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Summary. — Current technologies allow physics educators the ability to combine
traditional instruction with computational modeling. However, the implementation
of a computational physics based modeling pedagogy requires a considerable pro-
gramming effort for teachers and students who want to use this approach. This
paper describes a pedagogy that limits the amount of programming when designing,
implementing, distributing, and using computer models. It is based on the inte-
gration of the Easy Java Simulations modeling tool with the ComPADRE National
Science Digital Library.

PACS 01.50.-i — Educational aids.
PACS 01.50.F- — Audio and visual aids.

— Easy Java Simulations (EJS) is free open source software that is designed to create
interactive simulations in Java (applications and applets) without the necessity of
prior programming knowledge.

— ComPADRE is an NSF-sponsored national digital library that is a collaboration of
the American Association of Physics Teachers, the American Physical Society, and
the American Institute of Physics.

Index Terms—computational physics, modeling, modeling cycle, simulation, e-
learning, digital library, Java programming.
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1. — Introduction

Over the past dozen years the Open Source Physics (OSP) project has produced some
of the most widely used interactive computer-based curricular materials for the teaching
of introductory and advanced physics courses. These materials are based on Java applets
called Physlets [Christian 2001] and on new OSP programs and authoring tools [Christian
2007, Gould 2007].

Easy Java Simulations (EJS) expands the OSP tools by providing a free open-source
program, developed in Java and designed to streamline the creation of dynamic sim-
ulations [Esquembre 2004, Easy Java Simulations 2009]. EJS was originally designed
for interactive learning under the supervision of educators but is suitable for use by re-
searchers to prototype computer applications and by authors to develop and distribute
Java-based curricular materials. While some programming knowledge is assumed, EJS
encourages users to focus on modeling rather than on programming.

This paper outlines the pedagogical and technical features of the OSP project and
how we use OSP-based resources to introduce modeling into the curriculum. We describe
our current effort to create and distribute new material using the Easy Java Simulations
modeling and authoring tool and how we use the client-server relationship between this
tool and the ComPADRE National Science Digital Library [OSP 2009]. The paper is
organized as follows. Section 2 introduces the Modeling Cycle that is the basis for our
pedagogy. Section 3 describes basic Easy Java Simulations concepts. The main features
of the ComPADRE-EJS connection are presented in sect. 4 and sect. 5 presents the
pedagogical benefits of this connection. Finally, sect. 6 summarizes the improvements
obtained by the use of our approach.

2. — Modeling cycle

Physics education has become an important research topic in the last few decades
[Redish 2003]. The increasing interest in exploring new teaching methods in physics has
its roots in: 1) the realization that interactive engagement teaching pedagogies improve
learning, and 2) the desire to incorporate current technologies and current professional
practice into curricula. Computational physics education has much to gain from the
synthesis of these new learning pedagogies and tools [Christian 2008].

The modeling approach to teaching is a research-proven pedagogy that predates com-
puters. It attempts to enhance student achievement through a process called the Mod-
eling Cycle. The Modeling Cycle was pioneered by Robert Karplus [Fuller 2001] and the
SCIS Project in the 1960s and 70s and later extended by the Modeling Instruction Pro-
gram led by Jane Jackson and David Hestenes at Arizona State University [Jackson 2008].

The goal of modeling is to teach in a student-centered environment where students
do not solve problems in a formula-centered way. The start of the modeling cycle is the
development of the model by:

— Qualitative description

Identification of variables

— Planning an experiment
— Performing the experiment

— Analysis of the experiment
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— Presentation of results
— Generalization

After development, the model is employed to study a variety of new physical situations
in a variety of ways to test, expand, and enrich the student-created model.

Although the Modeling Cycle can be used without computers, it is well suited for
computer modeling if we replace the word “experiment” with “simulation” in the devel-
opment phase. The analysis of a computer simulation is, in fact, similar to that of a
laboratory and often provides the student with a novel perspective on the behavior of a
system. Furthermore, the use of computers allows students to study problems that are
very difficult and time consuming to study experimentally, to visualize their results, and
to communicate their results with others.

The Modeling Cycle approach has been shown to correct weaknesses of traditional
instruction by actively engaging students in the design of physical models that describe,
explain, and predict phenomena. It is believed that the combination of computer mod-
eling, theory, and experiment can achieve insight and understanding that cannot be
achieved with only one approach.

3. — Easy Java simulations

The architecture of EJS, shown in fig. 1, is based on the model-view-control (MVC)
design pattern, where a simulation is composed of three parts:

1. The model which describes the physics under study in terms of
— Variables that describe the different possible states of the system.

— Relations among these variables (laws that govern the physics), expressed by a
computer algorithm.

2. The control which defines actions that a user can perform on the simulation.

3. The view which shows a graphical representation (either realistic or schematic) of
the model and its data.

An EJS View is usually both a view and a control because the graphical user interface
displays data and responds to mouse and keyboard actions.

The EJS user interface has three main sections: Description, Model and View. The
Description section permits the model author to include narrative (such as instructions
about how to use the simulation, exercises to carry out, theory, results, etc). The inclu-
sion of this descriptive narrative is an important component of the Modeling Cycle and
similar pedagogy.

The Model section contains all aspects related to the definition of the physical model,
including variables and algorithms. Workpanels within the Model section are selected
using radio buttons. The Variables workpanel defines tables of global variables that
can be used throughout the model. The Initialization workpanel contains code pages
that are executed after the global variables have been created. The Fvolution workpanel
contains panels of explicit Java code or symbolic ODE rate equations that are executed
by an animation timer (thread). The Fized relations workpanel contains code pages that
are executed after every evolution step or whenever the user interacts with the model
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Fig. 1. — Steps to create a simulation in EJS.

using a mouse or keyboard action. The Custom workpanel contains code pages with user
defined methods (functions).

The Model section’s structure may appear restrictive to professional programmers,
but this structure is precisely what is needed for the Modeling Cycle. It requires the
teachers and students to study and make clear the model’s assumptions. For example, a
model can implement the Verlet algorithm for the simple physical pendulum within the
Evolution workpanel as follows:

double al = —g"Math.sin(theta)/L; // initial accel.
theta + = omega®*dt + 0.5"al*dt*dt; // advance position
double al = —g*Math.sin(theta)/L; // final accel.
omega + = 0.5"(al + a2)*dt; // advance omega
t + = dt; // advance time

This Evolution workpanel code is the only explicit Java code that appears in this
simple teaching model. The global dynamical variables theta, omega, and ¢ and the
global constants g, L, and dt are defined in a variables table. (See the EJS tutorial

Description ® Model © View
_ Variables ® Initislization _ Evolution Fixed relations _ Custom

Fig. 2. — EJS encourages the modeling cycle by organizing the modeling process into well-defined
tasks.
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Fig. 3. — The pendulum model’s Tree of Elements shows a graphical representation of the view.

available online [Easy Java Simulations 2009] for how to use the symbolic ODE editor
rather than an explicit algorithm to solve differential equations and arrays of differential
equations.)

The EJS View contains the graphical representation of the model’s user interface
including control elements such as buttons and input fields. The view is built by dragging
predefined ready-to-use components from palettes onto a Tree of Elements such as that
shown in fig. 3.

EJS View components each have an inspector that can be used to set the properties
of that model element. Each property can either be a constant value or an expression
containing the model variables. Figure 4 displays the inspector for the arrow component
that displays the pendulum bob’s velocity in the model given above. Its color property
is set to MAGENTA, its base is set to (0,—L), and its size is set to omega*L. EJS
automatically establishes two-way communication between view properties and model
variables so that the view changes as the model evolves and so that the model changes
if the user drags an object in the view.

A component’s inspector can also contain code that is invoked in response to user
actions. Short code fragments can be entered directly into the inspector’s action fields.
It is good programming practice, however, to define a longer action as a custom method
and to invoke this method by entering its name as the action property in the inspector.

The process of creating an advanced simulation is similar to the process shown in
fig. 1 for the pendulum model. In the Ising model (see fig. 5) physical parameters such
as temperature and field strength and the array of spins are declared in a variables table.
The Evolution workpanel contains the 20 lines of Java code needed to flip spins using
the Metropolis algorithm. The spins array is an input property for a lattice component
that displays the array as color-coded rectangles in the view.

After a model is built, documented, and tested within EJS, the model (including its
non-Java resources such as graphics and html description pages) is packaged for distribu-
tion into either a jar file or a zip file by clicking on a button within EJS. The resulting jar
file, about 1 Mbyte for the pendulum model above, is a stand-alone Java application that
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Fig. 4. — An EJS inspector assigns values to an object’s properties and invokes methods in
response to actions.

does not require EJS and can run on any computer with a Java VM. The model’s html
documentation appears within a viewing frame and links to PDF documents within the
jar open in a native viewer. If a zip package is selected, the resulting 10 Kbyte archive
contains the XML source code and other resources but must be unzipped on a computer
with EJS to run.

Because an EJS XML source code file is so small, the stand-alone jar file also contains
this resource. The immediate availability of the code provides one of the most powerful
and exciting aspects of EJS models. Unlike most compiled programs, users can examine,
modify, and redistribute the model with minimal effort. Right-clicking within a running
simulation displays a pop-up menu with the option to extract the XML file from the jar
and to copy it into the local computer’s EJS workspace. This packaging trick allows a
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Fig. 5. — EJS models in the OSP Collection in ComPADRE are accessible from within EJS.
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teacher to ask students to modify a compiled model and repackage it thereby creating a
teacher-student feedback loop that supports the Modeling Cycle.

4. — ComPADRE Digital Library

The ComPADRE National Science Digital Library Pathway [ComPADRE 2009] is a
growing network of online collections containing educational resources supporting teach-
ers and students in Physics and Astronomy. Each ComPADRE collection is focused on
a particular community (e.g., high school teachers, physics majors, physics education
researcher) or topic (e.g., quantum physics, astronomy).

The Open Source Physics (OSP) Collection within ComPADRE contains Java-based
computational resources for teaching and the supporting documentation to help teachers
and students take advantage of these materials. The goal of the collection is to provide
curriculum resources that engage users in physics, computation, and computer model-
ing. The collection is built on a repository of source code, executable simulations, and
curriculum resources. As with any good library, these items are annotated and cataloged
so that users can find materials using standard search criteria such as subject, author,
and keyword. Other library and web tools are available to the OSP Collection as a part
of ComPADRE. These include personal user collections (both private and shared), com-
ments on resources, connections between resources, and the easy incorporation of OSP
and EJS pedagogical materials into all other ComPADRE collections.

The collaboration between the OSP and ComPADRE projects has resulted in a new
way of sharing EJS models over the web. The EJS modeling environment can act as a
client that directly accesses and downloads models in the ComPADRE library. Clicking
on the web libraries icon in EJS connects to online repositories and displays a catalog of
models in a table of contents as shown in the left pane of fig. 5. Clicking a catalog entry
shows a brief description of that model. Double-clicking either the catalog entry or the
download button copies the model’s XML source code and resources from the library
into the local EJS workspace where it can be examined and modified.

Although the OSP Library on ComPADRE is a large central repository of resources,
EJS developers have the option of sharing their materials through this same web-client
interface. This will give teachers and students access to more resources and also different
organizational structures for EJS models. For example, the ComPADRE models are ar-
ranged by subject while the Davidson College EJS digital library shows models arranged
by course syllabus.

5. — Pedagogical benefits

EJS models in the ComPADRE digital library with associated curricular materials
have the following pedagogical benefits:

— They help students visualize abstract concepts. The most obvious benefit of simu-
lations in instruction is that they help students visualize systems. In traditional
instruction, students learn the concepts of physical science and physics via static
pictures and words. Students construct an understanding through internal visual-
ization, which is usually faulty for new topics and will hamper their progress toward
understanding the concepts of physics.

— They are interactive and require student control. Students often learn to use a
“plug-n-chug” approach to problem solving. When faced with end-of-the-chapter
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textbook problems, students quickly determine that through a process of elimina-
tion, they can find the appropriate equation to use to solve these problems without
relying on the physics concepts [Maloney 1994]. In well-designed model-based sim-
ulations, physical quantities are not given and must be determined from the simu-
lation. Since determining what information is relevant must be done early in the
problem-solving process, students must conceptualize the problem before starting
algebraic manipulation.

They are more like real-world problems. Textbook problems are very different from
real-world problems. Solving a real-world problem entails distinguishing between
relevant and irrelevant information. In a model-based simulation, just as in a
laboratory, students must take data that introduces and reinforces the idea that
there is uncertainty in measurements and therefore results. This means that two
students when faced with the same model-based simulation will end up with slightly
different (correct) answers. Using simulations can therefore bridge the gap between
theory and the real world [Ronen 2000]

They use multiple representations to depict information. The idea that students
learn best when they see the same ideas presented in different ways is not new.
Traditional instruction relies on the written and spoken word and other static de-
pictions. Simulations can not only depict motion, but they can also simultaneously
depict the information in a different way via graphs and tables that change with
time [Van Heuvelen 2001]. In addition, simulations can provide the opportunity to
investigate numerous alternate scenarios [Zacharia 2003]

They are simple with limited distracting features. Educational materials are too
often developed based on technology with pedagogy as an afterthought. Only
graphics, animations, or sounds that contribute to the learning process should be
included in a simulation. This allows students to focus in the task without being
distracted by unnecessary or overly flashy additions.

They can improve assessment of student understanding. Researchers have shown
that simulation-based resources can provide a superior assessment vehicle as com-
pared to traditional paper-based questions. Dancy compared student responses to
traditional conceptual exercises with responses to nearly identical simulation-based
exercises. She found that in general, the simulation-based version of the exercise
was more valid for understanding whether students understood a given concept
[Dancy 2002].

6. — Summary

The combination of a computational physics friendly modeling and authoring tool

with Internet technologies allows teachers to easily incorporate computer-based modeling
into their curriculum by providing an open and extensible solution for the creation and
distribution of educational software. EJS is free because it is collaboratively built and
released under the GNU GPL software license. ComPADRE has no registration costs
because it is part of the National Science Digital Library project and endorsed and
supported by the professional societies. EJS produces self-contained teaching modules
that are extensible, adaptable, and easily modifiable because the model’s documentation
and XML description are packaged in the executable jar file. If a model is uploaded into



EASY JAVA SIMULATIONS AND THE ComPADRE OSP COLLECTION 41

ComPADRE, its authorship, modifications, and use are documented and intellectually
traceable.

The advantage of EJS for computational physics teaching is that it forces students to
separate the model into logical parts and to separate the model from the view. Students
learn the logic of computer modeling using loops and control structures and study algo-
rithms used in professional practice when building models. Students are also introduced
to object-oriented programming concepts by using object properties and methods when
they create user interfaces. However, little user-interface coding is required because the
user interface is created automatically by EJS.

The Open Source Physics combination of computational physics tools and computer
modeling pedagogy with a digital library provides students and teachers with new ways
to understand, describe, explain, and predict physical phenomena.

* ok ok

EJS was created by Francisco Esquembre at the University of Murcia, Spain. The
ComPADRE national digital library is funded in part by the NSF and supported by
the AAPT, APS, and AIP. Special thanks to L. BARBATO the ComPADRE technical
director and M. RIGGSBEE the ComPADRE designer for design of the OSP Collection
and helping to implement the EJS client service. The authors gratefully acknowledge that
partial funding for this work was obtained through NSF grant DUE-0442581, Davidson
College and grant DP12007-61068 of the Spanish Ministerio de Educacién y Ciencia. The
ComPADRE Library has been supported by the NSF through grants DUE-0532798 &
DUE-0226129.
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