
DOI 10.1393/ncc/i2010-10612-3

Colloquia: MPTL14

IL NUOVO CIMENTO Vol. 33 C, N. 3 Maggio-Giugno 2010

VPython: 3D programming for ordinary mortals

B. Sherwood and R. Chabay

North Carolina State University - Raleigh, NC, USA

(ricevuto il 30 Novembre 2009; pubblicato online il 20 Luglio 2010)

Summary. — VPython is a programming environment that enables even novices to
write programs that produce navigable real-time 3D animations. One to two hours of
carefully crafted instruction is sufficient to bring novice students to the point of being
able to do serious computer modeling (http://www.matterandinteractions.org).
VPython is based on the Python programming language (http://python.org)
which has a large user community. Like Python, VPython is open source freeware
available for Windows, Linux, and Macintosh (http://vpython.org). Workshop
participants will learn to write 3D programs.

PACS 01.50.-i – Educational aids.
PACS 01.50.F- – Audio and visual aids.

1. – Python and VPython

VPython is a programming environment that enables even novices to write programs
that produce navigable real-time 3D animations. The new version 5 supports trans-
parency, local as well as distant lights, and material displays such as wood or marble on
all platforms, and for the first time runs as a native application on the Mac. Students in
introductory physics courses use VPython to write programs to model physical systems
and to visualize electric and magnetic fields (http://www.matterandinteractions.org;
Chabay 2007; Chabay 2008). Educators use VPython to create lecture-demonstration
programs. Researchers use VPython to model systems and to visualize data in 3D.

One to two hours of carefully crafted instruction is sufficient to bring novice students
to the point of being able to do serious computer modeling. VPython is based on the
Python programming language (http://python.org) which has a large user community.
Like Python, VPython is open source freeware available for Windows, Linux, and Mac-
intosh (http://vpython.org). A set of VPython computational modeling activities for
the introductory physics course taken by engineering and science students is available
at http://www.compadre.org/psrc/items/detail.cfm?ID=5692. Figure 1 shows an
example of a VPython program that models the 3D motion of a mass hanging from a
spring, written by a student in an introductory mechanics course.

c© Società Italiana di Fisica 59

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scientific Open-access Literature Archive and Repository

https://core.ac.uk/display/294762829?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

60 B. SHERWOOD and R. CHABAY

Fig. 1. – A student VPython program written in an introductory mechanics course.

Python is a clean language in which it is easy to do simple things right from the start,
with little excess overhead. For example, the complete Python version of the classic
“Hello World” program in Python looks like this, with no extraneous distracters:

print “Hello World”

Nor is there the distraction of extraneous setup or make procedures. After installing
Python, one can invoke the built-in IDLE integrated development environment, type the
one-line program shown above, and press F5 to see it run. The simplicity and immediacy
of this environment has led to some introductory programming courses using Python as
a first language.

While it is very easy to do simple things in Python, it also supports sophisticated
object-oriented programming, and there is an unusually gentle slope leading to creating
and using classes. There is a sizable community using Python for scientific program-
ming (http://scipy.org), and a significant fraction of Google programming is done in
Python.

VPython is the combination of Python plus an extension module called “visual”.
VPython builds on the Python tradition of cleanliness and simplicity by making it pos-
sible to do simple things in 3D very easily. To display a sphere on the screen, all that
one needs to do is to invoke the visual module and create a sphere:

from visual import *
sphere()

Enter this text into an IDLE edit window and press F5. You will see a 3D sphere,
and using the mouse you can rotate the camera around the scene and zoom in and out.

There are many useful defaults built into VPython. The simple statement “sphere()”
triggers the creation of a graphics window containing an OpenGL context, and the state-
ment produces by default a white sphere centered at the origin, of radius 1, with the
“camera” automatically positioned to look toward the origin from a distance which makes
the sphere fill the window. Defaults can be overridden. For example, the following state-
ment creates an orange sphere with the appearance of wood, with radius 0.5 and 30%

VPYTHON: 3D PROGRAMMING FOR ORDINARY MORTALS 61

opacity, with its center located at x=2, y=−1, z=1:

sphere(pos=(2,-1,1), color=color.orange, radius=0.5, opacity=0.3,
material=materials.wood)

The default autoscaling means that a program showing the orbit of the Earth around
the Sun, with a scale of 1e11 m, and a program showing alpha scattering off a gold nucleus
(Rutherford scattering) with a scale of 1e-13 m both make displays in which the scene
automatically fills the graphics window.

The inventory of graphics objects currently supported by VPython includes sphere,
arrow, box, cone, convex, curve (an array of connected points), cylinder, ellipsoid, faces
(an array of triangles), helix, label (to display text), points (an array of disconnected
points), pyramid, ring, and frame (for grouping objects together). One can create distant
and local lights. There are statements for creating autoscaling graphs, controls (buttons,
toggles, sliders, menus), and a platform-independent file dialog box. VPython supports
handling of mouse and keyboard events. A single statement suffices to make the 3D
scene truly three-dimensional, to be viewed with red-cyan glasses or, with two projectors
aimed at a metallic screen, with polarized 3D glasses.

Of great importance for scientific work is support for vectors and vector operations
such as sum, difference, dot product, cross product, magnitude, etc. Students writ-
ing VPython programs to model physical systems such as gravitational orbits write
coordinate-free vector statements to calculate forces, update momenta, and update po-
sitions. This is the first environment within which students have had an opportunity
to use and experience vectors as powerful unitary entities as opposed to mere sines and
cosines.

2. – Animations

Here is a complete program that calculates and displays the orbit of the Earth orbiting
the Sun (the radii of Sun and Earth have been exaggerated for display purposes):

from visual import *
G = 6.7e-11
Sun = sphere(pos=(0,0,0), color=color.yellow, radius=2e10)
Earth = sphere(pos=(1.5e11,0,0), color=color.cyan, radius=6e9)
Sun.m = 2e30
Earth.m = 6e24
Earth.p = Earth.m*vector(0,3e4,0)
dt = 100
while True:

r = Earth.pos - Sun.pos
rmag = mag(r)
rhat = r/rmag
Fmag = G*Sun.m*Earth.m/rmag**2
Fnet = -Fmag*rhat
Earth.p = Earth.p + Fnet*dt
Earth.pos = Earth.pos + (Earth.p/Earth.m)*dt

After entering these statements into an IDLE editor window, press F5 and an ani-
mated orbit appears with the Earth circling the Sun. With the mouse one can view the
scene from different angles and different distances.

62 B. SHERWOOD and R. CHABAY

The program starts by importing all of the visual capabilities, including the standard
math library. The Sun and Earth are represented by out-size spheres so as to be visible
in the nearly empty Solar System, and they are positioned at an appropriate distance
apart. The Sun’s mass is specified, as are the Earth’s mass and initial momentum. A
time step for the numerical integration is chosen to be 100 seconds. The statement “while
True:” means that the indented code under the while statement will run forever, until
the user closes the graphics window.

The statement “r = Earth.pos - Sun.pos” is a vector subtraction of the current position
of the Earth minus the position of the Sun, so that r represents a vector pointing from
the Sun to the Earth. The magnitude of r and the corresponding unit vector (“rhat”)
are calculated and used to calculate the magnitude of the gravitational force and the
vector force, which is used to update the momentum. Then the position of the Earth is
updated.

Pedagogically it is beneficial that a student who writes such a program is working in
a coordinate-free way (except for setting initial conditions), thinking of and using vectors
as powerful objects rather than as mere sines and cosines. It appears that students gain a
much more sophisticated concept of “vector” as a result of such computational modeling
experiences.

Simple additions to this program include appending points to a curve object to display
the trajectory, and updating arrow objects to display force and momentum vectors.

3. – How does it work?

It is surprising that in the while loop of the orbit program shown above there seem
to be no graphics output statements that would produce an animation, only computa-
tional statements to predict the motion. The key is that every time through the loop
the pos (position) attribute of the sphere object representing the Earth is updated.
Approximately 30 times per second, these computations are interrupted by a separate
“rendering” thread which creates a new image based on the current attributes of the
existing objects. The rendering thread clears a region of memory and for each existing
object (in this case, two spheres) uses OpenGL to add that object to the image, using
the current attributes of those objects. The effect is that each time the rendering thread
creates an image of the Sun and Earth, the Earth is in a new position, and as long as the
rendering thread can run about 30 times every second, the animation will look smooth
to the human viewer. When completely rendered, the scene is handed to the graphics
card to display the image on the screen, and the rendering thread returns control to the
computational thread. The rendering process also takes into account mouse moves for
positioning the camera, which makes the scene navigable.

The effect is to make navigable 3D animations a side effect of computations, thereby
making feasible the creation of sophisticated displays by programming novices. This was
a key invention of David Scherer in the spring of 2000, when he created VPython while
an undergraduate student at Carnegie Mellon University.

∗ ∗ ∗
These developments were supported in part by the National Science Foundation

through Grant Nos. DUE-0320608, DUE-0237132, and DUE-0618504.

VPYTHON: 3D PROGRAMMING FOR ORDINARY MORTALS 63

REFERENCES

Chabay R and Sherwood B (2007) Matter & Interactions, John Wiley & Sons, Hoboken
NJ, USA
Chabay R and Sherwood B (2008) Computational physics in the introductory calculus-
based course, American Journal of Physics, 76(4&5), 307-313

