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Summary. — micrOMEGAs is a tool for cold dark matter (DM) studies in generic
extensions of the standard model with a R-parity like discrete symmetry that guar-
antees the stability of the lightest odd particle. The code computes the DM relic
density, the elastic scattering cross-sections of DM on nuclei relevant for direct de-
tection, and the spectra of e+, p̄, γ originating from DM annihilation including
propagation of charged cosmic rays. The cross-sections and decay properties of new
particles relevant for collider studies are included as well as constraints from the
flavour sector on the parameter space of supersymmetric models.

PACS 12.60.-i – Models beyond the standard model.
PACS 95.35.+d – Dark matter (stellar, interstellar, galactic, and cosmological).

1. – Introduction

The existence of a dominant dark matter component in the universe has been firmly
established by cosmological observations in the last few years notably by SDSS [1] and
WMAP [2]. Furthermore, the amount of DM today, the relic density, has been measured
with very good precision, Ωh2 = 0.1099± 0.0062 [3]. A leading candidate for cold DM is
a new weakly interacting stable massive particle which naturally provides a reasonable
value for the relic density. It is particulary interesting that extensions of the standard
model (SM) whose prime goal is to solve the hierarchy problem can in many cases also
provide a viable DM candidate. Such particles arise naturally in many extensions of the
standard model [4] from the minimal supersymmetric standard model [5, 6] to models
of extra dimensions [7, 8], little Higgs models [9] or models with extended gauge or
Higgs sectors [10, 11]. In these models which possess a symmetry like R-parity that
guarantees the stability of the lightest odd particle (LOP), the DM candidate can be
either a Majorana fermion, a Dirac fermion, a vector boson or a scalar. The DM mass
ranges anywhere from a few GeV’s to a few TeV’s.
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Astroparticle and collider experiments are being actively pursued to search for DM.
Combined studies of DM signals in these different types of experiments should provide
the necessary ingredients to unravel the nature of DM. These involve searches for DM
either directly through detection of elastic scattering of the DM with the nuclei in a
large detector or indirectly trough detection of products of DM annihilation (photons,
positrons, neutrinos or antiprotons) in the Galaxy or in the Sun. Furthermore colliders
are searching for DM as well as for other new particles predicted in extensions of the
standard model.

Sophisticated tools have been developed to perform computations of DM observ-
ables within R-parity conserving supersymmetric models, four are publicly available:
micrOMEGAs [12], DarkSUSY [13], IsaTools [14] and superISO [15]. All include precise
computations of the relic density as well as various constraints on the model from pre-
cision observables or the flavour sector. In addition the first three compute the direct
and indirect detection rates while micrOMEGAs and Isatools provide collider observ-
ables. micrOMEGAs has the added important feature that it can be easily generalised to
other extensions of the standard model [16]. This is because micrOMEGAs is structured
around CalcHEP [17] a generic program which once given a model file containing the list
of particles, their masses and the associated Feynman rules describing their interactions,
computes any cross-section in the model. The standard micrOMEGAs routines can then
be used to compute the relic density as well as other DM observables.

2. – Relic density

A relic density calculation entails solving the evolution equation for the abundance of
DM, Y (T ), defined as the number density divided by the entropy density [18],

(1)
dY

dT
=

√
πg∗(T )

45
Mp〈σv〉(Y (T )2 − Yeq(T )2),

where g∗ is an effective number of degree of freedom, Mp is the Planck mass and Yeq(T )
the thermal equilibrium abundance. 〈σv〉 is the relativistic thermally averaged annihila-
tion cross-section. The dependence on the specific particle physics model enters only in
this cross-section which includes all annihilation and coannihilation channels,
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where gi is the number of degree of freedom, σij;kl the total cross-section for annihilation
of a pair of odd particles with masses mi, mj into some Standard Model particles (k, l),
and pij(

√
s) is the momentum (total energy) of the incoming particles in their center-of-

mass frame.
Integrating eq. (1) from T = ∞ to T = T0 leads to the present day abundance Y (T0)

needed in the estimation of the relic density,

(3) ΩLOPh2 =
8π

3
s(T0)

M2
p (100 (km/s/Mpc))2

MLOPY (T0) = 2.742 × 108 MLOP

GeV
Y (T0),

where s(T0) is the entropy density at present time and h the normalized Hubble constant.
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To compute the relic density, micrOMEGAs solves the equation for the abundance
eq. (1), numerically without any approximation. The computation of all annihilation
and coannihilation cross-sections are done exactly at tree-level. For this we rely on
CalcHEP [17]. In the thermally averaged cross-section, eq. (2), coannihilation channels
are compiled and added only when necessary, that is when the mass difference with the
LOP does not exceed a value determined by the user.

3. – New models

micrOMEGAs was first developed for the minimal supersymmetric standard model
(MSSM). In this model the large number of annihilation channels made automation
desirable. For this reason micrOMEGAs was based on CalcHEP [17]. The generalisation to
other particle physics models was then straigthforward and only requires specifying the
new model file into CalcHEP [17].

In order that the program finds the list of processes that need to be computed for the
thermally averaged annihilation cross-section, relevant for the relic density calculation,
one needs to specify the analogous of R-parity and assign a parity odd or even to every
particle in the model. The standard model particles have an even parity. The lightest
odd particle will then be identified with the DM candidate. micrOMEGAs automatically
generates all processes of the type χiχj → X,Y where χi designates all R-parity odd
particle and X, Y all R-parity even particles. micrOMEGAs then looks for s-channel poles
as well as for thresholds to adapt the integration routines for higher accuracies in these
specific regions, and performs the relic density calculation. Note that the code can also
compute the relic density of a charged particle, this quantity can for example be used to
extract the relic density of the gravitino DM.

Our approach is very general and, as long as one sticks to tree-level masses and cross-
sections, necessitates minimal work from the user beyond the definition of the model
file. However it has been demonstrated that for an accurate relic density calculation it
is necessary in many cases to take into account higher-order corrections. In particular
corrections to the mass of either the LOP or of any particle that can appear in s-channel
are important, for example the corrections to Higgs masses in the MSSM or its extensions.
The large QCD corrections to the Higgs width must also be taken into account when
annihilation occurs near a Higgs resonance. In general one expects that these loop
corrections can be implemented via an effective Lagrangian. In practice then it might
be necessary for the user to implement additional routines or interface other programs
to take these effects into account. This was done explicitly for the NMSSM [19], the
CPVMSSM [20] and the MSSM with Dirac gaugino masses [21].

Another advantage of our approach based on a generic program like CalcHEP is that
one can compute in addition any cross-section or decay width in the new model con-
sidered. In particular, tree-level cross-sections for 2 → 2 processes and decay widths of
particles are available. Furthermore the cross-sections times relative velocity, σv, for DM
annihilation at v → 0 and the yields for the continuum γ, e+, p̄, ν spectra, relevant for
indirect detection of DM, are also automatically computed. The procedure to extract
the elastic scattering cross-section is described next.

4. – Direct detection

In direct detection, one measures the recoil energy deposited by the scattering of DM
(χ) with the nuclei. Generically DM-nuclei interactions can be split into spin-independent
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(scalar) and spin-dependent interations. The scalar interactions add coherently in the
nucleus so heavy nuclei offer the best sensitivity. On the other hand, spin-dependent
interactions rely mainly on one unpaired nucleon and therefore dominate over scalar
interactions only for light nuclei unless scalar interactions are themselves suppressed.
In both cases, the cross-section for the DM nuclei interaction is typically low, so large
detectors are required. Many experiments involving a variety of nuclei have been set up.
The best limit for spin-independent interactions was reported recently by CDMS with
σSI

χp ≈ 3.8 × 10−8 pb for a DM mass around 70 GeV [22]. This limit already probes a
fraction of the parameter space of DM models.

Many ingredients enter the calculation of the direct detection rate and cover both
astroparticle, particle and nuclear physics aspects. The detection rate depends on the
χ-nucleus cross-section which is derived from the interaction at the quark level. The
different matrix elements for χq interactions have to be converted into effective couplings
of DMs to protons and nucleons, this is done through coefficients that describe the
quark content in the nucleons. Note that the DM have small velocities, therefore the
momentum transfer is very small as compared to the masses of the DM and/or nuclei
and the χ-nucleon elastic cross-sections can be calculated in the limit of zero momentum
transfer.

The distribution of the number of events over the recoil energy for spin-independent
interactions reads

dNSI

dE
=

2Mdett

π

ρ0

Mχ
F 2

A(q)(λpZ + λn(A − Z))2I(E),(4)

where ρ0 is the DM density near the Earth, Mdet the mass of the detector, t the exposure
time, I(E) is an integral over the velocity distribution and FA(q) is the nucleus form factor
which depends on the momentum transfer. The coefficients λp, λn contain all particle
physics dependence and are extracted from the matrix elements for χq scattering coupled
with coefficients that describe the quark content in the nucleons.

Traditionally the coefficients λq of the low-energy effective χq Lagrangian are eval-
uated symbolically using Fiertz identities. Instead in micrOMEGAs we use an original
approach that allows to handle a generic model. First we expand the χq interactions
over a set of basic point-like operators, only a few operators are necessary in the q2 → 0
limit. The same operators also describe the DM-nucleon interactions. For example for
SI interactions of a Majorana fermion with quarks or nucleons the effective Lagrangian
reads

(5) LSI = λqψχψχψqψq;

micrOMEGAs creates automatically a new model file that contains these operators as new
auxiliary vertices in the model. CalcHEP then generates and calculates symbolically all
diagrams for DM-quark/anti-quark elastic scattering at zero momentum transfer. The
interference terms between one normal vertex and one auxiliary vertex allow to evaluate
numerically the λq coefficients [23]. Note that in the file that defines the model all quarks
should be defined as massive particles. Vertices that depend on light quark masses, for
example the couplings of Higgs to light quarks cannot be neglected. The dominant term
for DM quark scalar interactions is proportional to quark masses, when converting to
DM nucleon interactions this quark mass will get replaced by a nucleon mass.
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5. – Indirect detection

DM annihilation in the Galactic halo produces pairs of standard model particles.
These particle then hadronize and decay into stable particles that evolve freely in the
interstellar medium. The final states with γ, e+, p̄ and D̄ are particularly interesting as
they are the subject of indirect searches. Recently many new results from indirect DM
searches have been released notably by PAMELA and Fermi [24, 25]. The rate for the
production of these particles can be cast into

(6) Q(x, E) =
1
2
〈σv〉

(
ρ(x)
mχ

)2 dN

dE
,

where 〈σv〉 is the annihilation cross-section times the relative velocity of incoming DM
particles in the zero velocity limit. mχ is the mass of the DM candidate, ρ(x) is the DM
density at the location x and dN/dE is the energy distribution of the particle produced
in one collision. The predictions for the energy spectra depend on non-perturbative
QCD and imply the use of Monte Carlo simulations such as PYTHIA. The annihilation
rates are extracted from CalcHEP in any model. The rate for photons observed near
the center of the galaxy shows a strong dependence on the halo profile in particular on
the DM density near the center, a quantity that still has large uncertainties. Different
halo profiles are implemented in micrOMEGAs. In addition micrOMEGAs provides, in the
MSSM, the rate for gamma-rays that come from direct annihilation of DM particles. This
model-dependent process is loop-induced and suppressed but is nevertheless interesting
because of the dramatic signature, a monochromatic gamma-ray line [26].

The charged particles generated from DM annihilation propagate through the Galac-
tic halo and their energy spectrum at the Earth differs from the one produced at the
source. Charged particles are deflected by the irregularities of the galactic magnetic field,
suffer energy losses from synchroton radiation and inverse Compton scattering as well
as diffusive reacceleration in the disk. Finally galactic convection wipes away charged
particles from the disk. Solar modulation can also affect the low energy part of the
spectrum. The equation that describes the evolution of the energy distribution for all
particles (protons, anti-protons, positrons) reads

(7)
∂

∂z
(VCψ) − ∇ · (K(E)∇ψ) +

∂

∂E
(b(E)ψ) = Q(x, E),

where ψ = dn/dE is the number density of particles per unit volume and energy. Q
is the production rate of primary particles per unit volume and energy, eq. (6). b(E)
is the energy loss rate and K is the space diffusion coefficient, assumed homogeneous,
K(E) = K0βRδ where β is the particle velocity and R its rigidity. The propagation equa-
tion is solved within a semi-analytical two-zone model. Within this approach the region
of diffusion of cosmic rays is represented by a thick disk of thickness 2L and radius R =
20 kpc [27] . The thin galactic disk where primary cosmic rays are accelerated lies in the
middle and has a thickness 2h ≈ 200 pc and radius R. The boundary conditions are such
that the number density vanishes at z = ±L and at r = ±R. The galactic wind is directed
outward along the z direction so the convective velocity is also vertical and of constant
magnitude VC(z) = VCsign(z). The propagation parameters δ, K0, L, VC are constrained
by the analysis of the boron to carbon ratio, a quantity sensitive to cosmic ray trans-
port [27]. Propagation induces large uncertainties in the prediction of the spectrum from
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DM annihilation, furthermore extracting a signal from DM annihilation requires a careful
understanding of the background as well as of astrophysical sources. Only the DM signal
will be included in the first version of the indirect detection module to be released soon.

6. – Conclusion

micrOMEGAs is a comprehensive tool for DM studies in extensions of the SM. The
implementation of new models and new features are being pursued. One objective is a
more precise computation of the relic density. Within the MSSM [28] it was shown that
the one-loop corrections to the annihilation cross-sections could be sizeable as compared
with the precision expected from PLANCK measurements. An interface between the
loop-improved computations and micrOMEGAs is being worked out.
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