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Summary. — New results on the kinetic energy of ideal vortex filaments in the
shape of torus knots and unknots are presented. These knots are given by small-
amplitude torus knot solutions (Ricca, 1993) to the Localized Induction Approxima-
tion (LIA) law. The kinetic energy of different knot and unknot types is calculated
and presented for comparison. These results provide new information on relation-
ships between geometry, topology and dynamics of complex vortex systems and
help to establish possible connections between aspects of structural complexity of
dynamical systems and vortical flows.

PACS 47.32.C- – Vortex dynamics.
PACS 67.25.dk – Vortices and turbulence.
PACS 47.32.-y – Vortex dynamics; rotating fluids.

1. – Vortex motion under Biot-Savart and LIA law

The present work represents a natural extension of previous work [1] on vortex torus
knots and unknots. In this paper we present new results on the kinetic energy of these
vortex systems and investigate possible relationships between energy and complexity of
such structures.

We consider vortex motion in an ideal, incompressible (constant density) fluid in an
unbounded domain D ⊆ R

3. The velocity field u = u(x, t), smooth function of the vector
position x and time t, satisfies

(1) ∇ · u = 0 in D, u → 0 as x → ∞,
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and the vorticity ω is defined by

(2) ω = ∇× u, ∇ · ω = 0 in D.

In the absence of viscosity fluid evolution is governed by Euler’s equations and vortical
flows obey Helmholtz’s conservation laws [2]. Transport of vorticity is governed by

(3)
∂ω

∂t
= ∇× (u × ω),

with formal solutions given by the Cauchy equations

(4) ωi(X, t) = ωj(a, 0)
∂Xi

∂aj
,

that encapsulate both convection of vorticity from the initial position a to X, and the
simultaneous rotation and distortion of the vortex elements by the deformation tensor
∂Xi/∂aj . Since this tensor is associated with a continuous deformation of the vortex
elements, vorticity is mapped continuously from the initial configuration ω(a, 0) to the
final state ω(X, t); hence, Cauchy equations establish a topological equivalence between
initial and final configuration by preserving the field topology. In the absence of dissipa-
tion physical properties, such as kinetic energy, helicity and momenta, and topological
quantities, such as knot type, minimum crossing number and self-linking number, are
conserved [3].

The kinetic energy per unit density T is given by

(5) T =
1
2

∫
V

‖u‖2 dx3 = const,

where V = V (D) is the volume of the ambient space D. We assume to have only one
vortex filament F in isolation, where F is centred on the axis C of equation X = X(s) (s
arc-length on C). The filament axis is given by a smooth (at least C2), simple (i.e. without
self-intersections), knotted space curve. The filament volume is given by V (F) = πa2L,
where L = L(C) is the axis length and a is the radius of the vortex core, that we assume
to be uniformly circular all along C. Vortex motion is governed by the Biot-Savart law
(BS for short) given by

(6) u(x) =
Γ
4π

∮
C

t̂ × (x − X(s))
‖x − X(s)‖3

ds,

where vorticity (ω = ω0t̂) is expressed through the circulation Γ, ω0 being a constant and
t̂ = t̂(s) the unit tangent to C. Since the Biot-Savart integral is a global functional of the
vortex configuration, that takes into account the induction effects of every element of the
vortex, analytical solutions in closed form, other than the classical solutions associated
with rectilinear, circular and helical geometry, are very difficult to obtain. Considerable
analytical progress, however, has been done for the Localized Induction Approximation
(LIA for short) law. This equation, first derived by Da Rios [4] and independently re-
discovered by Arms and Hama [5] (see the review by Ricca [6]), is obtained by a Taylor
expansion of the Biot-Savart integrand about a point on the vortex filament axis C
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Fig. 1. – Examples of torus knots Tp,q given by solution equations (8) for (a) winding number
w > 1, and (b) winding number w < 1. Knots on the same row have different geometry, but
both represent the same knot type, hence they are topologically equivalent: T2,3 ∼ T3,2 and
T2,5 ∼ T5,2.

(see, for instance, [7], §7.1). By neglecting the rotational component of the self-induced
velocity (that does not contribute to the displacement of the vortex in the fluid) and
non-local terms, the LIA equation takes the simplified form

(7) uLIA =
Γc

4π
ln δ b̂ ∝ cb̂,

where c = c(s) is the local curvature of C, δ is a measure of the aspect ratio of the vortex
and b̂ = b̂(s) is the unit binormal vector at the point X = X(s) of C.

2. – LIA torus knots under Biot-Savart evolution

We consider a particular family of vortex configurations in the shape of torus knots
in R

3. These are given when C is a torus knot Tp,q ({p, q} co-prime integers), i.e. a closed
curve embedded on a mathematical torus, that wraps the torus p times in the longitudinal
(toroidal) direction and q times in the meridian (poloidal) direction (see fig. 1). When
{p, q} are one a multiple of the other the curve is no longer knotted and forms an unknot
(homeomorphic to the circle U0) that, depending on the value of p and q, takes the shape
of a curve wound m turns helically around the torus either longitudinally, forming a
toroidal coil Um,1, or meridionally, hence forming a poloidal coil U1,m (see fig. 2). When
{p, q} are not even integers, but rational, Tp,q is no longer a closed knot, but the curve
may fill the toroidal surface completely. The ratio w = q/p denotes the winding number
and Lk = pq the self-linking number, two topological invariants of Tp,q. Note that for
given p and q the knot Tp,q is topologically equivalent to Tq,p, that is Tp,q ∼ Tq,p (i.e.
they are the same knot type), but their geometry (by standard embedding on the torus)
is different.

Now, let us identify the vortex filament axis with Tp,q (more loosely, we shall refer to
Tp,q to denote the torus knotted vortex filament), and consider this vortex evolution in
the ambient space. Geometric information affects dynamics, and hence energy, through
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Fig. 2. – Torus unknots given by solution equations (8) for (a) winding number w > 1, and (b)
winding number w < 1. All these unknots have different geometry, but they are all homeomor-
phic to the standard circle U0.

the BS law (6), or the LIA law (7), and we want to investigate the effects of different
geometries of same knot types on dynamical properties such as kinetic energy.

Existence of torus knot solutions to LIA were found by Kida [8], who provided so-
lutions in terms of elliptic integrals. By re-writing LIA in cylindrical polar coordinates
(r, α, z) and by using standard linear perturbation techniques Ricca [9] found small-
amplitude torus knot solutions (asymptotically equivalent to Kida’s solutions) expressed
in closed form. The solution curves, written in parametric form in terms of the arc-length
s, are given by

(8)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

r = r0 + ε sin(wφ),

α =
s

r0
+

ε

wr0
cos(wφ),

z =
t

r0
+ ε

(
1 +

1
w2

)1/2

cos(wφ),

where r0 is the radius of the torus circular axis and ε 
 1 is the inverse of the aspect ratio
of the vortex. Since LIA is strictly related to the Non-Linear Schrödinger (NLS) (see [6]
for details), torus knot solutions (8) correspond to helical travelling waves propagating
along the filament axis, with wave speed κ and phase φ = (s − κt)/r0. As a result, the
vortex moves in the fluid as a rigid body, with a propagation velocity along the torus
central axis (given by the time derivative of the z-component of eqs. (8)) and a uniform,
helical motion (given by the radial and angular velocity components) of the knot along,
and around, the torus circular axis. In physical terms, these waves provide an efficient
mechanism for the transport of kinetic energy and momenta (and infinitely many other
conserved quantities associated with NLS) in the bulk of the fluid.

By using eqs. (8) we have the following linear stability result.

Theorem 2.1 [10]. Let Tp,q be a small-amplitude vortex torus knot under LIA. Then
Tp,q is steady and stable under linear perturbations iff q > p (w > 1).
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This result provides a criterium for LIA stability of vortex knots, and it can be easily
extended to hold true for torus unknots (i.e. toroidal and poloidal coils). This has been
confirmed by numerical experiments [1]. More interestingly, LIA unstable torus knot
solutions were found to be stabilized by the global induction effects of the BS law. This
is an unexpected result that has motivated further work and current research.

3. – Length versus complexity of LIA torus knots

It is interesting to compare the total length of torus knot solutions given by eqs. (8)
in relation to topological complexity. Note that under LIA the vortex moves in the
binormal direction, that is everywhere orthogonal to the unit tangent to C; the total
length of the vortex is therefore conserved under LIA. This is clearly one limitation
of the model, since it is well known [7, 2] that in three-dimensional flows vortices do
stretch—a property measured by the increase of enstrophy Ω, that under LIA reduces to

(9) Ω =
∫

V

|ω|2 dx3 = Γω0

∮
C

ds = Γω0L = const.

Numerical work has been carried out by setting r0 = 1 cm (our code works with CGS
units), ε = 0.1, Γ = 10−3 cm2/s (the value expected for superfluid 4He), δ � 1 (in our
code δ = 2 × 108/e1/2) and, to study unknots, by replacing (1 − 1/w2) with |1 − 1/w2|
in eqs. (8). A reference vortex ring U0 is taken with radius r0 = 1 cm. Convergence has
been tested in space and time by modifying discretization points and time steps.

As we see from the results shown in fig. 3, the total length monotonically decreases
with increasing winding number when p > q, and monotonically increases when q > p.
This behaviour is confirmed for a large class of torus knots tested (not shown in figure)
and seems a generic feature of knot types. Interestingly, this behaviour is also confirmed
for torus unknots, as evidenced by the results on the bottom diagram of fig. 3.

By interchanging p and q the knot type remains the same (Tp,q ∼ Tq,p); the minimum
crossing number cmin of the knot can be computed by this formula:

(10) cmin = (min(p, q) − 1) · max(p, q),

(for Tp,q with 1 < p < q, consider minimal knot diagram; then cmin = (p − 1)q). The
minimum crossing number is the standard measure of topological complexity and provides
also a lower bound on the average number of apparent crossings C̄, a standard algebraic
measure of structural complexity of space curves [11]. This latter has been proven useful
to quantify complex vortex tangles in space [12] and here we use it to measure the
complexity of torus unknots. By definition of minimum crossing number, we evidently
have: cmin ≤ C̄. From eq. (10) we see that since topological complexity increases with p
and q, total length is actually monotonically increasing with cmin. A similar behaviour
is found for torus unknots, where now total length appears to be a monotonic function
of the average crossing number C̄.

These results appear to be generic and they seem to be in good agreement with
current work on properties of ideal knots, where possible relationships between cmin and
minimal length of tight knots are under investigation. In the context of LIA knots, our
results seem to indicate that indeed an increase in complexity, measured by an increase in
Δcmin, is associated with some length increase ΔL, that in turn must involve an increase
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Fig. 3. – Comparative analysis of lengths (in cm) of some LIA knots and unknots given by
eqs. (8). Total length of the vortex ring U0 of equal diameter is shown for reference (empty
diamond). Values (solid diamond) are plotted vs. winding number w = q/p. Torus knots are
labeled on the x-axis by (p, q), whereas for unknots (bottom diagram) toroidal coils Um,1 are
shown on the left and poloidal coils U1,m are shown on the right, for m = 1, 2, . . . , 9.

in energy for the vortex system. In the next section we shall explore how kinetic energy
actually relates to knot complexity.

4. – Kinetic energy of torus knots and unknots

A comparative study of the kinetic energy of torus knots and unknots is done by
numerical integration of the Biot-Savart law of solution equations (8). Numerical imple-
mentation of the Biot-Savart law is done by standard discretization of the axis curve into
N = 300 segments and standard de-singularization by application of a cut-off technique
(for details, see, for example, [13, 14]), the only difference here is that dissipation is ne-
glected. This is physically equivalent to consider a quantised vortex system in superfluid
4He at temperature below 1 K, so that mutual friction [15] can be neglected, and vortex
motion in between vortex reconnection events is entirely governed by the classical Euler
equations [16]. The circulation of such vortices is Γ = 10−3 cm2/s (the ratio of Planck’s
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constant and the helium mass). For consistency, the cut-off used here is based on the
superfluid vortex core radius, a ≈ 10−8 cm, which is essentially the superfluid coherence
length. Numerical code is based on the implementation of a source code developed by
one of us (S. Alamri, Ph.D. Thesis, Newcastle U., in preparation).

The kinetic energy (per unit density) is given by eq. (5). Note that the density of
superfluid helium below 1 K (= 0.145 g/cm4) is constant, so hereafter we shall refer to the
“kinetic energy per unit density” simply as “kinetic energy”. The numerical computation
of the volume integral of eq. (5) is not practical; it is more convenient to reduce the volume
integral to a line integral (for its derivation see, for example, [12]):

(11) T =
Γ
2

∮
C
u · X × t̂ ds,

where, as before, vorticity contribution is expressed through the vortex circulation Γ.
Since kinetic energy is constant during evolution, we need not compute it as a function

of time. Data on kinetic energy are collected for several torus knots, given by {p, q} =
2, 3, 4, . . . , 11, and unknots, given by m = 1, 2, 3, . . . , 9. Kinetic energy of the vortex ring
of same diameter U0 is reported for comparison.

Let us first consider the kinetic energy per unit length (kinetic energy “density”). This
is given by dividing the kinetic energy of each knot configuration by the corresponding
knot length. We present results for the two families of knots previously considered and
unknots, but similar results have been found for other families of knots not presented
here. The dependence of kinetic energy density on winding number shown for these two
knot families (see top diagrams of fig. 4) is qualitatively similar to that found for the
other families of torus knots tested. Results show a marked difference between right-
and left-hand side data. Kinetic energy density of knot configurations given by w > 1
seems to be constant or slightly decreasing with w. Remember that these vortex knots
are LIA stable. Knot configurations given by w < 1 show, on the contrary, that kinetic
energy density increases with increasing knot complexity. Similar behaviour is found for
unknots (bottom diagram of fig. 4): kinetic energy density of poloidal coils, that are
LIA stable, seem to be almost constant (or even slightly decreasing with the winding
number), whereas toroidal coils show a marked monotonic dependence on increasing
winding number.

A possible justification of this is to interpret kinetic energy by using the LIA law; by
using eq. (7), we have

(12) TLIA =
1
2

∫
V

‖uLIA‖2 dx3 ∝
∮
C

c2 ds = const,

where the latter equation is due to a geometric interpretation of the conservation laws
associated with LIA [9]. Since under LIA L is also constant for each vortex filament,
from the right-hand side of eq. (12) we see that the energy density is, to first approx-
imation, constant for each vortex and proportional to c2. For small-amplitude torus
knots (and unknots) we can estimate how curvature varies with w; for simplicity con-
sider first the case of the unknots: for toroidal coils (w < 1) the radius of curvature
R evidently decreases with increasing m; since, to first approximation, this is also true
for torus knots (by fixing q and replacing m by p), we have that c = R−1 tends to
decrease with increasing w. For poloidal coils (w > 1), however, since L does not vary
much with m (see fig. 3), the radius of curvature R will not vary much with m. This
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Fig. 4. – Comparative analysis of kinetic energy density of some LIA knots and unknots given
by eqs. (8). Kinetic energy density of the vortex ring U0 of equal diameter is shown for reference
(empty diamond). The kinetic energy, given by eq. (5), has dimensions cm5/s2, hence T/L has
dimensions cm4/s2. Values (solid diamond) are plotted vs. winding number w = q/p. Torus
knots are labeled on the x-axis by (p, q), whereas for unknots (bottom diagram) toroidal coils
Um,1 are shown on the left and poloidal coils U1,m are shown on the right, for m = 1, 2, . . . , 9.

is also approximately true for torus knots (by fixing p and replacing m by q), meaning
that c = R−1 will not vary much with w. Since kinetic energy density is normalized
by knot length, which increases with complexity, we have the two distinct behaviours
observed.

Finally, let us consider the kinetic energy simply normalized by the reference energy
of the vortex ring of same diameter. Results are shown in fig. 5. As we can see the
normalized total energy increases with knot complexity, markedly for w < 1, but also
very slightly for w > 1. Diagrams clearly indicate that more complex knots have higher
energy than simpler one, the vortex ring having the lowest kinetic energy.

5. – Discussion of results

Figures 4 and 5 show that kinetic energy can change greatly for both knots and
unknots, depending on the particular vortex configuration. This result has implications
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Fig. 5. – Comparative analysis of normalized kinetic energy of some LIA knots and unknots
given by eqs. (8). Kinetic energy is referred to that of the vortex ring U0 of same diameter
(empty diamond). Values (solid diamonds) are plotted vs. winding number w = q/p. Torus
knots are labeled on the x-axis by (p, q), whereas for unknots (bottom diagram) toroidal coils
Um,1 are shown on the left and poloidal coils U1,m are shown on the right, for m = 1, 2, . . . , 9.

for the study of quantum turbulence at very low temperatures in superfluid 4He, a
problem which is currently receiving experimental [17] and theoretical attention [18].

It is known that quantum turbulence consists of a disordered tangle of vortex fila-
ments, and that, even at high temperatures in the presence of friction which damps out
kinks and Kelvin waves along the filaments, the geometry of the tangle is fractal [19].
There is current interest in measuring the energy of quantum turbulence and its temporal
decay at very low temperatures, because it appears that, without friction, a Kelvin-wave
cascade process [20], analogous to the classical Kolmogorov cascade, can shift the kinetic
energy to such high wave numbers that kinetic energy can be radiated away acoustically.
Unfortunately the main experimental techniques available (based on second-sound and
ion-trapping) actually measure the length of the vortex filaments, not the energy. This
is why the relation between the length of a vortex (which can be detected directly) and
its kinetic energy (which cannot) is important. The natural question to ask is whether
Kelvin waves of shorter and shorter wavelength can be added to a vortex filament with-
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out altering its energy, as the velocity fields of neighboring vortex strands cancel each
other out. Our study of vortex knots makes a step forwards in answering this question.

The kinetic energy per unit length of a straight vortex filament is easily computed:

(13) T/L =
1
2

∫
V

‖u‖2 dx3 =
Γ2

4π2
ln

b

a
,

where we used cylindrical polar coordinates and the fact that ‖u‖ = Γ/(2πr); here
the upper cut-off b represents either the radius of the container or the distance to the
nearest vortex. This expression is often used in the helium literature to estimate that the
energy density (energy per unit volume) of a turbulent vortex tangle of measured vortex
line density Λ (vortex length per unit volume) is (Γ2Λ)/(4π2) ln b/a where b = Λ−1/2.
Figures 4 and 5 show that the kinetic energy per unit length is not the same, even for
relatively simple vortex configurations, hence the above estimate for the energy density
of the turbulent flow must be used with care.
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