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Summary. — Time evolution of the isotropic electron distribution function while
heating for the nonlinear kinetic equation with the Landau-Fokker-Planck collisional
integral is studied. The considered heating sources are mono kinetic distribution,
hot ions, and a quasi-linear diffusion operator. The investigation is mainly con-
centrated on the formation of the distribution function and tail acceleration. The
time-dependent solutions allowing the solutions in self-similar variables are exam-
ined. Also presented are analytical asymptotic solutions and comparison them with
numerical results.

PACS 51.10.+y – Kinetic and transport theory of gases.
PACS 52.50.-b – Plasma production and heating.
PACS 52.65.Ff – Fokker-Planck and Vlasov equation.

1. – Preliminaries

In many important cases one should treat plasma transport kinetically. The solutions
of the Landau-Fokker-Planck (LFP) equation, which is one of the key ingredients of
plasma kinetic equation, have much broader interest ranging from plasma physics to
stellar dynamics (e.g., see [1-3] and the references therein).

We consider the isotropic electron distribution function fe(v, t) and study the electron
heating with a simple model:

(1)
∂fe

∂t
= Γ · I(fe) + H(fe), 0 ≤ v < ∞, t ≥ 0,
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where I(fe) is the LFP collisional integral for charged particles and H(fe) is the heating
source. We focus on the interplay of the LFP collisional operator with the different
heating terms: monokinetic distribution, hot ions fi(v, t) (two component plasma), and
a quasi-linear diffusion operator. Our interest is mainly concentrated on the evolution
and formation of the distribution function tails for t → ∞, as v → ∞. At the beginning
we shortly review some selected results of our works on the subject (see [4, 5] and the
references therein) with a heating source H(fe) localized in the velocity space. Then a
broader class of the heating terms resulting in enhancement of the tail of the distribution
function is analytically analyzed. All asymptotic results are confirmed by the numerical
computing of nonlinear LFP equation with high accuracy.

The distribution functions are considered normalized to unity and the non-equilibrium
electron Te and ion Ti temperatures are as follows:

(2) 4π

∫ ∞

0

dvv2fe,i(v, t) = 1, Te,i(t) =
4πme,i

3

∫ ∞

0

dxx4fe,i(x, t),

where the first integral has a sense of the particle density. The system of the LFP
collisional integrals for such functions is

I(fe) =
1

ρv2

∂

∂v

[
A

∂fe

∂v
+ (Be + ρBi)fe

]
,(3)

I(fi) =
ρ

v2

∂

∂v

[
A

∂fi

∂v
+

(
1
ρ
Be + Bi

)
fi

]
.

Here, the following notations for the integral operators A, B are used:

(4) A =
Ae + Ai

3v
, Ae =

∫ v

0

dxx4fe(x, t)+v3

∫ ∞

v

dxfe(x, t), Be =
∫ v

0

dxx2fe(x, t),

where Γ = 16π2e4LN/memi, L is the Coulomb logarithm and � = me/mi. In case of
heating, the local Maxwellian distribution depends on time fM ∼ vth

−3 exp[−v2/vth
2],

where vth = ve,i(t) =
√

2Te,i(t)/me,i is the corresponding thermal velocity. We also use
the energetic variable ξ = v2/v2

th. For v, ξ → ∞ the nonlinear integro-differential LFP
integral becomes linear,

(5) I(f) =
1
v2

∂

∂v

(
2T

m

1
v

∂f

∂v
+ f

)
=

1
ξ1/2

∂

∂ξ

(
∂f

∂ξ
+ f

)
.

The Coulomb diffusion influence is utmost in the cold region 0 ≤ v/vth < 1. In the
high-velocity region v/vth � 1 the LFP parabolic equation degenerates because of known
Rutherford cross-section dependence on velocity and acquires more pronounced hyper-
bolic type. This circumstance leads to inevitable retarding of the distribution tail for-
mation.

2. – Heating localized in the velocity space

At first, we consider the Cauchy problem for (1)-(4) without a heating term dealing
with one sort of particles (� = 1). The initial distribution function is located in the
region 0 ≤ v ≤ 1, the thermal velocity is a velocity scale unit. We are interested
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in the relaxation of the distribution function tails in the high-energy region v → ∞.
Substituting f(v, t) = G(v, t) · fM (v) in (5), we consider the period when the relaxation
process is practically finished in the thermal velocity region, that is, the period when
GM (v) ≈ 1. Hence, we solve the problem for eq. (5) in the superthermal velocity region
where the second (transport) term prevails and the slow establishing of the equilibrium
solution GM = 1 occurs, and G → 0 as v � 1, t � 1. From asymptotic analysis the
following results are obtained. G is expressed in terms of the error function

(6) G(v, t) = Φ

{
2
5

vf

[
v − vf (t)

vf (t)

]5/2
}

, Φ(x) =
2√
π

∫ ∞

x

dye−y2
,

and has a character of a propagating wave, whose front moves under the law vf (t) =
(3 t)1/3 with the constant front width Δf (t) =

√
π. Then the distribution function forma-

tion for t → ∞, v → ∞ actually means the distribution tail heating. For high energetic
region ξ � 1 the rough approximation can be used G(ξ) = Φ(ξ5/2) ∼ exp[−ξ5/2]. In
other words, the electron distribution slowly tends to its equilibrium solution f(ξ) �
exp[−ξ] · exp[−ξ5/2] having an underheated tail.

Further, we include into consideration the heating of the electrons by the source
of the hot particles which is localized in a high energetic region ξ+ � 1. In a cold
region the distribution is supposed Maxwellian. Therefore for asymptotic analysis we
again use eq. (5). Let the heating source have small intensity σ � 1, so the density
and the energy of the system practically do not undergo noticeable changes during the
process under consideration. Then a stationary distribution is formed while the source
is regarded as still located in a tail distribution region. Under the following conditions:
t → ∞, σ → 0, ξ → ∞, such that Δt = σ · t · ln(1/σ) is finite, ξ+ = ξ/2T0 − ln(1/σ) is
finite, the new quasi–steady-state non-equilibrium distribution is established inside the
momentum interval between the energy source ξ+ and the bulk distribution (or the sink
ξ− < ξ+). If, in particular, the source and the sink are monokinetic distributed functions
H(f) = σ · ξ−1/2 · [δ(ξ − ξ+) − δ(ξ − ξ−)], with ξ− < ξ+, then f(ξ) = Ce−ξ + σ · Δ(ξ),
where

Δ(ξ) = η[ξ+ − ξ] + η[ξ − ξ+] exp [−(ξ − ξ+)] − η[ξ− − ξ] + η[ξ − ξ−] exp [−(ξ − ξ−)]

and η[y] is a unit function. Numerical results show that the analytical asymptotic estima-
tions obtained for the linear case are fit for a wider class of parameters. The functional
dependence of the steady-state non-equilibrium electron distribution is unsensitive to
the extent to which the source and sink are located in momentum space. Figure 1
demonstrates the quasi–steady-state distribution function that has plateau essentially
exceeding the equilibrium distribution. The size of plateau is shortening with time be-
cause of normalization v+

2/vth
2(t). However, the distribution tail formation is described

by formulas (6), f(ξ) ∼ exp[−ξ5/2] in the region ξ � ξ+.
Now let pass to the classical problem of electron and ion temperature relaxation:

T 0
e + T 0

i = Te(t) + Ti(t) = 2Teq. For (1)-(4) with H(fe) = 0 the heating source for
electrons are hot ions. For ρ → 0 the usual collision time ordering is the following.
During time te electrons approach their equilibrium, next ions’ maxwellization occurs
within time ti � te. During temperature relaxation that takes time tei � ti � te,
the distribution functions remain Maxwellians ∼ e−ξ with time-dependent electron
and ion temperatures. Then the formula for temperatures can be obtained from the
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Fig. 1. – Formation of the quasi–steady-state non-equilibrium distribution function vs. v2/v2
th(t)

for different time moments and ξ+ = 4, ξ− = 0.5, σ = 10−5. The dashed-line curve is the
Maxwell distribution.

system (1)-(4): T
3/2
e dTe/dt = C (Ti − Te). Such an approach imposes a severe restric-

tion on the initial temperatures ρ1/3 � Ti
0/Te

0 � ρ−1/3.
Let us set

fe,i(v, t) =
1
2π

v−3
e,i · f ′ (v2/v2

e,i, t
′) , t = t0t

′, t0 =
2π

Γ
(2Teq/me)

3/2
, Te,i = TeqTe,i

′,

and the squared ratio of thermal speeds ε = v2
i /v2

e = ρTi/Te. We substitute these
expressions in formulas (1)-(4) and return to the original notations. Then the equation
for the electron function reads

(7) Te
3/2 ∂f

∂t
=

1
ρ

1√
ξ

∂

∂ξ

[
(Ae + Ai)

∂f

∂ξ
+ (Be + Bi) f + ρ

√
Te

∂Te

∂t
ξ3/2f

]
.

Here, coefficients Ae, Be correspond to the electron-electron collisions

(8) Ae =
2
3

[∫ ξ

0

dy y3/2fe(y) + ξ3/2

∫ ∞

ξ

dy fe(y)

]
, Be =

∫ ξ

0

dy y1/2fe(y),

and take a simple form Ae � 2/3ξ3/2
∫ ∞
0

dy fe(y), Be � 2/3ξ3/2fe(0) for ξ � 1 and
Ae = Be = 1 for ξ � 1. For the electron-ion collisions

(9) Ai =
2
3

ε

[∫ ξ/ε

0

dyy3/2fi(y) +
(

ξ

ε

)3/2 ∫ ∞

ξ/ε

dy fi(y)

]
, Bi = ρ

∫ ξ/ε

0

dy y1/2fi(y).
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Table I. – Comparison of the electron-electron and electron-ion coefficients.

ξ ∼ ε Ae, Be ∼ ε3/2 Ai ∼ ε, Bi ∼ ρ

ε � ξ � ε2/3 Ae, Be � ε Ai ∼ ε, Bi ∼ ρ

ξ ∼ ε2/3 Ae, Be ∼ ε Ai ∼ ε, Bi ∼ ρ

ξ � ε2/3 Ae, Be � ε Ai ∼ ε, Bi ∼ ρ

The normalization conditions can now be rewritten as follows:

(10)
∫ ∞

0

dx
√

x fe,i(x, t) = 1,
∫ ∞

0

dxx3/2fe,i(x, t) =
3
2

and Te(t)+Ti(t) = 2. Now we replace eq. (7)-(9) by approximate equations for the small
mass ratio ρ � 1. For fixed ρ, ε � 1 and different magnitudes of the variable ξ, the
comparison by the order of coefficients (8) and (9) yields the result given in table I. As
can be seen, the influence of the coefficients Ai, Bi around ξ ∼ 1 is small but it enhances
sensibly in the vicinity of 0 ≤ ξ ≤ ε2/3. Thus in the vicinity of the point ξ � 0, there
exists a composed boundary layer with a width of δ ∼ ε2/3. Within its internal domain
0 ≤ ξ < ε coefficients Ai, Bi depend essentially on the ion distribution fi but for ξ � ε
this dependence disappears. We obtain for ρ → 0, ε → 0 and ξ � ε from (7)-(9)

(11) Te
3/2 ∂fe

∂t
=

1
ξ1/2

∂

∂ξ

[
1
ρ

(
Ae

∂f

∂ξ
+ Bef

)
+

(
Ti

Te

∂fe

∂ξ
+ fe

)
+ Te

1/2 ∂Te

∂t
ξ3/2fe

]
,

and we obtain the boundary condition and the temperature equation from (10), (11)

(12)
(

Ti

Te

∂fe

∂ξ
+ fe

)
ξ=0

= 0, Te
3/2 dTe

dt
=

2
3

[
Tife(0) − Te

∫ ∞

0

dξfe(ξ)
]

.

The main part ε � ξ ≤ ε2/3 of the boundary layer δ is correctly described by eq. (11).
Examination of (7)-(9) shows that the solution can be replaced in the internal domain
ξ ∼ ε by the boundary condition (12) with the approximation error of O(ρ). From (10)-
(12) for ρ = 0, we formally obtain the solution f (0)(ξ) � exp[−ξ], θ3/2θt � (T − θ) that
should be “corrected” in the vicinity of ξ ≈ 0. To adjust (12) we assume

(13) fe(ξ, t) =
2√
π

e−ξ

[
1 +

Te − Ti

Ti
· u(ξ, ε)

]
,

insert (13) in (10)-(12) and neglect the squared terms of u. After rather lengthy
computation one can obtain u(x) � δψ(ξ/δ) + O(ε), where δ = (3

√
πε/4)2/3 and

ψ(x) =
∫ ∞

x
dy/(1 + y3/2). The applicability of the known formula for temperatures

ε � 1 is hundred times less rigorous than ρ � 1 and the corrected formula reads

(14) Te
3/2 dTe

dt
� 4

3
√

π

Ti − Te

1 + 2.9ε2/3
.
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Fig. 2. – Temporal evolution of the electron distribution function tails for the quasi-linear dif-
fusion operator (15) located in 0.05 ≥ v ≥ 0.75.

The electron function achieves its maximum absolute deviation from its local Maxwell
distribution at ξ = 0: fe(ξ, t) � 2/

√
π·e−ξ[1+2.9ε2/3(Te − Ti)/Ti]. The relative deviation

of the electron distribution from equilibrium can be larger in the tail region than where
the tail formation is described by (6). The same behavior of the distribution function
tails is valid for any localized heat source having time dependence as T ∼ t2/3.

An example is the interaction of RF waves with a plasma. It is described by a LFP
equation with an added quasi-linear term (usually 2D in velocity space)

(15) H(f) =
1

ξ1/2

∂

∂ξ

[
ξ3/2Dql

∂f

∂ξ

]
, Dql =

{
const, if ξ1 ≤ ξ ≤ ξ2

0, otherwise.

For this case the numerical result demonstrates in fig. 2 the tail formation. It has a
character of a propagating wave with slightly changing slope in time because of heating.

3. – Self-similar solutions with accelerated tails

Unlike the cases considered above the situation changes drastically when in H(f)
from (15) the coefficient of the quasi-linear diffusion Dql(ξ, t) increases with velocity
increasing. We consider a special class of functions, for which it is possible to construct
a self-similar solution. Thus from (1), (15) instead of (11) we obtain

(16) Te
3/2 ∂f

∂t
=

1
ξ1/2

∂

∂ξ

[
A

∂f

∂ξ
+ Bf + ξ3/2Te

1/2D(ξ, t)
∂f

∂ξ
+ Te

1/2 ∂Te

∂t
ξ3/2f

]
,
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Fig. 3. – Temporal evolution of the electron distribution function tail for p = 3/2, e = 3/2 · v2
th.

The normalization conditions (10) lead formally to the following equation for T (t):

Tt =
dT

dt
=

∫ ∞

0

dyf(y)
∂

∂y
[y3/2D(y, t)].

The only case, when eq. (16) formally admits stationary solutions, ∂f/∂t = 0, corre-
sponds to Dql(ξ, t) = D(ξ)/

√
T (t). Note, we have the same law T (t) � t2/3. Taking

D(ξ)ξ3/2 = D0ξ
p−3/2, where D0 is the normalization constant and 5/2 > p > 0 is an

adjustable parameter, we find the distribution function in the high-velocity region

(17) f(ξ → ∞) ∝ exp
[
− ξ5/2−p

5/2 − p

]
, 5/2 > p ≥ 0.

For the case p = 5/2 we obtain a power-law tail f(ξ → ∞) ∝ ξ−5/2. For p = 3/2 the
solution of (1), (15) with Dql(ξ, t) = D0 is Maxwellian. Figure 3 shows the distribu-
tion function tail formation for different time moments. At the beginning the tail has a
Coulombian character and starting from the time τ ∼ 1/D0 it spreads into superthermal
velocity region following the character of diffusion action. The formation of the solu-
tion (17) is presented for p = 2 in fig. 4. Numerical results also show that in the region
of 0 ≤ v ∼ 4vth the distribution is mostly close to Maxwellian and display the transition
region between the Maxwellian part and the enhanced tail.

4. – Conclusions

Obtained results are consistent with the preceding results. The distribution function
is close to Maxwellian in the thermal velocity region. The perturbation of the electron
distribution function in case of heavy hot ions, which has a character of a boundary
layer, gives small correction in the temperature exchange but left the distribution tail
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Fig. 4. – Temporal evolution of the electron distribution function for p = 2. The dashed-line
curve is the corresponding Maxwellian distribution function. In agreement with analytic results,
the tail of the distribution function follows expression (17) (dotted line).

underheated as well as any source localized in the velocity space. A broader class of
heating terms resulting in an enhancement of the distribution function tail is analyzed
analytically. Numerical simulation of nonlinear LFP equation confirms asymptotic results
with high accuracy and reveal additional details that can help to test and benchmark
complex kinetic codes.
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