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Summary. — After a brief discussion on neutrino electromagnetic properties, we
consider the problem of neutrino energy spectra in different media. It is shown that
in two particular cases (i.e., neutrino propagation in a) transversally moving with
increasing speed medium and b) rotating medium) neutrino energies are quantized.
These phenomena can be important for astrophysical applications, for instance, for
physics of rotating neutron stars.

PACS 12.20.-m – Quantum electrodynamics.
PACS 13.15.+g – Neutrino interactions.

1. – Introduction—neutrino electromagnetic properties

Initially the problem considered in this paper has originated from the studies of neu-
trino electromagnetic properties and related items. There is no doubt that the recent
experimental and theoretical studies of flavour conversion in solar, atmospheric, reactor
and accelerator neutrino fluxes give strong evidence of nonzero neutrino mass. A massive
neutrino can have nontrivial electromagnetic properties [1]. A recent review on neutrino
electromagnetic properties can be found in [2]. The present situation in the domain is
characterized by the fact that in spite of reasonable efforts in studies of neutrino elec-
tromagnetic properties, there is no any experimental confirmation in favour of neutrino
electromagnetic characteristics being nonvanishing. However, it is very plausible to as-
sume that a neutrino may have nonzero electromagnetic properties. In particular, it
seems very reasonable that a neutrino has a nonvanishing magnetic moment [2, 3].

Neutrino magnetic moment interaction effects. If a neutrino has nontrivial electro-
magnetic properties, notably nonvanishing magnetic (or electric) transition dipole mo-
ments or nonzero millicharge and charge radius, then a direct neutrino coupling to pho-
tons becomes possible and several processes exist important for applications [4]. A set
of typical and most important neutrino electromagnetic processes involving the direct
neutrino couplings with photons is: 1) a neutrino radiative decay ν1 → ν2 + γ, neutrino
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Cherenkov radiation in external environment (plasma and/or electromagnetic fields), 2)
photon (plasmon) decay to a neutrino-antineutrino pair in plasma γ → νν̄, 3) neutrino
scattering off electrons (or nuclei), 4) neutrino spin (spin-flavor) precession in magnetic
field. Another very important phenomenon is the resonant amplification of the neutrino
spin-flavour oscillations in matter that was first considered in [5].

Note a new mechanism of electromagnetic radiation produced by a neutrino moving
in matter and originated due to neutrino magnetic moment [6-8]. It was termed the
spin light of neutrino in matter (SLν) [6]. Although the SLν was considered first within
quasiclassical approach, it was clear that this is a quantum phenomenon by its nature.
The quantum theory of this radiation has been elaborated [7] (see also [8]) within devel-
opment [9, 10] of a quite powerful method that implies the use of the exact solutions of
the modified Dirac equation for the neutrino wave function in matter. For elaboration
of the quantum theory of the SLν one has to find the solution of the quantum equation
for the neutrino wave function and for the neutrino energy spectrum in medium.

2. – Quantum equation for neutrino in medium

The modified Dirac equation for the neutrino wave function exactly accounting for
the neutrino interaction with matter [7]:

(1)
{

iγμ∂μ − 1
2
γμ(1 + γ5)fμ − m

}
Ψ(x) = 0.

This is the most general form of the equation for the neutrino wave function in which
the effective potential Vμ = 1

2 (1 + γ5)fμ includes both the neutral and charged current
interactions of neutrino with the background particles and which can also account for ef-
fects of matter motion and polarization. It should be mentioned that other modifications
of the Dirac equation were previously used in [11] for studies of the neutrino dispersion
relations, neutrino mass generation and neutrino oscillations in the presence of matter.

In the case of matter composed of electrons, neutrons, and protons and for the neu-
trino interaction with background particles given by the standard model supplied with
the singlet right-handed neutrino one has

(2) fμ =
√

2GF

∑
f=e,p,n

jμ
f q

(1)
f + λμ

f q
(2)
f ,

where

q
(1)
f =

(
I
(f)
3L − 2Q(f) sin2 θW + δef

)
, q

(2)
f = −

(
I
(f)
3L + δef

)
,(3)

δef =

{
1 for f = e,

0 for f = n, p.

Here I
(f)
3L and Q(f) are, respectively, the values of the isospin third components and the

electric charges of matter particles (f = e, n, p). The corresponding currents jμ
f and
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polarization vectors λμ
f are

(4) jμ
f = (nf , nfvf ), λμ

f =

⎛
⎝nf (ζfvf ), nfζf

√
1 − v2

f +
nfvf (ζfvf )

1 +
√

1 − v2
f

⎞
⎠ ,

where θW is the Weinberg angle. In the above formulas (4), nf , vf and ζf (0 ≤ |ζf |2 ≤ 1)
stand, respectively, for the invariant number densities, average speeds and polarization
vectors of the matter components.

In the case of matter at rest it is possible to solve the modified Dirac equation for
different types of neutrinos moving in matter of different composition, as is shown in [7].
The energy spectrum of different neutrinos moving in matter is given by

(5) Eε = εη

√
p2

(
1 − sα

m

p

)2

+ m2 + αm.

In the general case of matter composed of electrons, neutrons and protons the matter
density parameter α for different neutrino species is

(6) ανe,νμ,ντ
=

1
2
√

2
GF

m
(ne(4 sin2 θW + �) + np(1 − 4 sin2 θW ) − nn),

where � = 1 for the electron neutrino and � = −1 for the muon and tau neutrinos.
The value η = sign(1 − sαm

p ) in (5) provides a proper behavior of the wave function
in the hypothetical massless case. The values s = ±1 specify the two neutrino helicity
states, ν+ and ν−. The quantity ε = ±1 splits the solutions into the two branches
that in the limit of the vanishing matter density, α → 0, reproduce the positive- and
negative-frequency solutions, respectively.

In the next two sections we apply the developed method of exact solutions to two
particular cases when neutrino is propagating a medium transversally moving with in-
creasing speed [12, 9] and in a rotating medium of constant density. In both cases the
obtained energy spectrum of the neutrino is quantized like the energy spectrum of an
electron is quantized in a constant magnetic field.

3. – Neutrino quantum states in a medium transversally moving with
increasing speed

First we consider a neutrino propagating in a medium composed of neutrons that
move perpendicular to the neutrino path with linearly increasing speed. This can be
regarded as the first approach to modelling of neutrino propagation inside a rotating
neutron star [12, 9]. The corresponding modified Dirac equation for the neutrino wave
function is given by (1) with the matter potential accounting for rotation,

(7) fμ = −G(n, nv), v = (ωy, 0, 0),

where G = GF√
2
. Here ω is the angular frequency of matter rotation around the OZ axis,

it also is supposed that the neutrino propagates along the OY axis. For the neutrino
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wave function components ψ(x) we get from the modified Dirac equation (1), a set of
equations(1),

[i(∂0 − ∂3) + Gn]ψ1 + [−(i∂1 + ∂2) + Gnωy]ψ2 = mψ3,(8)
[(−i∂1 + ∂2) + Gnωy] ψ1 + [i(∂0 + ∂3) + Gn]ψ2 = mψ4,

i(∂0 + ∂3)ψ3 + (i∂1 + ∂2)ψ4 = mψ1,

(i∂1 − ∂2)ψ3 + i(∂0 − ∂3)ψ4 = mψ2.

In a general case, it is not a trivial task to find solutions of this set of equations.
The problem is reasonably simplified in the limit of a very small neutrino mass, i.e.

when the neutrino mass can be ignored in the left-hand side of (8) with respect to the
kinetic and interaction terms in the right-hand sides of these equations. In this case two
pairs of the neutrino wave function components decouple one from each other and four
equations (8) split into the two independent sets of two equations, that couple together
the neutrino wave function components in pairs, (ψ1, ψ2) and (ψ3, ψ4).

The second pair of eqs. (8) does not contain a matter term and is attributed to the
sterile right-handed chiral neutrino state, ψR. The corresponding solution can be taken
in the plain-wave form

(9) ψR ∼ L− 3
2 exp[i(−p0t + p1x + p2y + p3z)]ψ,

where pμ is the neutrino momentum. Then for the components ψ3 and ψ4 we obtain
from (8) the following equations:

(10)
(p0 − p3)ψ3 − (p1 − ip2)ψ4 = 0,

−(p1 + ip2)ψ3 + (p0 + p3)ψ4 = 0.

Finally, from (10) for the sterile right-handed neutrino we get

(11) ψR =
e−ipx

L3/2
√

2p0(p0 − p3)

⎛
⎜⎜⎝

0
0

−p1 + ip2

p3 − p0

⎞
⎟⎟⎠ ,

where px = pμxμ, pμ = (p0, p1, p2, p3) and xμ = (t, x, y, z). This solution, as it should
do, has the vacuum dispersion relation.

In the neutrino mass vanishing limit the first pair of eqs. (8) corresponds to the active
left-handed neutrino. The form of these equations is similar to the corresponding equa-
tions for a charged particle (e.g., an electron) moving in a constant magnetic field B given
by the potential A = (By, 0, 0) (see, for instance, [13]). To display the analogy, we note
that in our case the matter current component nv plays the role of the vector potential
A. The existed analogy between an electron dynamics in an external electromagnetic
field and a neutrino dynamics in background matter is discussed in [9].

(1) The chiral representation for Dirac matrices is used.
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The solution of the first pair of eqs. (8) can be taken in the form

(12) ψL ∼ 1
L

exp[i(−p0t + p1x + p3z)]ψ(y),

and for the components ψ1 and ψ2 of the neutrino wave function we obtain from (8) the
following equations:

(13)
(p0 + p3 + Gn)ψ1 −

√
ρ

(
∂

∂η
− η

)
ψ2 = 0,

√
ρ

(
∂

∂η
+ η

)
ψ1 + (p0 − p3 + Gn)ψ2 = 0,

where

η =
√

ρ

(
x2 +

p1

ρ

)
, ρ = Gnω.(14)

For the wave function we finally get

(15) ψL =
ρ

1
4 e−ip0t+ip1x+ip3z

L
√

(p0 − p3 + Gn)2 + 2ρN

⎛
⎜⎜⎜⎝

(p0 − p3 + Gn)uN (η)
−
√

2ρNuN−1(η)
0
0

⎞
⎟⎟⎟⎠ ,

where uN (η) are Hermite functions of order N . For the energy of the active left-handed
neutrino we get

(16) p0 =
√

p2
3 + 2ρN − Gn, N = 0, 1, 2, . . . .

The energy depends on the neutrino momentum component p3 along the rotation axis
of matter and the quantum number N that determines the magnitude of the neutrino
momentum in the orthogonal plane. For description of antineutrinos one has to consider
the “negative sign” energy eigeinvalues (see similar discussion in sect. 2). Thus, the
energy of an electron antineutrino in the rotating matter composed of neutrons is given by

(17) p̃0 =
√

p2
3 + 2ρN + Gn, N = 0, 1, 2, . . . .

Obviously, generalization for different other neutrino flavours and matter composition is
just straightforward (see (4) and (6)).

Thus, it is shown [12] that the transversal motion of an active neutrino and antineu-
trino is quantized in moving matter very much like an electron energy is quantized in a
constant magnetic field that corresponds to the relativistic form of the Landau energy
levels (see [13]).
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4. – Neutrino energy in a rotating medium

Now we consider a more consistent model of a neutrino motion in a rotating matter.
For this case we choose the effective matter potential in (1) in the following form:

(18) fμ = −G(n, nv), v = (−ωy, ωx, 0).

Contrary to the case considered in the previous section, eq. (1) with the potential (18)
describes the case when a neutrino is moving in a rotating medium. It is shown below
how eq. (1) with (18) can be solved and the corresponding neutrino energy spectrum is
obtained.

The solution of eq. (1) with (18) can be sought in the form

(19) ψ(t, x, y, z) = e−ip0t+ip3z

⎛
⎜⎜⎜⎝

ψ1(x, y)
ψ2(x, y)
ψ3(x, y)
ψ4(x, y)

⎞
⎟⎟⎟⎠ .

Substituting (19) into (1) with (18) and using the explicit form of the Dirac matrices in
the chiral representation, we arrive at a system of linear equations for the neutrino wave
function components:

−(p0 + p3 + Gn)ψ1 + i

{(
∂

∂x
− i

∂

∂y

)
+ Gnω(x − iy)

}
ψ2 = −mψ3,(20)

i

{(
∂

∂x
+ i

∂

∂y

)
− Gnω(x + iy)

}
ψ1 + (p3 − p0 − Gn)ψ2 = −mψ4,

(p0 − p3)ψ3 + i

(
∂

∂x
− i

∂

∂y

)
ψ4 = mψ1,

+i

(
∂

∂x
+ i

∂

∂y

)
ψ3 + (p0 + p3)ψ4 = mψ2.

In the polar coordinates x + iy = reiφ, x − iy = re−iφ one has

(21)
∂

∂x
+ i

∂

∂y
= eiφ

(
∂

∂r
+

i

r

∂

∂φ

)
,

∂

∂x
− i

∂

∂y
= e−iφ

(
∂

∂r
− i

r

∂

∂φ

)
,

and the system of eqs. (20) transforms to

−(p0 + p3 + Gn)ψ1 + ie−iφ

{
∂

∂r
− i

r

∂

∂φ
+ ρr

}
ψ2 = −mψ3,(22)

ieiφ

{
∂

∂r
+

i

r

∂

∂φ
− ρr

}
ψ1 + (p3 − p0 − Gn)ψ2 = −mψ4,

(p0 − p3)ψ3 + ie−iφ

(
∂

∂r
− i

r

∂

∂φ

)
ψ4 = mψ1,

+ieiφ

(
∂

∂r
+

i

r

∂

∂φ

)
ψ3 + (p0 + p3)ψ4 = mψ2.
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It is possible to show that the operator of the total momentum Jz = Lz + Sz, where
Lz = −i ∂

∂φ , Sz = 1
2σ3, commutes with the corresponding Hamiltonian of the considered

system. Therefore the solutions can be taken in the form

(23)

⎛
⎜⎜⎝

ψ1

ψ2

ψ3

ψ4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎝

iχ1(r)ei(l−1)φ

χ2(r)eilφ

iχ3(r)ei(l−1)φ

χ4(r)eilφ

⎞
⎟⎟⎟⎠ ,

that are the eigenvectors for the total momentum operator Jz with the corresponding
eigenvalues l − 1

2 . After substitution of (23) the system (22) can be rewritten in the
following form:

−(p0 + p3 + Gn)χ1 +
{

d
dr

+
l

r
+ ρr

}
χ2 = −mχ3,(24) {

d
dr

− l − 1
r

− ρr

}
χ1 + (p0 − p3 + Gn)χ2 = mχ4,

(p0 − p3)χ3 +
(

d
dr

+
l

r

)
χ4 = mχ1,(

d
dr

− l − 1
r

)
χ3 − (p0 + p3)χ4 = −mχ2.

For further consideration it is convenient to introduce the rising and decreasing operators

R+ =
d
dr

− l − 1
r

− ρr, R− =
d
dr

+
l

r
+ ρr.(25)

After application of the decreasing R− and increasing R+ operators to the second and
first equations of (22) correspondingly, one gets

(26)
R−R+χ1 + ((p0 + Gn)2 − p2

3 − m2)χ1 = m(Gnχ3 + ρrχ4),

R+R−χ2 + ((p0 + Gn)2 − p2
3 − m2)χ2 = m(Gnχ4 + ρrχ3).

Note that the system (24), as well as the system (8), can be solved exactly in the limit
of vanishing neutrino mass m → 0. In order to find the nonzero-mass correction to the
energy spectrum of a neutrino in a bound state in matter, the neutrino square integrable
wave function should be found. Therefore, in analogy with the zero-mass case we take
χ3 = χ4 = 0 in the lowest order of perturbation series expansion. Thus we arrive at the
system

(27)
R−R+χ1 + ((p0 + Gn)2 − p2

3 − m2)χ1 = 0,

R+R−χ2 + ((p0 + Gn)2 − p2
3 − m2)χ2 = 0.

The solution of (27) can be written in the form

(28)

(
χ1

χ2

)
=

(
C1Ll−1

s (ρr2)

C2Ll
s(ρr2)

)
,
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where Ll
s are the Laguerre functions [13]. After substitution of (28) into (27) and taking

into account the properties of the increasing and decreasing rising operators,

(29)
R+Ll−1

s (ρr2) = −2
√

ρ(s + l)Ll
s(ρr2),

R−Ll
s(ρr2) = 2

√
ρ(s + l)Ll−1

s (ρr2),

we get from (27) the equation for the neutrino energy spectrum in matter:

(30) m2 + p2
3 + 4(s + l)ρ − (p0 + Gn)2 = 0.

Solving this equation we get for the neutrino energies

(31) p0 = ±
√

m2 + p2
3 + 4Nρ − Gn, N = 0, 1, 2, . . . ,

where the quantum number N = s+ l is introduced. As usually, two signs in the solution
correspond to the neutrino and antineutrino energies, correspondingly,

(32) p0 =
√

m2 + p2
3 + 4Nρ − Gn, p̃0 =

√
m2 + p2

3 + 4Nρ + Gn.

From the obtained energy spectrum it is just straightforward that the transversal
motion momentum of an antineutrino is given by

(33) p̃⊥ = 2
√

NGω.

The quantum number N determines also the radius of the quasiclassical orbit in matter
(it is supposed that N � 1 and p3 = 0),

(34) R =

√
N

Gnω
.

It follows that antineutrinos can have bound orbits inside a rotating star. To make an
estimation of magnitudes, let us consider a model of a rotating neutron star with radius
RNS = 10 km, matter density n = 1037 cm−3 and angular frequency ω = 2π × 103 s−1.
For this set of parameters, the radius of an orbit is less than the typical star radius RNS

if the quantum number N ≤ Nmax = 1010. Therefore, antineutrinos that occupy orbits
with N ≤ 1010 can be bounded inside the star. The scale of the bounded antineutrinos
energy estimated by (32) is of the order p̃0 ∼ 1 eV. It should be underlined that within
the quasiclassical approach the neutrino binding on circular orbits is due to an effective
force that is orthogonal to the particle speed. Note that there is another mechanism of
neutrinos binding inside a neutron star when the effect is produced by a gradient of the
matter density (see the last paper in [11]). A discussion on the “matter-induced Lorentz
force” that can be introduced in order to explain a neutrino motion on quasiclassical
circular orbits can be found in [9].

We argue that the effect of a neutrino energy quantization can have important con-
sequences for physics of rotating neutron stars.
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