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Summary. — Numerical advection schemes induce the spreading of passive tracers
from localized sources. The effects of changing resolution and Courant number are
investigated using the WAF advection scheme, which leads to a sub-diffusive process.
The spreading rate from an instantaneous source is compared with the physical
diffusion necessary to simulate unresolved turbulent motions. The time at which
the physical diffusion process overpowers the numerical spreading is estimated, and
is shown to reduce as the resolution increases, and to increase as the wind velocity
increases.

PACS 92.60.Sz — Air quality and air pollution.

PACS 92.60.hf — Tropospheric composition and chemistry, constituent transport
and chemistry.

PACS 42.68.Bz — Atmospheric turbulence effects.

PACS 92.60.hk — Convection, turbulence, and diffusion.

1. — Introduction

Mixing is a property of turbulent geophysical flows that is represented in numerical
simulations as a diffusion process. Diffusion is a symptom of the inability of models to
simulate explicitly all the scales of motion. The importance of properly modelling the
diffusion process for simulations of the Earth’s system is beyond question.

Numerical simulations of geophysical flows are possible only after equations have been
smoothed to remove the fine structure of the solutions, and smoothing implies the use of
diffusion models.

The smoothing may be performed by averaging the Navier-Stokes equations over
a grid box, which defines the space resolution of the simulation. Broadly speaking,
the smoothing is the same as to applying a filter in the wave number space, retaining
only small wave numbers. This procedure has recently been reviewed by Wingaard [1],
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who introduces in the filtered equations a term, the deviatoric stress, that is due to
the existence of non-zero velocity component correlations. Lilly [2] suggested that the
simplest way to parameterise this term is by adapting an eddy viscosity model, based on
the idea that the spatial scale of the grid lies in the inertial subrange of the spectrum
of the velocity field solution. The earlier definition of a suitable diffusion coefficient
was introduced by Smagorinsky [3], and was based on the Heisenberg assumption of the
diffusive behaviour of the small scales, which are separated from the larger (resolved)
ones.

As smoothing is done by ensemble averaging, the Reynolds equations are obtained and
the velocity correlations must be parameterised. If a large enough separation in space
and time exists between the explicitly resolved motions and the small-scale random-like
velocities, the correlations between them become negligible, the common identification
of “mean motion” and “turbulence” can be made, and the latter parameterised. In
most geophysical problems, this separation, based on the existence of a spectral gap, is
justified for the boundary layer dynamics (see [4], for instance) and, in particular, for
the vertical component of velocity, whereas it is questionable in the troposphere, because
the horizontal components of velocity do not show the gap (see [5]). Again, the simplest
parameterisation is the assumption of flux-gradient relationships, with the definition of
suitable diffusion coefficients.

From the numerical point of view, the need to inhibit the growth of instabilities in
the solution for the dynamical fields may be satisfied in ways other than parameterising
the physical diffusion due to unresolved scales. The numerical issue is tackled using
hyperdiffusion terms and/or appropriate advection schemes. Note that passive tracers
do not in principle need smoothing; numerical schemes that conserve the mass should be
considered for a treatment consistent with an inviscid description. It is also known that
different advection schemes induce numerical diffusion effects per se, even if no explicit
smoothing is prescribed.

The present work is motivated by the necessity to assess the correct parameterisation
of diffusion in air quality models. It concentrates on horizontal diffusion and addresses
the issue of the competition between physical diffusion (due to the parameterisation of
sub-grid motions) and numerical diffusion (intrinsic in the numerical scheme or induced
by hyperdiffusion terms) for a given advection scheme. In particular, we consider the
Weighted Average Flux (WAF) advection scheme [6] adopted in the BOLCHEM model [7]
because of its mass conservation properties.

The paper is organized as follows. In sect. 2 a parameterisation of diffusion arising
from unresolved turbulent motions is discussed, as a paradigm of physical dispersion.
In sect. 3 the numerical aspects are dealt with. Subsequently, sect. 4 presents some
numerical simulations for an idealized case, in order to establish a general frame for the
evaluation of the numerical vs. physical effects of the diffusion. Finally, some conclusions
are drawn.

2. — Sub-grid turbulent diffusion

In the present study the effect of unresolved (sub-grid) scales of turbulent motion on
dispersion can be represented by a sub-grid turbulent diffusion coefficient Dy, where the
subscript H emphasises the fact that only horizontal diffusion is considered. Dy can
be estimated at a given resolution when the properties of turbulence at the scale of the
resolution are known.
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Assuming a Kolmogorov [8] spectrum, Dy as a function of the wave number is given
by

907 1,5, _
1 D = = 2L 1/B—4/3
(1) (k) 5Co° k=,

where C1 = 0.25Ck (Ck = 2), Cy = 6.2 is the Lagrangian structure function constant,
and € can be determined from velocity spectra measured in a variety of flow conditions
and experimental arrangements. Following [9], in the boundary layer (z < h) we have

— unstable conditions [10]:

(2) e (61— 1752 Lao < 0;
=5\ Mop ) tmo<b
— stable conditions [11]:
(3) €= U 0.61 -5 : Lyo >0
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where 771 = 561 + 2~ in which £y = 500 m is assumed; and Lo is the Monin-Obukhov
length.

Above the boundary layer (z > h) ¢ = 5. x 107> m?s™? is assumed as being repre-
sentative of tropospheric data. For model applications, the height h can be determined
case by case, using model profiles along with the actual stability.

As an example, in free-troposphere for a grid mesh size Az = 10km, the Tampieri
and Maurizi [9] model gives Dy = 310 m?s~1.

3. — Remarks on numerics

Let us consider the advection equation for the concentration C(x,t) of a passive tracer:

o (20.5)e-o

where U is the prescribed velocity field.

The discretisation of eq. (4) produces, in general, the spread of a cloud of tracer
advected by the velocity field (see, e.g., [12]). The nature and magnitude of this spread
is not only a function of the resolution, but also of the numerical scheme. For simplicity,
the spread is referred to as numerical diffusion, regardless of the fact that the process
may display or not diffusive behaviour, i.e. a growth of the cloud size o proportional to
the square root of time.

3'1. Non-dimensional form of advection equation. —In order to identify the parameters
relevant to the study of numerical diffusion, the source dimension R and the characteristic
wind speed U are selected as scales for length and velocity, respectively, to give eq. (4)
the non-dimensional form

o UT_, )\ v
(5) (at,+RU-v>co,
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where the prime indicates non-dimensional quantities and operators. The time scale
must be defined as = RU~! to make eq. (5) scale invariant.

In order to solve eq. (5) numerically, space and time are discretised by Az and At,
respectively. Combining the non-dimensional grid mesh size Az’ = R~'Az and time
step At = UR™'At, we define the following set of non-dimensional parameters: the
resolution

(6) p= == (Aa')!

and the Courant number

AW

(7) V=

= (At)(Az")7L.
Using these parameters, the non-dimensional time is expressed by
(8) t' = Nvp~ 1,

where N = tAt~! represents the number of integration steps.

Any solution of eq. (5) depends on two parameters only, as does the increase in
variance o2 of the tracer distribution C(x,t) with respect to its initial value, which in
non-dimensional terms, reads

o?(t') — o2 (to)
R2

9) Ad(t'sp,v) = :
3'2. Weighted-average fluz advection scheme. — In the present study use is made of a
mass conservative advection algorithm based on the WAF numerical scheme [6], which
is briefly described below.
The advection equation (4) is solved numerically using an operator splitting approach,
namely, by carrying out the computations for each of the space dimensions sequentially.
Discretising in i-th direction in space one obtains

(10) C; = i — E(fi+l/2 - fi—1/2)7

where f* is the numerical WAF flux [13] defined as

(11) [l = %(1 + Git1/2)fi + %(1 + ¢i—1/2) fit1

and ¢; are “limiter functions”, which have in general the form of an amplification factor
applied to the Courant number v.

In order to eliminate undesired oscillations from the solution, the limiter functions
are defined to be function also of the local flow parameter r = ACypwind/ACiocal, which
avoids spurious oscillations by adding a numerical dissipation. The limiter functions are
defined as

(12) ¢(r,v) = sgn(v)[1 + (Jv] - 1)1,
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TABLE 1. — Summary of the numerical experiments performed, showing parameters p and v,
time step length At and horizontal velocity component U. Ezxperiments are organised in groups
(A to F), each characterised by a given p. The suffiz numbers indicate the values of p and v,
respectively, used for each experiment.

Experiment | P v U(m/s) | At(s)
Aps,00.04 5 0.04 1 100
Aps,u0.8 5 0.8 20 100

B3.33,00.026 3.33 0.026 1 100

Cr2.5,00.04 2.5 0.04 1 100
Epi1.25.00.01 1.25 0.01 1 100
F0.5,10.004 0.5 0.004 1 100
Fpo.5,00.08 0.5 0.08 20 100
where

(13) b = max[0, min(2r, 1), min(r, 2)].

Given the above hypotheses, the resulting WAF advection scheme is second-order accu-
rate in space (first in time), and is conservative for divergence-free wind fields.

4. — Results and discussion

In order to evaluate the effect of numerical diffusion, several numerical tests were
performed for different grid resolutions and Courant numbers. A simplified framework
was chosen, with wind field (u,v) = (U,0), in order to single out the effects of sub-grid
processes. The initial tracer distribution was chosen with Gaussian-shape and standard
deviation oy = R. Aiming to measure the effect of numerical diffusion as a function of the
mass distribution resolution, the numerical tests were set up varying the two parameters
p and v. Experiments are summarised in table I.

Figure 1 shows the increase of normalised puff variance with non-dimensional time for
different values of p (a) and v (b). Variations of p induce large variations of Ac’?, while
varying v does not have a strong impact, being practically negligible for low resolutions.
Although for the largest resolution the differences induced by variations of v are not so
small (see the two lowest curves in fig. 1b), this parameter is neglected hereinafter.

For large nondimensional time, say O(100), it can be assumed that the increase of
variance with time can be well approximated by a power law:

(14) Ac”? = at'P.

Fitting eq. (14) on data allows the determination of both slope 8 and “diffusion
coefficient” . The results are reported in figs. 2a and 2b for different p.

Although 3 varies between 0.3 and 0.4 in the range of p considered, its variation is
small, and this justifies the direct comparison of « in fig. 2a.

In all cases the representative value of 3 corresponds to a sub-diffusive process. The
magnitude of this process is largely driven by resolution, as shown in fig. 2a, where
the sub-diffusion coefficient « varies by orders of magnitude with p. This suggests that
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Fig. 1. — (a) Normalised variance as a function of non-dimensional time ¢’ for different values of
p: starting from top to bottom the curves refer to experiments A,s5,.0.04, Bp3.33,00.026, Cp2.5,00.04,
D,1.65,00.013, Ep1.25,00.01 and Fpo.5,10.004, respectively. (b) The same as (a) but for experiments
with the same p and different values of v: Fj0.5,,0.004 and Fo.5,00.08, black and white circles,
respectively; Aps,v0.04 and Aps 0.8, black and white squares, respectively.
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Fig. 2. — Coefficients a (a) and exponent § (b) of eq. (14), as a function of p.
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conditions can be met for physical diffusion (x t') to become dominant, depending on
the numerical resolution.

In order to give an idea of what those conditions are, a direct comparison with the
sub-grid turbulent diffusion described in sect. 2 was performed.

The turbulent diffusion was modelled assuming an Ornstein-Uhlenbeck process [14],
which is equivalent to a diffusion process in Gaussian, steady, homogeneous turbulent
conditions. Use was made of the values for the variance and the dissipation rate of
turbulent flow according to sect. 2, based on the resolution adopted for the numerical
solution of eq. (4).

The increase of non-dimensional variance for the turbulent (Lagrangian) diffusion
process is expressed by

2Dt
(15) Ao = 7= 2D't’,

where D’ = D(RU)™! is the non-dimensional sub-grid diffusion coefficient, which is a
function of Az. Assuming that the wave number is k = 7(Ax) !, from eq. (1) it can be
expressed by

1/3
(16) Dy = s,
U
where v = (9/2)7~%/3(0.25Ck)?C;*. Note that since the turbulent dispersion process
does not depend on U and R, the non-dimensionalisation makes D7, explicitly dependent
on them. Therefore, in order to compare the results of the numerical and turbulent
processes, R and U must be selected. Here R, representing the source scale, is given a
fixed value, R = 12500 m, while U is left to vary. It can be observed that this makes v
vary from case to case, although due to its limited impact on numerical diffusion, the
results are compared considering p only.

Figures 3a, b, ¢ and d show AU’LQ(R, U) for different resolutions (p = 0.5, 1.25, 3.33,
5, respectively), each for different values of U, along with Ao’? for comparison.

The intersection between Ac’?> and Ac’?(R,U) defines the time at which turbulent
diffusion starts to dominate over numerical sub-diffusion. Increasing resolution reduces
both variances but, due to the different dependence on p, the numerical sub-diffusion
coefficient declines more rapidly than the turbulent diffusion coefficient. This makes
high-resolution simulations more sensitive to turbulence parameterisation. Furthermore,
for low wind velocity it occurs in a shorter time. In fact, in the limit U — 0, the numerical
effects on diffusion vanish.

The time 7 at which the dimension of the puff is equal for the numerical and turbulent
diffusion processes can be computed using eq. (14) and eq. (15) by

N
(17) - <2D if(j U)> |

Figure 4 reports 7, as a function of p for different U (for given R). Wind velocity has
a major role in determining 7, especially for resolutions below 2.5. For higher resolutions
however, 7 decreases rapidly.
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Fig. 3. — Comparison of numerical (continuous line) and physical diffusion for different wind
velocities, for four resolutions: (a) F,o.5,00.004; (b) Ep1.25,00.01; (¢) Bp3.33,00.026 and (d) Aps,0.04.
Lines with symbols are, from top to bottom, for U = 1,2,5,10,20ms .
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Fig. 3. — (Continued).
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Fig. 4. — Time 7 as a function of p, computed for different velocities U.

5. — Conclusions

The present paper has considered the horizontal spread of a tracer released istanta-
neously in a uniform wind field, to study the diffusion induced by the numerical advection
scheme WAF in comparison with the sub-grid physical diffusion. It has been found that

— numerical diffusion depends on only two parameters: resolution and Courant num-

ber;

— while resolution plays a major role, variations due to the Courant number are
negligible;

— numerical spread induced by WAF is subdiffusive;

— the time at which physical diffusion starts to be larger than numerical diffusion
decreases as the resolution increases;

— the said time is further reduced in low wind conditions.

With the present value of the source size R and for grid mesh size between 5 and 20 km
the numerical diffusion overpowers the physical one for few hours to days. Thus the
gradients are excessively smoothed and there is no room for a more physical description
of the dispersion process.

However, extrapolating the results for 7 to finer grid mesh sizes (~ 1km) the role
of physical diffusion is likely to become more and more important. This requires the
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extension of the present study to the range of resolution p between 5 and 20, going in
the range attainable by non-hydrostatic models.

Another remark is in order regarding air quality simultations: the resolution p is
always about 1 because scales of sources are much smaller than the grid mesh size. This
means that in this kind of simulations, numerical diffusion is always dominating over
the physical one. Further investigations on less diffusive advection schemes is therefore
mandatory.
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