
DOI 10.1393/ncc/i2009-10391-x

Colloquia: CSFI 2008

IL NUOVO CIMENTO Vol. 32 C, N. 2 Marzo-Aprile 2009

Measuring performances of linux hypervisors

A. Chierici, R. Veraldi and D. Salomoni

INFN-CNAF - Bologna, Italy

(ricevuto il 4 Agosto 2009; pubblicato online il 4 Settembre 2009)

Summary. — Virtualization is a now proven software technology that is rapidly
transforming the IT landscape and fundamentally changing the way people make
computations and implement services. Recently, all major software producers (e.g.,
Microsoft and RedHat) developed or acquired virtualization technologies. Our in-
stitute (http://www.cnaf.infn.it) is a Tier1 for experiments carried on at the
Large Hadron Collider at CERN (http://lhc.web.cern.ch/lhc/) and is experienc-
ing several benefits from virtualization technologies, like improving fault tolerance,
providing efficient hardware resource usage and increasing security. Currently, the
virtualization solution we adopted is xen, which is well supported by the Scien-
tific Linux distribution, widely used by the High-Energy Physics (HEP) community.
Since Scientific Linux is based on RedHat ES, we felt the need to investigate per-
formances and usability differences with the new kvm technology, recently acquired
by RedHat. The case study of this work is the Tier2 site for the LHCb experiment
hosted at our institute; all major grid elements for this Tier2 run on xen virtual
machines smoothly. We will investigate the impact on performance and stability
that a migration to kvm would entail on the Tier2 site, as well as the effort required
by a system administrator to deploy the migration.

PACS 01.50.hv – Computer software and software reviews.
PACS 07.05.-t – Computers in experimental physics.
PACS 07.05.Bx – Computer systems: hardware, operating systems, computer lan-
guages, and utilities.
PACS 89.20.Ff – Computer science and technology.

1. – Introduction

Infrastructure virtualization, and in particular server virtualization has become very
important nowadays because of the tremendous benefits achieved by using it. Virtual-
ization is a technology that allows running a certain number of different and concurrent
operating system instances inside a single physical machine. This physical server is di-
vided into multiple isolated virtual environments called guests.

2. – Virtualization approaches

There are three popular approaches to server virtualization: full virtualization, para-
virtualization and virtualization with hardware support (Hardware Virtual Machine, or
HVM).

c© Società Italiana di Fisica 213

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scientific Open-access Literature Archive and Repository

https://core.ac.uk/display/294762614?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


214 A. CHIERICI, R. VERALDI and D. SALOMONI

2.1. Full virtualization. – Virtual machines are based on the host/guest paradigm,
where each guest runs on a virtual representation of the hardware layer. This approach
allows the guest operating system to run without modifications. It also allows the admin-
istrator to create guests that use different operating systems. The guest has no knowledge
about the host operating system because it is not aware that it is not running on real
hardware. This approach does require, however, real computing resources from the host,
so an hypervisor to coordinate instructions to the real CPUs is used. The hypervisor
is called a virtual machine monitor (VMM), and validates all the guest-issued CPU in-
structions, managing any executed code that requires additional privileges. VMware and
Microsoft Virtual Server both use the full virtualization approach.

2.2. Para-virtualization. – The para-virtualized machine approach (PVM) is also
based on the host/guest paradigm and uses a virtual machine monitor as well. In this
model, however, the VMM actually modifies the guest operating system’s code; this mod-
ification is called porting. Porting supports the VMM so it can access privileged systems
calls sparingly. Like fully virtual machines, para-virtual machines are capable of running
multiple operating systems. Xen and UML both use the para-virtual machine model.

2.3. Hardware virtual machine (HVM). – Recent innovations in hardware, particularly
in CPU, MMU and memory components (notably the Intel VT-x and AMD-V architec-
tures), provide some direct platform-level architectural support for OS virtualization.

HVM offers two key features: first, for unmodified guests, it avoids the need to trap
and emulate privileged instructions by enabling guests to run at their native privilege lev-
els; second, it offers para-virtualized guests the VM CALL instruction that calls directly
into the hypervisor. This can be used by certain drivers to ensure that guest I/O takes
the fastest path into the hypervisors I/O stack. This means that it is possible to recom-
pile para-virtualized drivers inside the guest machine running in HVM environment and
load those drivers into the running kernel to achieve para-virtualized I/O performances
for an HVM guest.

3. – Xen-based virtualization

Xen [1,2] is a virtual machine monitor that allows several guest operating systems to
be executed on the same computer hardware concurrently. A Xen system is structured
with the Xen hypervisor as the lowest and most privileged layer. Above this layer one
or more guest operating systems are located, which the hypervisor schedules across the
physical CPUs. Xen can work both in para-virtualized and HVM mode; in the former the
guest operating system must be modified to be executed. Through para-virtualization,
Xen can achieve very high performances. The HVM mode offers new instructions to
support direct calls by a para-virtualized guest/driver into the hypervisor, typically used
for I/O or other so-called hypercalls.

4. – KVM-based virtualization

KVM [3] is a full virtualization solution for Linux on x86 hardware containing virtual-
ization extensions (Intel VT or AMD-V). It consists of a loadable kernel module, kvm.ko,
which provides the core virtualization infrastructure, and a processor specific module,
kvm-intel.ko or kvm-amd.ko. KVM requires a modified version of qemu, a well-known
virtualization software. The kernel component of KVM is included in mainline Linux as of



MEASURING PERFORMANCES OF LINUX HYPERVISORS 215

kernel version 2.6.20, while for xen only external support is available. KVM supports I/O
para-virtualization using the so called VIRTIO subsystem, consisting of 5 kernel modules.

4.1. KVM in our centre. – KVM can easily be installed using a yum repository [4];
once installed, the first thing to do is to set up networking. For our virtual machines we
currently use public IP addressing configured via a bridged network, so we modified the
default kvm start-up script to create a bridge for each network interface; in this way we
can choose at boot time which virtual machine can be hooked to which network interface.
After this, we need to add a tap interface and assign it to the proper bridge: also in this
case we created a special script (/etc/qemu-ifup) that is executed automatically upon
guest creation and destruction so that tap interfaces are managed transparently.

5. – KVM: qualitative test

We introduced kvm into our environment seamlessly. We are using Quattor [5] as the
main installation and configuration tool; Quattor is based on machine profiles describing
the configuration designed by system administrators for every machine. Introducing kvm
did not require any additional effort or modification to this infrastructure to have every
VM to be installed via network boot exactly like xen VMs. We stepped into one little
problem involving the “-boot” option, which requires only one parameter, be it network,
hard disk or cdrom. After the machine has been installed via network boot, we have
to stop and restart it with the option to boot from hard disk; xen does not need this
workaround, since the hard disk is the second default boot device.

The qualitative test consisted in installing on a kvm VM an “EGEE/gLite Computing
Element” [6] used in production in the LHCb [7] Tier2 we are hosting at CNAF. Previ-
ously, the Tier2 CEs were both running on xen VMs, so this gave us the opportunity to
make a direct comparison between the two technologies. The VM worked flawlessly for
more than 3 weeks not giving users or system administrators any idea of the change that
was made: we considered the test fully passed.

While we were doing these tests we decided to install also a CMS [8] secondary squid
server and we had the same feedback from the users: no differences in performance were
noticed. As a reference, we used this hardware to host the two kvm VMs: 1 dual Intel
E5420, 16GB ram, SATA disks on Areca controller.

6. – KVM: Quantitative test

Even if kvm passed brilliantly the qualitative test, we needed some quantitative mea-
sures to confirm the positive impression so far obtained. For this reason we performed
a set of tests targeted at measuring the classic parameters of a machine (CPU, network
and disk access), with tools well known to the HEP community. Here is the list of the
tools used:

– CPU: hep-spec06 (v1.1) [9], PI computation test

– Network: iperf (v2.0.4) [10]

– Disk access: bonnie++ (v1.94) [11]

To best understand the performance of a kvm virtual machine, we measured the same
parameters for a xen machine as well, with both para and hvm virtualization methods,
and compared them with a non virtualized machine (the baseline).



216 A. CHIERICI, R. VERALDI and D. SALOMONI

6.1. Test specifications. – The hardware used for the quantitative test was composed
of 1 DELL blade server with a dual intel E5420, 16GB RAM and two 10k SAS disks
connected to a LSI Logic RAID controlled (disks configured with RAID0 option). The
VMs specs were:

– Xen-para VM: 1 vcpu, 2 GB RAM, disk on a file and on lvm partition

– Xen-hvm VM: 1 vcpu, 2GB RAM, “netfront” network driver, disk on a file and on
lvm partition

– KVM VM: 1 vcpu, 2GB RAM, e1000 network driver emulation, disk on a file and
lvm partition

– KVM virtio: 1vcpu, 2GB RAM, virtio network driver, virtio disk (on a file and lvm
partition)

As for the OS installed:

– Host OS: Scienfific Linux (SL) [12] 5.2 x86 64, kernel 2.6.18-92.1.22.el5

– VM OS: Scientific Linux CERN (SLC) [13] 4.5 i386, kernel 2.6.9-67.0.15.EL.cern

– KVM virtio OS: Scientific Linux CERN (SLC) [13] 5.3 x86 64, kernel 2.6.18-
128.1.10.el5

Version of the hypervisors used:

– KVM: 83

– Xen: 3.2.1

6.2. Benchmarks: HEP-Spec. – HEP-Spec [9] is the new standard in HEP community
for CPU performance benchmarking, and it is based on a subset of the Spec benchmark.
We performed a wide number of tests in order to quantify the differences in performance
for the various virtualization solutions, compared to a non virtualized CPU.

In fig. 1 we show the performance comparison of the various hypervisors while an
increasing number of virtual machines run concurrently on the host. We tested the
performance with 7 and 8 concurrent runs in order to understand if the hypervisor
requires a dedicated CPU (1 hypervisor+7 VMs is the exact number of cores on our box).

The results of the test shown in fig. 2 confirm that we can “overload” the cores of our
machine and run 8 VMs concurrently, without any significant performance loss.

Figure 3 shows a comparison between the HEP-Spec06 benchmark on 8 VMs and the
same benchmark run on physical CPUs, as calculated by the HEPiX community [14].
Again, as we can see, the performance loss is so little that we can consider it negligible;
we believe in fact that the benefits obtained by virtualization just overcome this minimal
performance loss. Table I shows the exact percentage loss compared to physical CPUs.
With virtualization technologies, either xen or kvm, the loss is comparable to a CPU
downgrade on one industry clock tick (i.e. to the immediately slower CPU model).



MEASURING PERFORMANCES OF LINUX HYPERVISORS 217

Fig. 1. – XEN vs. KVM on dual Intel E5420, single performance measure.

6.3. Benchmarks: PI test . – The goal of this test is to measure the CPU perfor-
mance when multiple virtual machines are in execution, focusing on the CPU distribu-
tion against the virtual machines. Each virtual machine is assigned one virtual CPU. We
want to see if the total amount of cores is distributed using a fair sharing mechanism or
if certain guest machines are using more CPU than others.

Fig. 2. – VMs vs. CPU.



218 A. CHIERICI, R. VERALDI and D. SALOMONI

Fig. 3. – 8 VMs aggregate vs. CPUs.

To achieve this we used a home-made tool to calculate CPU cycles consumed by each
virtual machine (see app. A for the code). We used a arbitrary digits PI calculator with
code based on Numerical Recipes [15]. We then used an external C program implementing
2 functions: start counter() right before the call to the PI() function, and get counter()
called after PI() function exits. The counter returns the number of CPU cycles used
during the PI() function call and execution. We used the RDTSC assembly function
which loads the current value of the processor’s time-stamp counter into the EDX:EAX
registers. The time-stamp counter is contained in a 64-bit MSR. The high-order 32 bits
of the MSR are loaded into the EDX register, and the low-order 32 bits are loaded into
the EAX register. The processor increments the time-stamp counter MSR every clock
cycle and resets it to 0 whenever the processor is reset. We first executed our CPU test
on the host and on a single KVM guest machine (see fig. 4): and the result is that there
is a difference of about 2% between them.

We then executed the test with 8 KVM guests running at the same (fig. 5) time so
that all the 8 cores of our hardware were used. The result is that every guest uses 100%
of one single core, the CPU performance is well balanced and it is comparable to the
host CPU performance (with a different of around 2%).

In the last test we wanted to use several KVM guests. So we repeated the CPU test
with 17 KVM guests running the PI job (fig. 6). Again, the result is that the use of the
CPU is well balanced, with an average difference of around 5%.

6.4. Benchmarks: Iperf . – Network performance is an essential parameter to mea-
sure: with iperf we tested the throughput performances both in inbound and outbound

Table I. – HEP-Spec % loss.

Virtualization technology % loss from non-Emulated CPU (E5420, 8vm)

E5420kvm 3.42
E5420xen-hvm 4.55
E5420xen-para 2.02

E5410 vs. E5420 4.07



MEASURING PERFORMANCES OF LINUX HYPERVISORS 219

Fig. 4. – CPU comparison between host and KVM guest.

directions. The options we used to get the results are: “-w256k -P 5 -t 900”, meansing
a TCP window size of 256k, 5 parallel connections and a duration of 900 seconds (15
minutes).

As we can see from fig. 7, the behavior of the network is asymmetric with inbound
performing better than outbound connection. The situation improves with the increasing
number of the nodes, suggesting some sort of limitations hardcoded inside the driver. The
situation is better with virtio drivers, where kvm performs almost like xen (fig. 8).

Fig. 5. – CPU comparison between host and 8 concurrent KVM guests.



220 A. CHIERICI, R. VERALDI and D. SALOMONI

Fig. 6. – CPU comparison between multiple running KVM guests.

Generally speaking, we can say that xen is still behaving better, particularly when
kvm is used without the virtio drivers (for example in a machine currently running the
EGEE middleware, currently still requiring sl4), and proving to be a better choice in
situations where network outbound speed is critical.

6.5. Benchmarks: bonnie++. – Disk access speed is critical for every virtualization
technology and our tests showed that a lot is still to be improved. In fig. 9 indeed we
can see the read/write speed performances for a real machine compared to a virtual one
(either xen or kvm).

In fig. 10 we can see a comparison of kvm performances using both standard and
virtio drivers, on a lvm partition. The performance does not improve moving to virtio,
getting actually even worse, and suggesting that virtio drivers still need to be improved
a lot.

Fig. 7. – KVM Network Performance.



MEASURING PERFORMANCES OF LINUX HYPERVISORS 221

Fig. 8. – KVM virtio Network Performance compared to xen.

Figure 11 depicts performance comparison between disk-on-a-file and an lvm partition.
As we can see, performances of the lvm partition are generally better, even if not to
the degree we were expecting. What disappointed us were the writing performances
compared to a non emulated machine: in some cases the virtualized solution got just
10% of the non-virtualized performance. The Xen-para solution is for sure the better
solution here, but when we move to fully virtualized approaches (either with xen-hvm
and kvm) performances are almost the same. Another disappointing result showed by
the tests is the general performance of concurrent access of VMs to the physical disk.
In these circumstances (figs. 10 and 11) all the solutions perform very badly compared
to the real machine, with xen-para taking the lead, even if only for read access. All the
solutions perform very badly in disk writing. There is probably quite some room for
improvements in future releases of the hypervisors in this area.

Finally, fig. 12 shows a global performance comparison between all the virtualization
approaches using both disk-on-a-file and lvm partition when running 8 concurrent VMs.

Fig. 9. – 2GB RAM, 4GB data set, 1vm comparison.



222 A. CHIERICI, R. VERALDI and D. SALOMONI

Fig. 10. – 2GB RAM, 4GB data set, 1vm comparison, standard vs. virtio driver.

In this case I/O performances are really bad, with each VMs getting just a tiny bit of
the performance the real node could achieve if not virtualized. Also in this case xen-para
outperforms the other solutions.

The next step in hardware virtualization will hopefully be to implement special in-
structions in the hardware for I/O in a way similar to what has been done for the CPU;
as we have shown, CPU-intensive task are already performing brilliantly.

Fig. 11. – 2GB RAM, 4GB data set, 1vm, file vs. lvm partition.



MEASURING PERFORMANCES OF LINUX HYPERVISORS 223

Fig. 12. – 2GB RAM, 4GB data set, 8vm, aggregate disk-on-a-file and lvm partition.

7. – Conclusions

During our tests kvm showed great stability and reliability: it never crashed and
integrated seamlessly into our computing farm, without requiring any additional effort
to system administrators. Our benchmarks showed that the CPU performance provided
by the virtualization layer is comparable to the one provided by xen and, in some cases
it is even better.

Network performances are fair, showing some strange asymmetric behavior when using
standard network emulation; things inprove when using virtio drivers.

Disk I/O seems to be the most problematic aspect with KVM: VMs get poor perfor-
mances, particularly when multiple machines concurrently access the disk. Both kvm-
and xen-based VMs showed poor performances with this aspect, with either lvm parti-
tions or the more common disk-on-a-file approach.

Compating xen and kvm performance-wise, the results show that, even if the kvm
solution appears very promising in the medium term, xen hypervisors seem to be the
best solution at the moment, particularly when using the para-virtualized approach.

Appendix A.

PI Code

#include <stdio.h>
#include <stdlib.h>

/* Initialize the cycle counter */
static unsigned cyc_hi = 0;
static unsigned cyc_lo = 0;



224 A. CHIERICI, R. VERALDI and D. SALOMONI

/* Set *hi and *lo to the high and low order bits of the cycle counter.
Implementation requires assembly code to use the rdtsc instruction. */
void access_counter(unsigned *hi, unsigned *lo)
{
asm("rdtsc; movl %%edx,%0; movl %%eax,%1" /* Read cycle counter */
: "=r" (*hi), "=r" (*lo) /* and move results to */
: /* No input */ /* the two outputs */
: "%edx", "%eax");
}

/* Record the current value of the cycle counter. */
void start_counter()
{
access_counter(&cyc_hi, &cyc_lo);

}

/* Return the number of cycles since the last call to start_counter. */
double get_counter()
{
unsigned ncyc_hi, ncyc_lo;
unsigned hi, lo, borrow;
double result;

/* Get cycle counter */
access_counter(&ncyc_hi, &ncyc_lo);

/* Do double precision subtraction */
lo = ncyc_lo - cyc_lo;
borrow = lo > ncyc_lo;
hi = ncyc_hi - cyc_hi - borrow;
result = (double) hi * (1 << 30) * 4 + lo;
if (result < 0) {
fprintf(stderr, "Error: counter returns neg value: %.0f\n", result);

}
return result;
}

REFERENCES

[1] Xen Website: http://www.xen.org.
[2] Xen unofficial repository: http://www.gitco.de/repo.
[3] KVM Website: http://www.linux-kvm.org.
[4] KVM unofficial repository: http://www.lfarkas.org/linux/packages/centos.
[5] Quattor Website: http://ww.quattor.org.
[6] EGEE/gLite Website: http://glite.web.cern.ch/glite/.
[7] LHCb Website: http://lhcb.web.cern.ch/lhcb/.
[8] CMS Website: http://cms.web.cern.ch/cms/index.html.
[9] HEP-SPEC06 Website:

https://twiki.cern.ch/twiki/bin/view/FIOgroup/TsiBenchHEPSPEC.
[10] Iperf Website: http://sourceforge.net/projects/iperf/.



MEASURING PERFORMANCES OF LINUX HYPERVISORS 225

[11] Bonnie++ Version 1.94: http://freshmeat.net/projects/bonnie/releases/283268.
[12] Scientific Linux Website: https://www.scientificlinux.org/.
[13] Scientific Linux CERN Website: http://linux.web.cern.ch/linux/.
[14] HEPiX Website: http://www.hepix.org.
[15] Numerical Recipes: The Art of Scientific Computing, third edition (Cambridge University

Press) 2007.


