IL NUOVO CIMENTO DOI 10.1393/ncc/i2011-10788-x Vol. 33 C, N. 6

Novembre-Dicembre 2010

Colloquia: IFAE 2010

Potentials for J/ψ from b decays measurement in ALICE

C. DI GIGLIO^(*) on behalf of the ALICE COLLABORATION Università and INFN, Sezione di Bari - Bari, Italy

(ricevuto l'8 Ottobre 2010; pubblicato online l'8 Febbraio 2011)

Summary. — This paper is intended to discuss the ALICE potentials for the measurement of the fraction of J/ψ produced at central rapidity in beauty hadrons semi-inclusive decays, namely $B \rightarrow J/\psi X$. This measurement relies on the combined use of the Time Projection Chamber (TPC) for tracking and particle identification via dE/dx; the Inner Tracking System (ITS) for tracking and detection of displaced vertices; the Transition Radiation Detector (TRD) for particle identification.

 $\label{eq:pacs 12.38.Mh-Quark-gluon plasma.} PACS 13.20.He-Decays of bottom mesons.$

1. – Introduction

Measuring the fraction of J/ψ coming from beauty hadron decays (the so-called *secondary* J/ψ component) is an important issue to study in p-p as well as A-A collisions both open beauty production (has shown by recent measurements from CDF (Collider Detector at Fermilab) [1] in $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV) and charmonium production. On this regard, recent results from CDF and theoretical predictions at LHC energy suggest that $\sim 30\%$ of the totally produced J/ψ in p-p collisions should come from beauty hadron decays. As a consequence, an accurate knowledge of the J/ψ production mechanism in the vacuum and in heavy-ion collisions as well, requires the adequate measurement and subtraction of this component.

2. – Analysis and results

A detailed analysis description can be found here [2]. Dedicated Monte Carlo samples for prompt J/ψ , J/ψ from b-hadrons and minimum bias events have been used to tune the analysis. Inclusive J/ψ reconstruction is performed in the dielectron $J/\psi \rightarrow e^+e^$ channel at central rapidity ($|\eta| < 0.9$). Main tracking is provided by the TPC, together with ITS at low momenta. Only tracks with high tracking quality (at least 5 points in ITS, 70 clusters in TPC) are selected. e/π discrimination is provided by the combined

^(*) E-mail: carmelo.digiglio@ba.infn.it

[©] Società Italiana di Fisica

$p_T(J/\psi) \mathrm{GeV}$	# J/ψ from B	True $f_B(p_T)$	Meas. $f_B(p_T)$	$\sigma(f_B)$	$\sigma(f_B)/f_B$
2-3	32	0.179	0.216	0.055	$\sim 26\%$
3-4	35	0.194	0.177	0.046	$\sim 26\%$
4-6	56	0.227	0.206	0.038	$\sim 18\%$
> 2	269	0.349	0.361	0.072	$\sim 20\%$

TABLE I. – Log-likelihood fit algorithm results on the extracted fraction of J/ψ from B hadrons.

use the TPC (via dE/dx) and TRD signals. A pion rejection factor of 10^{-4} for momenta $p < 2 \,\mathrm{GeV}$, and up to 10^{-2} at higher momenta, is achievable in this way. The invariant mass analysis is performed in the region $|m_{ee} - M(J/\psi)| < 250 \,\mathrm{MeV}$ for selected dielectron candidates. The combinatorial background has been estimated using the like sign technique. J/ψ from inclusive $B \to J/\psi X$ decay can be separated from the prompt charmonium component since B hadrons ($c\tau \sim 500 \,\mu\text{m}$) can travel a sizable distance in the detector far from the interaction region. The signed projection of the J/ψ flight distance on its transverse momentum, named L_{xy} , is a good measurement of the displaced vertex and is used to separate J/ψ of the B hadrons from that of prompt production. The L_{xy} is defined as $L_{xy} = \vec{L} \cdot \vec{p}_T(J/\psi) / |\vec{p}_T(J/\psi)|$ where \vec{L} is the vector from the primary vertex, where B hadrons are produced, to the J/ψ decay vertex in the $r-\phi$ plane, and $\vec{p}_T(J/\psi)$ is the transverse momentum vector. To reduce the dependence on the J/ψ transverse momentum bin size and placement, a new variable x, called *pseudoproper* decay length has been used instead of L_{xy} , namely $x = L_{xy} \cdot M(J/\psi) |\vec{p}_T(J/\psi)|$. In order to extract the fraction $f_{(B\to)J/\psi}(p_T^{J/\psi})$ of J/ψ coming from b-hadrons as a function of the charmonium transverse momentum, a simultaneous two-dimensional fit algorithm of the total dielectron invariant mass m_{ee} and the total pseudoproper decay length xdistributions is used. The fit is performed in each p_T bin in which the sample is divided. The approach adopted is based on the unbinned maximum-likelihood (ML) fit technique. The probability distribution function that describes the frequency of occurrence of data at (m_{ee}, x) is $F(m_{ee}, x; \vec{a})$, where \vec{a} is the set of parameters describing the true shape. $f_{(B\to)J/\psi}(p_T^{J/\psi})$ belongs to the parameters list. $F(m_{ee}, x; \vec{a})$ is written as the sum of two different terms for the signal J/ψ (prompt and secondary) and the background events. For each term, the distributions for m_{ee} and x are assumed independent and can be factorized. They are accurately determined by means of detailed Monte Carlo studies. Table I summarizes the likelihood method performance in the measurement of f_B , for a total J/ψ statistics corresponding to one year of ALICE data taking in p-p collisions at $\sqrt{s} = 7 \,\mathrm{TeV}.$

Assuming 10⁹ minimum bias events and the fully installed TRD, the fraction f_B of secondary J/ψ measurement, integrated over charmonium transverse momentum for $p_T(J/\psi) > 2 \text{ GeV}$, is possible in one year of data taking, with a relative error $\sigma(f_B)/f_B \sim 30\%$. The p_T differential measurement of the secondary J/ψ fraction is possible up to $p_T(J/\psi) \sim 6 \text{ GeV}$, with a relative error $\sigma(f_B)/f_B \sim 25\%$ at high momentum.

REFERENCES

- [1] CDF COLLABORATION, Phys. Rev. D, 71 (2005) 032001.
- [2] DI GIGLIO C., PhD thesis, https://twiki.cern.ch/twiki/bin/view/ALICE/ PWG3PhDTheses.