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Summary. — A data set of velocity and temperature variances measured in the
surface layer over a glacier in Antarctica is analysed in terms of the Monin-Obukhov
Similarity Theory. The presence of surface inhomogeneities, flow unsteadiness, and
other uncontrolled disturbances affects the shape of the distribution of normalised
variances for intervals of the stability parameter. The modal value of the distri-
bution, instead of the mean, is used to estimate the numerical coefficients of the
similarity functions to minimize the influence of the (positive) outliers on the es-
timates. The overall agreement of the present results with previuos investigations
is good, and also the spread of the numerical values noted by different authors is
confirmed. In particular the investigation points out the need to use a similarity
function for the temperature variance which diverges in near neutral conditions,
as the heat flux goes to zero, and the occurrence of a large stability region where
the variances of velocity and temperature are characterised by a behaviour almost
independent of the momentum flux.

PACS 47.27.nb – Boundary layer turbulence.
PACS 92.60.Fm – Boundary layer structure and processes.
PACS 92.60.hk – Convection, turbulence, and diffusion.

1. – Introduction

Turbulence in the atmospheric surface layer is typically far from the ideal conditions
which are required for the strict application of available theoretical frames. It is well
known that the Monin-Obukhov Similarity Theory (MOST) needs horizontally homoge-
neous and steady conditions to be applied. As a consequence, data obtained under such
restrictive conditions have to be used to put the correct numerical values in the similarity
functions. Thus, there is a generalized experimental effort to obtain data under controlled
conditions and to refine analysis techniques in order to cope with the widest range of
situations. This effort becomes critical in the stable boundary layers, as discussed for
instance by Cuxart et al. [1] or by Poulos et al. [2].

Another approach consists of the investigation of the effects of non-ideal conditions
on atmospheric turbulence features. Again referring to prototypical cases, a number of
investigations have been performed on fluxes perturbed by topography, changes in surface
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conditions, or the presence of canopies or randomly sparse obstacles: see, among many
others [3-6]. Unsteadiness is also a source of undesired effects; it must be taken into
account for instance in all the situations characterised by low wind conditions: see [7,8].
From the experimental point of view, this approach also requires specific instrumental
set-ups and special efforts to obtain reliable information.

There are, hovewer, several data sets which are affected by perturbations out of
experimental control. Most of these data are taken in order to give a climatological
description of specific sites, useful for applications like local weather prediction, air traffic
control, pollution assessment and modelling.

Such data cannot be used directly for verification of the theory and for novel evalutions
of empirical constants. Hovewer, for a correct use of the data in applications, it is
important to assess their consistency with the underlying theory, and to achieve at least
a qualitative evaluation of effects due to non-ideal conditions. In other words, as far
as the departure from ideal conditions is recognized to be a climatological feature of a
specific site, it is suggested that data analysis should focus on the identification of an
average behaviour, the comparison with previous studies, and the interpretation of the
departures (at least, of the order of magnitude of such departures) in terms of local
conditions.

The purpose of this paper is to discuss a wide set of Antarctic sonic anemometer
data. The variances of the three components of velocity and of sonic temperature are
derived from the measurements. Although taken on flat terrain, the data are affected
by a number of influences that lead to a large scatter. After a short presentation of the
experimental conditions in sect. 2, and of the theoretical frame in sect. 3, sect. 4 goes on
to discuss the distribution of observations, define the representative values for ranges of
stability, and investigate their dependence on stability. In sect. 5 some conclusions are
drawn.

2. – Data

The data used here were collected during three Antarctic campaigns in the years
1993-94, 1994-95 and 1998-99 by Italian researchers in the area of the Nansen Ice
Sheet, during the austral summer. The coordinates of the stations were 74◦ 41′ 58′′ S,
163◦ 30′ 50′′ E; 74◦ 52′ 30′′ S, 163◦ 00′ 00′′ E; 74◦ 51′ 01′′ S, 163◦ 27′ 42′′ E for the three
campaigns, respectively. Detailed information about the sites, the instruments and the
periods can be found, for instance, in [9-11]. A schematic map of the area is shown in
fig. 1.

The present paper deals only with data taken over flat terrain. The sampling heights
varied in the different campaigns, covering a range from 2 m up to 22 m. The observations
sampled by Gill ultrasonic anemometers (sampling rate 20.8 Hz) are averaged over half
hour periods and detrended. The total number of data (each one referring to a half-hour
period) is about 12000.

Evaluations of moments for shorter periods (say 10 min) are not available, preventing
the possibility to separate slow motions, like waves, from small-scale fluctuations (turbu-
lence, in common words), under stable conditions. This superposition of different effects
produces a larger scatter in the stable data, but does not hinder the overall behaviour
of data as a function of stability, as will be evident from the discussion carried on in the
next sections.

The data have been analysed, looking for consistency with similarity theory. Being
interested in analysing heat flux forcing effects (namely, the dependence of the similarity
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Fig. 1. – Map of the Nansen Ice Sheet. Approximate locations of the measurement sites, labelled
with the years of the campaigns, are reported.

relations on the Obukhov length LMO), a selection has been made based on the intensity
of the sensible heat flux, excluding data with the absolute value of the kinematic heat
flux below a threshold of 2 × 10−3 K m s−1.

3. – Theoretical remarks

The friction velocity is defined as

(1) u∗ =
(
u′

1u
′
3

2
+ u′

2u
′
3

2
)1/4

,

the temperature scale is

(2) ϑ∗ = u′
3ϑ

′/u∗

and the Obukhov length is

(3) LMO = − ϑ00u
3
∗

κgu′
3ϑ

′
,

where u′
i is the fluctuation in the i-th velocity component about the mean (i = 1, 2, 3

correspond to longitudinal, lateral and vertical direction), ϑ′ the temperature fluctu-
ation, ϑ00 is a reference temperature (here the mean temperature measured near the
ground), κ = 0.4 is the von Karman constant and g the gravity acceleration. Sonic
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temperature approximates virtual temperature, and is used here as temperature. Note
that in the above definitions momentum and heat fluxes are assumed to be constant with
height x3.

The nondimensional 2nd-order similarity functions are defined as

Φi(ζ) =
u′2

i

u2
∗

,(4)

Φϑ(ζ) =
ϑ′2

ϑ2
∗

,(5)

where ζ = x3/LMO is the nondimensional height. This formulation holds in the surface
layer, at heights x3 much smaller than the boundary layer height h, and for horizontally
homogeneous and steady conditions [12].

Functions Φi are expected to be independent of the momentum flux, and thus of
u∗, in free-convection conditions [13], as the velocity scale reads, based on dimensional
arguments,

(6) w∗(x3) =
(

g

ϑ00
u′

3ϑ
′|0x3

)1/3

.

Note that in this formulation the velocity scale is dependent on the height above the
surface, and not on the convective boundary layer height. As clearly results from the
literature and the present data, this velocity is the right scale for variances in the free-
convective layer, giving u′2

i /w∗(x3)2 constant.
These functions are also assumed to take a constant value approaching neutrality, as

u∗ is the proper velocity scale.
Furthermore, the cited authors suggest that the transition from free convection to

near-neutral conditions occurs within a layer (called dynamic-convective layer), in which
the scales for horizontal and vertical velocity components are u2

∗/w∗ and w∗, respectively.
Performing the data analysis, a special care has been paid to look for the presence of this
layer.

In moderately stable conditions, local values of the scales are of relevance, leading to
the so-called z-less parameterisation [14,15], i.e. the variances are constant as normalised
to the local flux values. Because the variances and the fluxes used here are taken at the
same height, it is straighforward to refer to the parameterisation above. As far the local
value of the momentum flux is effective in producing velocity fluctuations, the functions
Φi are expected to be constant with stability.

In strong stability conditions, the turbulence fluctuations become less dependent on
the momentum flux, the heat flux being the dominant mechanism acting on turbulence.
Consistently, similarity functions are expected to become independent of u∗ (see [16],
p. 227), giving rise to a characteristic power law as a function of stability, although
non-local effects like waves become of overwhelming importance.

A similar behaviour is expected of Φϑ, with the notable exception of the neutral limit,
because ϑ∗ goes to zero and cannot be used as a proper scale for the ubiquitous albeit
small fluctuations in temperature. Thus, in the neutral limit Φϑ → ∞.
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The free-convection temperature scale is

(7) ϑ∗∗ =
u′

3ϑ
′|0

w∗

and applies in the same stability range as w∗.
The transition from free convection to near-neutral conditions (thus, the

dynamic-convective layer) is characterized by the same temperature scale ϑ∗, accord-
ing to Kader and Yaglom [13] but possibly by different numerical values of the coefficient
of the fitting power law.

In moderately stable conditions, the correct temperature scale is still ϑ∗, so that the
similarity function is constant with ζ: the fingerprint of the z-less parameterisation. In
strong stability conditions the hypothesis of independence from u∗ of the temperature
variance leads the similarity function to be proportional to ζ−2/3.

Schematically, and neglecting the dynamic-convective layer in the unstable case:

– in the free-convection case (−ζ > O(1)): Φi ∝ (−ζ)2/3 and Φϑ ∝ (−ζ)−2/3;

– in near-neutral conditions (|ζ| ∼ 0): Φi ∼ constant and Φϑ ∼ |ζ|−a, a > 0;

– in moderately stable conditions (0 < ζ < O(1)): both Φi and Φϑ are constant,
using local values of u∗ and ϑ∗, namely, the values of the fluxes u′

iu
′
3, i = 1, 2 and

u′
3ϑ

′ measured at the anemometer height;

– in very stable conditions (ζ > O(1)): Φi ∝ ζ2/3 and Φϑ ∝ ζ−2/3.

In the present analysis, the dependence of the similarity functions on the boundary
layer height has been neglected, because reliable estimates of such height are not available,
and the measurement height is such that it can be estimated to lie in the surface layer
in most cases.

4. – Data analysis

4.1. The data distribution. – In the present theoretical frame, data analysis is per-
formed investigating the dependence of the normalised variances on nondimensional
height ζ. The data appear quite scattered, and a first step in the analysis is to de-
termine the representative value for each range of ζ, for comparison with other data and
for use in applications. An example is illustrated in fig. 2, that shows how the large
scatter is not only due to small heat fluxes, but is probably related with other effects,
like nonlocal disturbances and/or unsteadiness.

The scatter is found in many data sets and is due to the large number of uncontrolled
factors, like horizontal inhomogeneity, unsteadiness, waves in stable cases, and low fre-
quency disturbances. Because the variance is positively defined, the superposition of
random disturbances produces a skewed distribution. Neglecting the physical origin of
the disturbances, the distribution of data for classes of z/LMO can be used as it is, in
order to obtain a hint as to a representative value. The distribution of the logarithms
of the normalised variances looks not far from Gaussian; accordingly, the distribution of
the normalised variances is approximately log-normal, as can be seen in fig. 3.

The figure highlights the large asymmetry of the distribution. The distribution of
any positively defined variable (such as the normalized variuances) is skewed, and the
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Fig. 2. – u′2
3 /u2

∗ for unstable and stable conditions. Open circles refer to |u′
3ϑ

′| < 0.01 K m s−1,
black dots otherwise. Note that in the axes of this figure and of the following ones, the averaged
quantities are indicated with brackets istead of overline.

skewness is expected to be larger and larger as the variable is affected by uncontrolled
errors. This means that the average value of the normalised variances is not representative
of the data, being strongly affected by the long positive tail. By contrast, the median
or even the mode may be considered estimates of the normalised variance, for each
stability class, since they better reflect a value unaffected by non-local and/or unsteady
disturbances. Note that the use of the mean value for estimating the similarity function is
thus justified only if the spreading of the observations is quite small (standard deviation
much smaller than the mean).

The median value for a log-normally distributed variable is given by exp[μ]; the mode
is exp[μ− σ2] and the mean value is exp[μ + σ2/2], where μ is the mean of the Gaussian
distributed logarithms of the same variable and σ2 is the variance (see [17], p. 180).

Remembering that the median is the value of the variable that divides the total
frequency into two equal halves, in the following analysis it will be adopted as a repre-
sentative value for each z/LMO range. In practice, the value is computed from the mean
value of the logarithms of the normalised variances.
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Fig. 3. – Normalised distribution of u′2
3 /u2

∗ in the range 0.03 < |z/LMO| < 0.1 for unstable (left)
and stable (right) conditions and the best-fit log-normal distribution. The width of the bins is
different for stable and unstable cases, in order to have almost the same number of data in the
most populated bins.

4.2. Dependence on stability . – The medians for normalised variance of velocity compo-
nents and temperature are plotted in figs. 4 to 7, together with some reference similarity
functions from the literature. To compute the medians, logarithmically equally spaced
bins have been used. The following functional forms for Φ are also fitted to the data:

– For velocity variances, and in all stability conditions:

(8) Φi = ai + bi|ζ|2/3, i = 1, 2, 3.

– For temperature variance, in conditions from weak unstable to free convective (say,
for −ζ > 0.01, according to the present data):

(9) Φϑ =
aϑ

1 + bϑ(−ζ)2/3

and in conditions from weak instability towards neutrality (for 0 < −ζ < 0.01):

(10) Φϑ = c(−ζ)−2.
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Fig. 5. – u′2
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∗ as a function of z/LMO for unstable and stable conditions.

– For temperature variance, in weakly stable conditions (for 0 < ζ < 1):

(11) Φϑ = aϑ + cζ−2

and in strongly stable conditions (for ζ > 1):

(12) Φϑ = bϑζ−2/3.

As far the normalised velocity variance is concerned, eq. (8) is consistent with a
constant value in near-neutral conditions (showing that u∗ is the correct velocity scale),
with the free-convection scaling (in this case w∗(x3) is the correct scale) and with the
u∗-less scaling in strongly stable conditions.

The normalised temperature variance displays a bit more complex behaviour. The
free-convection and u∗-less scalings are described by (9) and (12), for large |ζ|. The
divergence in near-neutral conditions, induced by the fact that the temperature scale ϑ∗
goes to zero, is described by eqs. (10) and (11). Moreover, eq. (11) accounts also for the
almost constant normalised variance (the z-less parameterisation) in moderately stable
conditions.

The values of the coefficients obtained from fitting the above functions to the present
data are reported in table I. Equation (8) has been forced to the same value of ai, both
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Fig. 7. – ϑ′2/ϑ2
∗ as a function of z/LMO for unstable and stable conditions.

for unstable and stable conditions, determined from the median value for near-neutral
conditions (|ζ| < 0.01). For the temperature variance in stable conditions, the fit with
eq. (11) is forced to take the constant value in the central stability range.

For comparison, some similarity expressions from recent literature are reported in
figs. 4 to 7. For unstable conditions, the forms given by Park and Park [18] and An-
dreas et al. [3] are reported, for velocity components and temperature, respectively. For
stable conditions, the forms given by Pahlow et al. [19] are shown. Moreover, the clas-
sical expressions for the vertical component of velocity and temperature by Kaimal and
Finnigan [20] are reported.

In the convective cases, some functions from Kader and Yaglom [13] are also con-
sidered, in order to investigate the possibility of distinguishing between the dynamic-
convective and free-convective sublayers. For the horizontal velocity components the
theory suggests a different slope (i.e. ζ−2/3) with respect to the free-convective layer,
but in the cited paper no evaluation of the coefficient is given. For the vertical compo-
nent of velocity and temperature, the theory suggests the same slope for both the layers,
possibly with different numerical coefficients. The dynamic-convective layer is expected
to occur for 0.1 < −ζ < 1 (order of magnitude).

Table I. – Coefficients from the data fit.

Eq. (8) ai bi, unstable bi, stable

i = 1 9.2 13.7 29

i = 2 4.7 14.4 31.9

i = 3 1.2 1.97 1.69

Eq. (9) aϑ bϑ

3.7 6

Eq. (10) c

5 × 10−6

Eq. (11) aϑ c

2.8 7.5 × 10−5

Eq. (12) bϑ

3.5
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The data are consistent with the picture given in sect. 3, with the notable exception
of the approach to neutral conditions, where no constant value is apparently reached, as
far as velocity is concerned. The literature functions reported show that the numerical
values of the constants, and thus the measured variances, may be quite different from
one data set to another.

It seems impossible to justify quantitatively the existence of a dynamic-convective
layer distinguishable from the free-convective one. However, changes in slope (for hori-
zontal components) and in the numerical coefficient of the power law (for vertical compo-
nent and temperature) for stability parameter around 0.1, suggest that this distinction
should be further investigated.

In the strong stability range the data display slopes consistent with the u∗-less param-
eterisation. Previous works documented the increase of the normalised velocity variances
with stability, using different (empirical) values for the power law. The increase of the
normalised velocity variances implies that the scale velocity u∗ decreases at least with
the same power law, because the turbulent kinetic energy (i.e. the dimensional variances)
is expected to decrease as stability increases.

In the stable layer, the local value of the momentum flux decreases with height above
the ground, and as stability increases, the boundary layer height is expected to decrease.
Because u∗ is determined at the anemometer height, the decrease of boundary layer height
leads to a decrease in the momentum flux measured by the anemometer. Whereas in the
moderately stable case the z-less parameterisation affirms that the variance decreases
with height at the same rate as the momentum flux (see [21]), so that the normalised
variance is constant, both observations and the u∗-less parameterisation suggest that in
very stable conditions the variance decreases at a rate slower than that of the momentum
flux. In other words, some velocity variance still exists, although the friction velocity is
quite small.

5. – Conclusions

The median values as functions of stability for normalised variances of velocity com-
ponents and temperature derived from Antarctic observations over flat ice are shown to
broadly agree with the standard MOST theory, including the u∗-less parameterisation
for very stable conditions, displaying the expected slopes. The use of the median instead
of the mean is justified by the skewness of the distribution of data. Although the present
set looks affected by a number of undesired effects (like non-local disturbances, which
are not filtered in the analysis) as far the stable boundary layer is concerned, this is not
the case in convective cases. Thus the choice of the median should be considered as a
useful tool in the analysis of variance data.

Compared with the literature determinations, it appears that there is substantial
agreement among the present data and some authors, but there are also important dif-
ferences.

At first, it can be observed that in very stable conditions the power law dependences
suggested by Pahlow et al. [19] for velocity variance disagree with the present data, which
are nearer to the 2/3 slope and agree with the predictions of the u∗-less parameterisation.
The disagreement arises from the choice made by Pahlow et al. [19] to fit the data with
a free exponent, instead of using a power law with fixed exponent.

In general, disagreement between different data sets has been considered as an index
of the non-universality of the coefficients in the similarity functions derived in the frame
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of MOST: this specific point has been addressed recently by Wilson [22] (see also the
references herein).

However, the same disagreement may be used to stimulate deeper insight, if the basic
equations are considered universal (this approach was explicitly cited by Cava et al. [23] in
the specific case of the anomalous behaviour of the similarity functions for water vapour
and carbon oxide concentrations with respect to that of temperature). If the values of
the coefficients in the similarity functions vary from site to site, this can be interpreted
as a variability of conditions which are out of control to the experimental set.

As an example of this point of view, let us consider the normalised temperature
variance. The present data appear in general to be smaller than the published ones,
especially in the stable case. The temperature fluctuations are related to the presence of
small-scale inhomogeneity of the surface temperature, as noted by Kader and Yaglom [13].
The presence of a uniform iced surface reduces such inhomogeneities drastically, leading
to the present result. To support this statement, it can be noted that in the present
dataset about 35% of the standard deviation data is smaller than 0.2 K, whereas in a
rural site near Rome (Italy) only 20% of data is below the said threshold. Although a
more detailed investigation of this point is out of the scope of this paper, it is suggested
as a topic for future investigations.
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