{+} e^{-}$annihilation experiment we can write the cross section for inclusive hadron production in the reference frame of thrust (see fig. 1):

$$
\begin{align*}
\frac{\mathrm{d} \sigma\left(e^{+} e^{-} \rightarrow h_{1} h_{2} X\right)}{\mathrm{d} z_{1} \mathrm{~d} z_{2} q \Omega \mathrm{~d} \phi_{1} \mathrm{~d} \phi_{2}}= & \sum_{q, \bar{q}} \frac{3 \alpha^{2}}{Q^{2}} \frac{e_{q}^{2}}{4} z_{1}^{2} z_{2}^{2}\left[\left(1+\cos ^{2} \theta\right) D_{1}^{q(0)}\left(z_{1}\right) \bar{D}_{1}^{q(0)}\left(z_{2}\right)\right. \tag{2}\\
& \left.+\sin ^{2}(\theta) \cos \left(\phi_{1}+\phi_{2}\right) H_{1}^{\perp,(1), q}\left(z_{1}\right) \bar{H}_{1}^{\perp,(1), q}\left(z_{2}\right)\right]
\end{align*}
$$

Fig. 1. - (Colour online) Thrust reference frame: θ is the angle between lepton axis and thrust axis (pink in figure) and $\phi_{1,2}$ is the azimuthal angle between the scattering plane and the transverse momenta P_{h}^{\perp} of the hadron around the thrust axis. Assuming the thrust axis as $q \bar{q}$ direction and selecting pions in opposite hemispheres with respect to the thrust axis, we can measure the corresponding azimuthal angles (ϕ_{1} and ϕ_{2}) and fit these raw asymmetries taking into account the detector acceptance.
where D_{1} is the unpolarized Fragmentation Function $(F F), H_{1}^{\perp}$ is the Collins $F F, z_{1,2}$ is the fractional energy of the hadron and Q^{2} is the center-of-mass energy. In conclusion, the Collins asymmetries $\left(\cos \left(\phi_{1}+\phi_{2}\right)\right.$ modulation in the formula (2)) are proportional to $H_{1}^{\perp}\left(z_{1}\right) \times H_{1}^{\perp}\left(z_{2}\right)$ and we can obtain an independent measure of this $F F$.

2. - Analysis strategy

We can access the Collins asymmetries by measuring the $\cos (\phi)$ modulation of the pions on top of the flat distribution due to unpolarized part of $F F$ (normalized distribution). These raw asymmetries are affected by detector acceptance. We can construct the double ratio of the raw asymmetries for like sign pions pair $\left(R_{L}\right)$ over the raw asymmetries for unlike sign pions pair $\left(R_{U L}\right)$ in order to eliminate the detector affects and the first order of radiative effects [2]. Fitting the double ratio with a cosine function

$$
\begin{equation*}
\frac{R_{L}}{R_{U L}}=\frac{N^{L}(\phi) /\left\langle N^{L}\right\rangle}{N^{U L}(\phi) /\left\langle N^{U L}\right\rangle}=P_{0}+P_{1} \cdot \cos (\phi) \tag{3}
\end{equation*}
$$

the P_{1} parameter (proportional to $\left.H_{1}^{\perp}\left(z_{1}\right) \times H_{1}^{\perp}\left(z_{2}\right)\right)$ contains only the Collins effect. We need to study and eventually subtract the charm contributions and the systematic effects.

3. - Conclusion

The Collins $F F$ at 10.58 GeV has been already measured by Belle Collaboration [3] and we expect to have the first result with the full BaBar data sample as soon as possible.

REFERENCES

[1] Anselmino M. et al., Phys. Rev. D, 75 (2007) 054032.
[2] Boer D., arXiv:0804.2408v2 (2008).
[3] Seidl R. et al. (Belle Collaboration), Phys. Rev. D, 78 (2008) 032011.

