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Summary. — In this short paper we summarize the current landscape in struc-
tural predictions of biomolecular systems and underlying physical principles. The
target molecules of predictions are shortly introduced and a summary of current
methods for structural characterization is given. Basic principles and methods used
in structural predictions are finally summarized.

PACS 87.14.E- — Proteins.

PACS 87.15.B- — Structure of biomolecules.

PACS 87.15.Cc — Folding: Thermodynamics, statistical mechanics, models, and
pathways.

1. — Introduction [1-3]

Most important biomolecules, proteins and nucleic acids, are linear heteropolimers.
Linearity and chirality allow to represent their chemical structure with a string of charac-
ters forming their so-called sequence or primary structure. Each character represents one
of four nucleotides for DNA and RNA and one of 20 amino acids for proteins. Sequencing
of DNA or RNA from different organisms and individuals (or different cells in different
conditions), i.e. determining their chemical structure, has become in recent years fast and
relatively cheap. The number of sequences deposited in the publicly available databases
is now ca. 100 million entailing 100 billion characters.

The information coded in the DNA sequence is translated to assemble protein chains.
In turn proteins perform their function due to their peculiar structure. For this reason
knowledge of protein structure allows understanding their potential function and, when
the latter is known, understanding of their biological mechanisms.

In this picture the double-helix structure formed by complementary strands of DNA
has been mostly considered in connection with its capability of providing a template for
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replication, although in recent years the role played by (mostly) RNA and DNA structure
has been increasingly recognized.

Experimental characterization of biomolecular structure is time consuming and often
difficult. The two main techniques employed for structure determination are X-ray crys-
tallography contributing ca. 86% of all experimental structures deposited in the Protein
Data Bank (PDB) and solution Nuclear Magnetic Resonance (NMR) contributing the re-
maining 14%. Although the size of system studied by NMR is limited compared to X-ray
crystallography and structure determination is not free from artifacts, the technique is
widely used to characterize also biomolecular dynamics.

When the number of known sequences is compared to the number of protein, RNA
and DNA structures solved to date (ca. 60000 structures) the enormous gap between
sequences and structures known is apparent. This is even more evident when some class
of proteins (e.g., membrane proteins) which are not amenable to crystallization or to
NMR studies is considered.

It is worth to say that notwithstanding the structural genomics project already
started, no big advance in automation for structure determination has been seen.

With the advent of more and more powerful and cheap computers however structural
predictions and simulation could provide an alternative to structure determination. The
fundamental challenges for computational chemists and physicists in the next years will
be the prediction of the structure of biomolecules and their complexes, the prediction
of their dynamics and the computation of kinetic and thermodynamic quantities, like
kinetic constants and binding free energies, based on the predicted molecular models.

2. — Methods

The problem we address is the prediction of biomolecular structure, i.e. given the
chemical structure of, say, a protein finding its structure. This is a reduced version
of the problem of finding its folding pathway, bringing the protein from a disordered
conformation to its more stable, active (native) form. This process takes place in a time
larger than milliseconds even for small proteins, ruling out at the moment the usage of
molecular dynamics simulations.

2'1. Homology modeling. — The principles underlying molecular modeling are mostly
based on recognition of similarity between the sequence whose structure is to be predicted
and some sequence whose structure is known. It was observed very early that protein
sequences sharing a large number of identical corresponding amino acids have very similar
structures. This observation stems from the strong conservation of structure during
evolution of proteins. When similarity beyond random expectance is found between two
sequences, descendance from a common ancestor protein (homology) may be inferred and
conservation of structure may be assumed [4]. This oservation constitutes the principle
of homology modeling, where the common chemical parts, e.g., backbone atoms and
common side chains, are copied from the similar target and the rest is rebuilt using
database fragments or information [5, 6].

2°2. Fold recognition [5,7]). — Unfortunately it is not always possible to find a ho-
mologous sequence whose structure is known. More refined schemes of comparison are
preferred over simple sequence-sequence comparison. Profiles (i.e. common statistical
features of a set of homologous sequences) are used instead of the sequences.
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When no clearly homologous template structure can be found, it is still possible to
find one or more template structures based on so-called fold recognition. The basic
principle is that, although the number of different sequences may be very large, the
number of folds that a protein sequence may assume is limited. The number of folds
vary with definition and clustering methods and threshold, but most used current classi-
fications define approximately 3000 different folds [8,9]. The rate of novel fold discovery
is lower and lower, with no new fold superfamily deposited last year (see, e.g., URL
http://www.rcsb.org/pdb/statistics/contentGrowthChart.do?content=supfam-
scop). Sequence and the propensity of the sequence to adopt local conformations may
be compared to the features of each different fold in order to check whether the sequence
could adopt that fold. Finding the best structure template and best correspondence
between sequences is often difficult so that the output of different programs is combined
in a consensus scheme and several different alternatives are tested.

2°3. Ab-initio modeling [10,11,7]. — When template-based methods fail it is possible
to model the structure using ab initio methods. Most successful methods assemble the
structure to be modeled from fragments of real structures deposited in the PDB. Candi-
date fragments are identified using sequence similarity. Monte Carlo methods are used to
this aim using simplified molecular representations and adhoc moves. Even for moderate
size proteins the search for native conformation may take several days and the methods
are still not practical for sequences longer than 100 amino acids. For smaller sequences
the accuracy of the models has been sometimes impressive.

2'4. Quality assessment of the models. — Based on Anfinsen’s hypothesis the native
structure of the protein is the one that minimizes Gibbs’ free energy of the system. All
scoring systems for ranking the accuracy of predictive models can be related to free-energy
estimation.

It is worth to remind that here we should in principle estimate Gibbs’ free energy
of the macrostate corresponding to each model of the protein relative to the macrostate
corresponding to the unfolded state. Although such states cannot theoretically be clearly
defined, in practice there are many, mainly spectroscopic, techniques which can distin-
guish the two states. In practice when different models for the same protein are given
we can simply compare the free energy of models relative to each other in order to find
the most stable one.

Gibbs’ free-energy estimation is difficult because it involves entropic and solvation
effects. Two main classes of energy functions are used: physical effective energy functions
(PEEFSs) and statistical effective energy functions (SEEFs) which are based on different
ideas and approximations [12].

PEEFs estimate Gibbs’ free energy making typically some approximations:

1) the potential of mean force involving only the protein coordinates is written as
the sum of an intrasolute term, estimated using one of the available forcefield
for molecular dynamics simulations, and a solvation term. The solvation term is
estimated from the solvent accessible surface area [13] and electrostatic free-energy
calculations [14].

2) Each model is considered as representative of a macrostate corresponding to an
ensemble of models with the same energy as the model itself. Furthermore it is
assumed that the entropic unfavorable contributions to the folding free energy for
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each macrostate is constant or sometimes that it can be estimated based on solvent
exposure of the atoms defining each torsional degree of freedom.

The approach has been sometimes successful but it is flawed with many problems
ranging from inaccuracy of available forcefield and of solvation models to the detrimental
effect that minor building errors have on the overall quality estimation of the whole model.
Moreover energy differences of few kcal/mol are obtained as difference between energies
as large as thousand of kcal/mol.

In this respect SEEFs appear more robust. Here the information found in the PDB
is used to select descriptors of the structures which range from presence or absence of
contacts to interatomic distances [15]. A scoring system (or potential) may be defined
using different criteria, e.g., heuristically in order to maximize the gap between real
structures and wrong models, or by taking the logarithm of the ratio of the observed
frequency of that feature over the expected one. In the latter case a proper reference
state must be defined.

3. — Future perspectives

Current limitations to the structural prediction methods described above reside
mainly in the limited size of the systems amenable to such studies. Membrane protein
structures, which are of capital interest for pharmaceutical industry, are still difficult to
model in general due to the paucity of experimentally solved structures. It is somehow
surprising that structural modeling has not entered clinical genetics practice as yet where
it could explain or at least provide clues to the effect of a single mutation on a protein’s
stability and its interactions.

Although the structure-function relationship of proteins (and nucleic acids) is central
to understanding molecular biology, the recent applications of genomics, transcriptomics
and proteomics approaches to the study of living systems calls for the long-term chal-
lenge of predicting entire networks of interactions. Outstanding advancements have been
obtained in predicting protein-protein complexes and in modeling molecular complexes
rather than single molecules. In the next years we could see a scale change in structural
predictions.
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