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Summary. — Complexity of many biological models often makes impossible their
robust theoretical and numerical analysis and thus requires a systematical method
of reducing the number of variables in the system in such a way that the dynamics
of the simplified model approximates the original way in a reasonable way. Such an
aggregation of variables is often done by ad hoc methods. In turns out that in many
biological systems the well-known Chapman-Enskog asymptotic procedure is well
suited for aggregation which then can be viewed as passing from a microscopic (ki-
netic) to a macroscopic (hydrodynamic) description of the system. We demonstrate
this approach by applying it to an age- and space-structured population model.

PACS 02.30.Mv – Approximations and expansions.
PACS 02.30.Jr – Partial differential equations.
PACS 02.70.-c – Computational techniques; simulations.
PACS 87.23.Cc – Population dynamics and ecological pattern formation.

1. – Introduction

Given a complex model in micro-variables it is of interest to have a systematic
way of building a simpler aggregated macro-model satisfying the conditions: i) the set
of macro-variables provides a reasonable approximation of the dynamics of the micro-
model, ii) there is an explicit relation between the macro-variables and the original micro-
variables.

One of the most natural ways of aggregation is based on the existence of different time
scales in the system. For instance, in population models individual processes happen
faster than the demographic ones and one can reduce the dimension of the system so
that the aggregated evolution happens on the slow time scale with the micro-variables
appearing in the macro scale only as “averaged” parameters.

Different time scales in the model are accounted for by placing a large parameter in
front of the “fast” part of the model, usually making the system singularly perturbed.
On the other hand, the ansatz that there is a well-defined “slow dynamics” in the system
is tantamount to the existence of a hydrodynamic space (that is, collision invariants)
in kinetic models. Thus, equations of structured population dynamics are similar to
equations of kinetic theory and the methods of aggregation often are analogous to the
methods of asymptotic analysis and, in particular, to the Chapman-Enskog method,
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which have been used since the beginning of the XX century to find hydrodynamic
approximations to kinetic equations when the mean free time between interactions is
small. In fact, the whole theory of asymptotic analysis of kinetic equations is about the
“aggregation” of micro variables, such as the individual particles’ velocity and position,
into macro variables, which are directly measurable, such as density, temperature, etc.
of the whole ensemble.

In this paper we provide the Chapman-Enskog analysis of a structured population
model introduced in detail in the next section. We construct a formal asymptotic expan-
sion up to the first level and provide numerical evidence that it converges to the solution
of the macroscopic equation at the rate predicted by the theory. The rigorous proof of
convergence is quite technical and lengthy and is referred to another paper [1].

2. – A structured population dynamics model

Consider a population subject to usual demographic processes such as births, aging
and deaths, subdivided in addition into discrete classes according to the geographical
location the individuals in a particular class occupy, see, e.g. [2]

nt(t, a) = −na(t, a) −M(a)n(t, a) +
1
ε
C(a)n(t, a),(1)

n(t, 0) =
∫ ∞

0

B(a)n(t, a)da, n(0, a) =
◦
n(a),

where n(t, a) = (n1(t, a), . . . , nN (t, a)) and ni(t, a) is the density of the population in
patch i at age a, M(a) = diag{μ1(a), . . . , μN (a)} describes the age- and patch-specific
mortality rate, C(a) = {cij(a)}1≤i,j≤N is the matrix of migration rates between patches,
and B(a) = diag{β1(a), . . . , βN (a)} describes the fertility rates. The small parameter
ε in front of the transition matrix accounts for that fact that the migratory processes
occur on a much faster time scale that the demographical ones. System (1) is considered
as a dynamical system in the space X = L1(R+, RN ). The main assumption is that
the migration process is conservative with respect to the life dynamics; that is, cii(a) =
−

∑N
j=1,j �=i cji(a). Further, the matrix C is differentiable and irreducible for a > 0; as

a consequence λ = 0 is a simple dominant eigenvalue having 1 := (1, . . . , 1) as its left
eigenvector while the positive right eigenvector k(a) := (k1(a), . . . , kN (a)) is uniquely
chosen subject to the normalizing condition 1 · k(a) = 1 for any a. This properties yield
the decomposition of R

N as

(2) R
N = Span{k(a)} ⊕ W,

where Span{k(a)} is the “hydrodynamic” subspace (manifold) and W = {w ∈ R
N ;1 ·

w = 0}, independent of a, is the “kinetic” subspace.

3. – Abstract asymptotic analysis

Assumptions on C allow to consider (1) as a singularly perturbed abstract kinetic
problem in an appropriate Banach space X

(3)

⎧⎪⎨⎪⎩
∂tfε = −Mfε + Sfε +

1
ε
Cfε,

Bfε = fb, fε(0) =
◦
f,
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where B is a boundary operator, f is the one-particle density function, the transition
operator C plays the role of the collision operator, and the aging operator S and the
mortality operator −M correspond, respectively, to the transport part and attenuation
terms in the classical linear transport equation.

Singularly perturbed equations of kinetic type (which our population model (1)
belongs to) are characterized by the existence of nontrivial solutions to the equation
Cf0(t) = 0, which form the so-called “hydrodynamic space” where the evolution of the
macroscopic quantities should take place. The Chapman-Enskog procedure splits the
solution into the hydrodynamic and kinetic parts and performs a proper asymptotic ex-
pansion only on the kinetic part leaving the hydrodynamic part unexpanded. In this
way it takes advantage of the structure of the problem to deliver the asymptotic solu-
tion in the most accurate way since the hydrodynamic, that is, the macroscopic, part
of the solution remains unexpanded and the error comes only from approximating the
kinetic part.

To phrase this idea in a mathematical language, we follow [3]. For the hydrodynamic
space V to exist, λ = 0 must be an eigenvalue of the operator C. In general, we assume
that σ(C) = {0} ∪ {λ ∈ σ(C);�λ ≤ λ0 < 0}. Let P be the spectral projection onto V =
PX. Since typically C acts only on one group of variables, often the kinetic component
of f0 is of the form φk, where k is the eigenvector of C with respect to one group of
variables while φ is a scalar function of the other group, which is to be determined.
The operator Q = I − P is the projection onto the kinetic space W = QX, such that
X = V ⊕W (compare (2)). Accordingly, by Pf = v and Qf = w we denote, respectively,
the hydrodynamic and the kinetic part of f . Applying these projections to (3) we get

∂tvε = −PMPvε + PSPvε − PMQwε + PSQwε(4)

∂twε = −QMQwε + QSQwε −
1
ε
QCQwε −QMPvε + QSPvε,

with analogous projections of the boundary and initial conditions. We seek an approx-
imate solution to (4) by expanding wε into a power series in ε and leaving vε = φk
unexpanded. This yields, at the 0th level, the macroscopic equation for φ

(5) ∂tφ = −PMPφ + PSPφ,

which, subject to appropriate boundary and initial conditions and possibly complemented
with corrections wcorr coming from the expansion of wε, should provide a reasonable
approximation to vε. If we define the error of the approximation by

(6) Eε(t) = fε(t) − f0(t) = (vε, wε) − (φk, wcorr),

then it is easy to see that it satisfies the original, but nonhomogeneous, equation

(7) ∂tEε = −MEε + SEε + ε−1CEε + Fε(t),

supplemented by the side conditions BE = fb − Bf0 and Eε(0) =
◦
f − f0(0). If Fε(t),

fb −Bf0 and
◦
f − f0(0) are O(ε), then standard semigroup estimates yield Eε = O(ε) and

the procedure can be stopped. Typically, however, the limit equation (5) involves less
independent variables than (3) and the solution of the limit equation cannot satisfy all
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the original side conditions. If the error Eε is not small close to t = 0, then it is necessary
to find an initial layer correction by repeating the above procedure with a rescaled time
to improve the estimates for small t. The original approximation f0, which typically is
valid only away from t = 0, is then referred to as the bulk approximation. If introduction
of the initial layer does not solve the problem and the approximation is poor close to the
spatial boundary and the corners where the spatial and temporal boundaries meet, we
iteratively introduce further corrections such as boundary and corner layers by rescaling
appropriate variables till the inhomogeneities in the error equation are of required order.

4. – Chapman-Enskog asymptotic expansion for (1)

Performing the procedure outlined above on (1) we find that the spectral projection
Pn = (1 ·n)k(a), where 1 ·n = n1 + . . .+nN is the total population, and the asymptotic
expansion at the zeroth level is given as the sum of the bulk part n̄ and initial ñ, boundary
n̂ and corner n̆, layers defined as follows:

1) n̄(t, a) = (n̄(t, a), εw1(t, a)), where eq. (5) takes the form

(8) nt = −na − μ∗n, n(t, 0) =
∫ ∞

0

β∗(a)n(t, a)da, n(0, a) =
◦
n,

and wcorr = εw1 = εC|−1
W [k′+Mk−μ∗k]n̄. Here, for any matrix X we denote x∗ := 1·Xk.

2) ñ(t/ε, a) = (0, w̃0(τ, a)) where τ = t/ε and

(9) ∂τ w̃0(τ, a) = C|W (a)w̃0(τ, a), w̃0(0, a) =
◦
w(a).

3) n̂(t, a/ε) = (0, ŵ0(t, α)), where α = a/ε and

(10) ∂αŵ0(t, α) = CW (0)ŵ0(t, α), ŵ0(t, 0) =
∫ ∞

0

B(a)n̄(a, t)k(a)da − [n̄k](t, 0).

4) n̆(τ, α) = (n̆0(τ, α)k(α), w̆0(τ, α)), where ∂τ n̆ = −∂αn̆ + C(0)n̆, subject to

n̆0(τ, 0) =
∫ ∞

0

1 · B(a)w̃0(τ, a)da,

w̆0(τ, 0) =
∫ ∞

0

B(a)w̃0(τ, a)da − w̃0(τ, 0) − [n̆0k](τ, 0).

We note that (8) is the so-called aggregated, macroscopic, equation which can be derived
from first principles if one considers the population as a whole, [2] and thus (8) provides
the link between the microscopic and macroscopic description of the population.

The proof that n̄+ñ+n̂+n̆ provides an O(ε) approximation to n is quite lengthy and
involved, requiring recasting (1) as an integral system due to weak regularity of solutions,
see [1]. However, the proof shows that n̂ + n̆ as well as the term εw̄1, while useful in the
estimates, are O(ε) themselves and thus the following result is true.

Theorem 1. Let C, B and M be as in sect. 2 and nε(t, a) = nε(t, a)k(a) + wε(t, a) be a
solution to (1). Then, for each 0 < T < ∞ there exists a constant C, depending on T ,
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M, B and C, such that for any
◦
n ∈ W 1

1 (R+, RN ) and uniformly on [0, T ]

‖n(t, ·) − n̄(t, ·)‖L1(R+) ≤ εC
∥∥◦
n
∥∥

W 1
1 (R+,RN )

,∥∥∥w(t, ·) − eC(·) t
ε
◦
w(·)

∥∥∥
L1(R+,RN )

≤ εC
∥∥◦
n
∥∥

W 1
1 (R+,RN )

.

Here W 1
1 denotes the standard Sobolev space. Thus, the solution to the aggregated

problem (8) provides an O(ε) approximation to the true total population n away from
t = 0, while to get a uniform estimate of the same order on [0, T ] only the initial layer
corrector is needed. This is an improvement upon results of [2, 4] where, in the former,
the authors required the solution of the whole system in the kinetic space to achieve the
uniform convergence and provided only formal expansion in the latter. We also note
that applying the Banach-Steinhaus theorem one can prove that the convergence can be
extended to all initial values since, however, this approach requires an abstract density
argument, in general it is impossible to control the order of convergence.

5. – Numerical results

In this section we illustrate the theory developed above. First, we discuss a numerical
approximation of the complete singularly perturbed model (1). Second, we explain how
to improve computational performance by using the asymptotic expansion of sect. 4.
Finally, we illustrate the results of sects. 4 and 5 using simple equation of the form (1).

5.1. Numerical approximation of (1). – Let Xa0(a) be a fundamental solution to

X ′ = −M(a)X +
1
ε
C(a)X, Xa0(a0) = I, then the boundary condition n(t, 0) satisfies

(11a) n(t, 0) =
∫ t

0

B(a)X0(a)n(t − a, 0)da +
∫ ∞

0

B(a + t)Xa(a + t)
◦
n(a)da,

and the solution to (1) is given explicitly by

(11b) n(t, a) =

{
X0(a)n(t − a, 0), a < t;
Xa−t(a)

◦
n(a − t), a ≥ t.

The numerical approximation to (1) is obtained in two steps: first, we solve the Volterra
integral equation (11a) for n(t, 0), second, we recover n(t, a) by integrating the resulting
linear ODEs along the characteristic lines using (11b).

To solve (11a) in [0, T ] we set F (t) =
∫ ∞
0

B(a + t)Xa(a + t)
◦
n(a)da, introduce a

computational grid {tk}M
k=1 and apply A(α)-stable, 4-step, order-4 backward differential

formula (BDF) to

u(t, s) = F (t) +
∫ s

0

B(t − a)X0(t − a)n(a, 0)da, n(t, 0) = u(t, t).
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Fig. 1. – Numerical approximation of (1) and the bulk approximation, ε = 10−3.

This yields the algorithm

4∑
j=0

aju(·, tk−j) = τk−1B(· − tk−j)v(· − tk−j , tk−j), n(tk, 0) = u(tk, tk),(12a)

u(·, tk) = F (·) + τ0

−1∑
j=−4

w0,j(t)B(· − tj)v(·, tj), −4 ≤ k ≤ 0,(12b)

vs(s, tk) = −M(a)v(s, tk) +
1
ε
C(a)v(s, tk), v(0, tk) = n(tk, 0),(12c)

where τk = tk − tk−1. Note that (12) require one evaluation of F (t) per integration step.
Here this is done by the three-points, composite Gauss-Lobatto quadrature rule.

It can be shown that under the assumptions on C, B and M of sect. 2 the method (12)
converges with order four to n(t, 0) (i.e. the global error is O(maxk τ4

k )) in any finite
interval [0, T ], moreover, the convergence is uniform for all ε > 0.

5.2. Numerical approximation based on the asymptotic expansion. – The computa-
tional cost of the algorithm (12) increases with the dimension N . This is a serious
drawback, especially if we take into account the fact that for small ε the gross dynamics
of the model (1) belongs to the one-dimensional “hydrodynamic” manifold. The anal-

Table I. – The largest pointwise numerical error and the maximal stepsize vs. ε.

ε 10−1 10−2 10−3 10−4

τ 1.940−2 6.106 · 10−3 3.505 · 10−3 3.249 · 10−3

error 3.216−4 3.636 · 10−4 1.879 · 10−3 2.772 · 10−3

Table II. – The largest L1(R+, RN ) errors vs. ε.

ε 10−1 10−2 10−3 10−4

maxt ‖n − n̄‖L1 9.989 · 10−2 9.989 · 10−2 9.989 · 10−2 9.989 · 10−2

maxt ‖n − n̄ − ñ‖L1 2.073 · 10−2 2.098 · 10−3 8.519 · 10−4 4.775 · 10−4

maxt ‖n − n̄ − ñ − n̂‖L1 1.875 · 10−2 1.886 · 10−3 7.471 · 10−4 4.587 · 10−4

maxt ‖n − n̄ − ñ − n̂ − n̆‖L1 1.105 · 10−2 1.721 · 10−3 7.471 · 10−4 4.587 · 10−4
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Fig. 2. – The bulk approximation error and the effect of the initial, boundary and corner layer
corrections, ε = 10−3.

ysis of sect. 4 suggests another numerical algorithm. Instead of solving (1) directly it
is better to solve for n̄, ñ, n̂ and n̆. The bulk approximation n̄ requires an integra-
tion of the scalar equation (8). This can be accomplished in the same way as for the
complete model (1). The initial and the boundary layer corrections involve solution of
linear ODEs with constant coefficients. The numerical approximations in these cases are
trivial, moreover, both corrections must be computed only inside an O(ε) neighborhood
of the boundary. The equation for the corner layer correction is of the same form as (1)
but with simpler boundary conditions and does not involve ε. Thus, a simplified tech-
nique (12) is applicable. Again, n̆ vanishes outside an O(ε) neighborhood of the corner
and only local approximation is needed.

Hence the proposed discretization is of order four. The analysis of the numerical
method (12) together with the results of sect. 4 yield a convergence of order O(maxk τ4

k +
ε) in a finite interval [0, T ].

Fig. 3. – The L1(R+) errors before and after layers correction, ε = 10−3.
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5.3. Illustrative example. – As a reference problem we take (1) with M = diag{1, 1},
B = diag{1, 2} and C = {cij}1≤i,j≤2 where c11 = c22 = −1 and c12 = c21 = 1, the initial
condition is n(0, a) = (e−a, e−2a). The exact solution is given by (11b) where

X0(t) =
e−t

2

[
1 + e−

2t
ε 1 − e−

2t
ε

1 − e−
2t
ε 1 + e−

2t
ε

]
, n(t, 0)=

⎡⎣ 1+λ2
λ2−λ1

1+λ1
λ2−λ1

(2+λ1)(1+λ2)
λ2−λ1

(1+λ1)(2+λ2)
λ2−λ1

⎤⎦[
e

λ1t
2ε

−e
λ2t
2ε

]

and λ1,2 = ε − 2 ±
√

4 + ε2.
First, we use (12) to integrate (1) numerically for ε = 10−1, 10−2, 10−3, 10−4. As

expected (see table I) the convergence rate of (12) is uniform with respect to ε. The first
component of the numerical solution is shown in fig. 1.

Second, we test the numerical approximation based on the asymptotic expansion.
The aggregated equation takes the form nt + na = −n, where the initial and boundary
conditions are n(0, a) = e−a + e−2a and n(t, 0) = 3

2

∫ ∞
0

n(t, a)da. Note that in this
example the initial and the boundary conditions of the aggregated problem do not match
at the corner, hence, the bulk approximation is discontinuous along the characteristic
line a = t. We set ε = 10−1, 10−2, 10−3, 10−4 and solve for n̄, ñ, n̂ and n̆ numerically as
explained in subsect. 5.2. The results of table II are in a good agreement with Theorem 1,
it is clearly visible that the asymptotic expansion approximates the exact solution with
order O(ε).

Figures 1, 2 provide further illustration to the asymptotic expansion theory of sect. 4.
The right diagram of fig. 1 shows the bulk approximation n̄, its error n − n̄ is given
in the upper-left diagram of fig. 2. One can clearly see that n̄ provides a good uni-
form approximation to n everywhere except at the boundaries and at the characteristic
line a = t. The upper-right diagram of fig. 2 shows how the initial layer correction
improves the accuracy of the approximation. The effects of boundary and the corner
layers corrections are depicted in the lower-left and the lower-right diagrams of fig. 2,
respectively.

Figure 3 illustrates Theorem 1. The left part of the figure plots the bulk approximation
error ‖n(t, ·) − n̄(t, ·)‖L1(R+,RN ) as a function of time. The error is large in a O(ε)
neighborhood of the origin and is of magnitude O(ε) away from it. The errors obtained
after layers corrections are shown in the right diagram. As predicted in Theorem 1 the
initial layer correction is sufficient to reduce the error to O(ε). Use of the boundary and
the corner layers improves the error slightly but do not change its order.
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