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Summary. — It is well known that neural networks can work as universal approx-
imators of non-linear functions and they have become a useful tool either where any
precise phenomenological model is available or when uncertainty complicates the
application of deterministic modelling as, for example, in environmental systems.
Usually, NN models are using as regression tool. We have developed an integrated
modelling system coupling an air dispersion model with a neural network method
both to simulate the influence of important parameters on air pollution models and
to minimize the input neural net variables. In our approach, an optimised 3-Layer
Perception is used to filter the air pollution concentrations evaluated by means of the
non-Gaussian analytical model ADMD. We applied this methodology to the well-
known Indianapolis urban data set which deals with a release of pollutants from an
elevated emission source.

PACS 92.60.Sz – Air quality and air pollution.
PACS 07.88.+y – Instruments for environmental pollution measurements.
PACS 87.85.dq – Neural networks.

1. – Introduction

The management and control of air quality implies a knowledge of the state of the
environment. Such knowledge involves both cognitive and interpretative aspects. In
general, monitoring networks, meteorological measurements and inventory of emission
sources, are fundamentals for the construction of the cognitive picture, but not for the
interpretative one. In fact, air quality control requires interpretative tools that are able
to extrapolate in space and time the values measured by monitoring stations, while
environmental improvement can only be obtained by means of a systematic planning of
reduction of emissions, and, therefore, by employing tools (such as mathematical models
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of atmospheric dispersion) able to linking the causes (sources terms) of pollution with
the respective effects (pollutant concentrations measured at monitoring stations).

The processes involving transport and diffusion of pollutants are numerous; such
complexity would be impossible to describe without the use of mathematical models.
Air dispersion models therefore constitute a crucial technical instrument of air quality
management.

There exist many and different mathematical models to simulate atmospheric pollu-
tant dispersion, that may be utilized for the aforementioned target. In fact, the phe-
nomenon of turbulent diffusion and transport in the atmosphere has no unique mathe-
matical formulation, in the sense that none approach has yet been proposed that is able
to explain all of the observed phenomena.

The air pollution models constitute a mathematical deterministic tool that reflects
the knowledge on turbulent transport in the atmosphere and the results are affected
by uncertainties, mainly linked with the description of the atmosphere and to local
orography, by choice of model parameters and of model variables, and, moreover, by the
position and intensity of air pollution sources.

It is well known that each dispersion model is designed to work in some specific
conditions, and the results depend on the agreement between model assumptions and
actual physical conditions.

A useful approach, alternative to the deterministic modelling, is based on statistical
models.

In fact, often the statistical tools are used to forecast pollutant concentrations and
the more used one is the neural network model.

Among the complex systems the neural networks can be used considered as universal
approximators of non-linear functions and, consequently, can be used in assessing the
dynamics of such systems. Usually, they have become a useful tool either where correct
phenomenological models are not available or when uncertainty in input and output data
complicates the application of deterministic modelling as may happen, for example, in
environmental systems.

Pioneering works in developing Artificial Neural Net (ANN) applications for short-
term forecasting in atmospheric systems have been conducted since the early 1990’s [1]
(e.g., Boznar et al., 1993, constructed a model to predict atmospheric sulphur dioxide in
a polluted industrialized area of Slovenia).

ANN methods have been developed for forecasting daily maximum ozone levels in
various urban areas, using average daily meteorological data as input parameters [2].

Gardner and Dorling [3] produced an overview of applications of ANN in the atmo-
spheric sciences and in 1999 tested the benefits of using a MLP to model NO2 concen-
trations in London relative to other statistical modelling approaches.

Kolehmainen et al. [4] evaluated various computational models using hourly concen-
tration time series of NO2. The methods have been combined in order to optimise their
performance [5].

All above environmental applications use the NN model as regression tool.
In the field of post-processor systems of Global Climate Models (GLMs), an interesting

work can be found in Pasini and Pelino [6]. They attempt to explain the predictability for
the well-known Lorenz system by using a neural net architecture in recognising different
zones of attractors. The use of NN seems to produce low values of errors in evaluation
of the bred growth classes.

Our approach consists of a combination of statistical models (neural net) and deter-
ministic models (air dispersion models).
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We developed an integrated modelling system coupling an air dispersion model with
a neural-network method in order to adjust the influence of remarkable variables on
dispersion models (which may produce systematic under- or over-predictions) and, con-
temporaneously, to minimize the number of input variables to the neural net model. A
review of this methodology on environmental applications can be found in [7]. In our
approach, an optimised 3-Layer Perception with error-backpropagation learning rules is
used to filter the air pollution concentrations estimated by using an operative analytical
non-Gaussian model ADMD. We applied this methodology in the case of an emission
from an elevated source using the Indianapolis urban data set.

In order to better understand the actual improvement of our approach, we will give
a brief description of the main assumption and difficulty inside the air dispersion model.

2. – Models and methods

The relevance of the reproduction of pollutant levels by mathematical models is one
of the most complex tasks. In fact, the pollutant depends on many factors, such as
wind direction and velocity, intensity of turbulence, chemical reactions and the source
apportionment. Further, the boundary conditions are very complex to be determined
but they have high impact on the simulations. Ultimately, some new techniques of data
assimilations [8] were applied to the boundary conditions to the actual meteorological
data and to the concentrations measured at monitoring stations.

Given all above, it is possible to obtain reliability results on the pollutants dispersion
in some simple situations. However, while simple situations to be modelled regard mainly
low-density areas or relatively flat terrains, all people live mainly in high-density urban
areas and the related prediction of the pollutant is very difficult to be fairly predicted.

In order to explain the novelty of our approach to the environmental data process-
ing, we show below a description both of air pollution models and neural net model
assumptions.

2.1. Brief description of air pollution models. – Every air pollution model is char-
acterised by some basic assumptions, that involve different mathematical approaches or
parametrization (see, for example, [9]).

In the K approach, diffusion is considered, at a fixed point in space, proportional to
the local gradient of the concentration of the diffused material. Consequently, pollutant
diffusion is fundamentally of Eulerian type since it considers the motion of fluid within a
spatially fixed system of reference. Such models are most suited for complex problems as,
for example, the dispersion of pollutants over complex terrain or the diffusion of reactive
pollutants. They are based on the numerical resolution, on a fixed spatial-temporal grid,
of the equation of the mass conservation of the pollutant chemical species.

Among the Eulerian models, box models constitute the most simple mathematical
approach since they neglect the spatial structure of phenomena. They assume that pol-
lutants are uniformly distributed within a box. From the theoretical viewpoint, this is
equivalent to assume infinite diffusion coefficients which induce an instantaneous prop-
agation of the pollutant within the considered box. The pollutant present in the box
originates from inside sources or from external contributions transported by the wind
or flows across the upper layer of the box itself, which coincides with the height of the
mixing layer.

Gaussian models are theoretically based upon an exact, but not realistic solution of
the equation of transport and diffusion in the atmosphere, in those cases where both
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wind and turbulent diffusion coefficients are constant with height. The solution is forced
to represent real situations by means of empirical parameters, referred to as “sigmas”
dispersion coefficients. They can be either stationary (plume models) or time-dependent
(puff models). The name associated to these models is due to the vertical and cross-
wind pollution concentration, that is described by the famous distribution discovered by
the physicist-mathematician Gauss. The various versions of Gaussian models essentially
differ in the techniques utilized to calculate the sigmas as a function of atmospheric
stability and the downwind distance from the emission source.

2.2. K models. – Eulerian approach for modelling the statistical properties of the
concentrations of contaminants in a turbulent flow as the Planetary Boundary Layer
(PBL) is widely used in the field of air pollution studies. Within this frame, the diffusion
equation that describes the concentrations arising from a continuous point source can be
written as

(1)
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where c denotes the average concentration; u, v and w are the Cartesian components of
the wind and S is the source term. The terms, u′c′, v′c′ and w′c′ represent, respectively,
the turbulent fluxes of contaminants in the longitudinal, crosswind and vertical directions.

The most widely used closure for eq. (1) is based on the gradient transport hypothesis
which, in analogy to molecular diffusion, assumes that turbulence causes a net flux of
material down the gradient of material concentration at a rate which is proportional to
the magnitude of the gradient [10]:
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where Kx, Ky and Kz are the eddy diffusivities.
The simplicity of the K-theory of turbulent diffusion has led to its widespread use

as the mathematical basis for simulating urban, photochemical pollution. However,
K-closure has its own limits.

The gradient-transfer theory works well when the dimension of dispersed material is
much larger than the size of turbulent eddies involved in the diffusion process, i.e. for
ground-level emissions and for large travel times [11]. A further problem is that the
down-gradient transport hypothesis is inconsistent with observed features of turbulent
diffusion in the upper portion of the mixed layer, where countergradient material fluxes
are known to occur [12].

Despite these well-known limits, the K-closure is widely used in several atmospheric
conditions, because it describes the diffusive transport in a Eulerian framework, where
almost all measurements are of Eulerian type. It produces results that agree with ex-
perimental data as well as any more complex model, and it is not as computationally
expensive as higher-order closures.

The reliability of the K-approach strongly depends on the eddy diffusivity
parametrization. This parameterization can be determined on the basis of the turbu-
lence structure of the Planetary Boundary layer (PBL), and on the model’s ability to
reproduce experimental diffusion data. A great variety of the K-turbulent profile formu-
lations exist [13-16] and can be used for the parameterization of the K-turbulent profile.
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2.3. Gaussian models. – The Gaussian approach is widely used in operative air pol-
lution studies to model the statistical properties of the concentration of contaminants
emitted in the PBL [17].

The conditions under which the mean concentration of a pollutant species emitted
from a point source can be assumed to have a Gaussian distribution are highly idealised,
since they require stationary and homogeneous turbulence. In the PBL the flow may be
assumed quasi-stationary for suitably short periods of time (ca. 10 min to 1 h). However,
due to the presence of the surface, there are variations with height of both the mean
wind and turbulence that cannot always be disregarded.

Much effort has been devoted to the development of non-Gaussian models, for han-
dling the non-homogeneous structures of PBL turbulence. However, they still result in
excessively large computer runs, either for emergency response applications or for calcu-
lating concentration time series over a long time (e.g., a year). The latter are especially
important in the evaluation of violations of air pollution standards, which are often
expressed in high percentiles.

Conversely, Gaussian models are fast, simple, do not require complex meteorological
input, and describe the diffusive transport in an Eulerian framework, making easy use
of the Eulerian nature of measurements.

In practice, they can be relatively easy to use, and can be applied in numerous con-
ditions (e.g., isolated sources, cities, road traffic, complex terrain, etc.).

For these reasons they are still widely employed for regulatory applications by envi-
ronmental agencies all over the world. Nonetheless, because of their well-known intrinsic
limits, the reliability of a Gaussian model strongly depends on the way the dispersion
parameters are determined on the basis of the turbulence structure of the PBL and the
model’s ability to reproduce experimental diffusion data. A great variety of formulations
exist [18-23].

The Gaussian model can be modified so as to extend its applicability to non-stationary
and non-homogeneous conditions, as well as to more complex orography. In particular,
the breaking down of the plume into puffs has permitted the simulation of pollutant
dispersion in pseudo-stationary conditions. Such models decompose the plume into puffs,
whose characteristics evolve in time and space together with the changing meteorological
and emission conditions [24].

Several schemas exist for the calculation of σy and σz as functions of stability classes
and of the downwind distance from the source.

Stability classes can in fact be calculated with semi-empirical techniques using, for
example, the method of Pasquill [25] based on simple meteorological observations such
as wind velocity, solar radiation and, at night, cloud cover. Other techniques adopt
measurements of the standard deviations of vertical wind velocity σw, horizontal wind
direction σθ, the vertical gradient of temperature ΔT/Δz, and the Richardson number.

Once the stability classes have been evaluated, the sigmas are expressed as a function
of downwind distance x, using one of the many formulae available in the literature,
retrieved from experimental campaigns.

The sigmas can be expressed as functions of continuous variables of atmospheric tur-
bulence. Most of them are based on the approach proposed by Pasquill [11]. There exist
schemes based on the similarity theory, their related time scale, and the micrometeoro-
logical variables. Up-to-date expressions of the sigmas, in terms of wind variance and the
Lagrangian integral scale time, on the basis of an atmospheric turbulence spectra model,
are presented in [26].



258 A. PELLICCIONI and T. TIRABASSI

New operative models that describe pollutant diffusion using as input ground-based
meteorological data (which can be acquired by automated stations), but which are able
to evaluate directly atmospheric turbulence, through the value of the Monin-Obukhov
length and the friction velocity, rather than empirical classes [27].

Among the new generation models, of particular note are: the Danish model OML [21]
and British model ADMS [28]; the American model HPDM [29], and new model
AERMOD, proposed by the US EPA. Among the puff models are CALPUFF [30],
M4PUFF [31] and SPM [32].

2.4. Model performances and reliability . – It must be kept in mind, when using air
dispersion models, that, while they are rather sophisticated instruments that ultimately
reflect the current state of knowledge on turbulent transport in the atmosphere, the re-
sults they provide are subject to a considerable margin of error. Models, in fact, provide
values expressed as an average, i.e. a mean value obtained by the repeated performance
of many experiments in the same meteorological scenario, while the measured concentra-
tions are a single value of the sample to which the ensemble average provided by models
refer. This is a general characteristic of the theory of atmospheric turbulence and is the
ground for the statistical approach such as the Reynolds used in attempting to param-
eterize the chaotic character of the measured data. At the same time, the uncertainty
linked to the stochastic character of the parameterization of the atmosphere depends
on turbulence intensity and is a function of the mean sampling time. Atmospheric dif-
fusion models present errors that can be considered as an uncertainty inherent in the
phenomenon they describe. Moreover, errors originate from the use of an incorrect or
insufficient set of input data and/or from the intrinsic inadequacies of the particular
model. Studies of model performance validation indicate errors in input data (both of
emission and meteorology) to be the factor responsible for the greater contribution of
the total uncertainty of models. Irwin [33] using Monte Carlo techniques to simulate the
propagation of errors from those of input data, showed that the interval of error of the
concentration maximum and of its distance from the source may be double the interval of
error of the input data. A model is generally deemed acceptable if the estimated values
are within a factor of two of the observed data.

Further errors can be due to the different spatial reproduction of the model respect to
the resolution of the monitoring stations. Often, where the model calculates pollutants
on 1 km2, the observed concentrations can be significant on 200 m2, if data are referred
to primary pollutants, or 10 km2 or more if secondary. At this time, this aspect is to
be solved.

2.5. Considerations on environmental data set . – In order to optimise the use of NN to
forecast pollutant in complex situations, some preliminary considerations on the meaning
of environmental data set have to be done.

The values of the pollutants levels depend on various variables:

– The Monin-Obukhov length: L.

– The speeds measured and estimated to different z levels: U(z).

– The turbulent eddy diffusion coefficient: K.

– The friction velocity: U∗.

– The PBL height: h.
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– The height of the source emissions: Hs.

– The plume temperature: Tf .

– The source emissions rate: QE .

Therefore, the concentration can be computed by a mathematical formulation of the
type

(3) C(x, y, x;L;U(z),K, U∗,Hs, Tf , QE),

where x, y, and z are the coordinates of the receptor.
The main variables (such as L and U∗) depend on other meteorological variables and

these last come from different mathematical formulations that depend on the atmospheric
stability class and on the ground typology (i.e. roughness length Z0) and emission sources
factors.

The Gaussian plume models work well only in stationary or quasi-stationary condi-
tions and they can be used only in simple homogenous situations.

The K models are more sophisticated models respect to the Gaussian ones, but their
results are highly dependent on turbulence profile, that can be determined by theoretical
parameterization.

The forecast coming from the urban dispersion models need additional consideration.
In the case of the urban pollution the necessity exists to develop the calculation at
different spatial scales in order to obtain satisfactory results. The models need to take
into consideration the resolution starting from few meters to hundreds of kilometres.

2.6. Description and selection of the input variables to NN model . – The above con-
siderations on the environmental data set are fundamentals for the best selection of the
input variables to be assumed when using NN.

Artificial Neural Networks (ANN) are a class of computational tools able to model
non-linear dependences characterising the data and to learn complex relationships di-
rectly from the data during training phase.

One particular ANN architecture, especially adapted for forecasting tasks, is known
as the Multi Layer Perceptron (MLP) with an error supervised learning rule [34]. This
net architecture is able to reproduce non-linear models, by means of an accurate choice
of the variables of the system and of the meaningful patterns.

In our work, as architecture we used a 3-layer perceptron model. The first input
layer contains the input variables of the net linked with all relevant physical parameters.
The second layer consists of the neurons of the hidden layer. The third layer is the
output layer, which consists of the target variable (e.g., pollutants concentration) to be
reproduced.

Usually, NN is used as statistical model, in which the input variables regard strictly
the system phenomenology.

The input variables have to satisfy the following task:

– They are related with the output.

– They play the role of independent variables respect to the output one.

– They need to train the NN; in particular, all the weights of the connections layers
are coupled with input-output variables.
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In the case of pollutants concentrations forecasting, conventional use of NN could
involve, as input parameters, the variables linked to the dispersion (as L, U∗, hPBL,
QE , x, y, z, etc.). This means that the target concentration CNN is a function of many
parameters:

(4) CNN = f(x, y, x;L;U(z),K, U∗,Hs, Tf , QE).

Our methodology consists of including the results coming from the dispersion models
as input variables.

So doing, we facilitate the task of NN to understand the relations between input NN
variables and the target one:

(5) CNN = f(CADM, other parameters).

In such a way, we combine two model approaches: statistical and deterministic models.
Mostly, deterministic and statistical methods are two well-separated techniques using

to work for different tasks.
Deterministic models can be applied when the system is well known, that means all

the variables and parameters are fixed and mutually correlated.
Statistical models are applied when mathematical formulations have been fixed and

they utilize all the empirical variables of the system.
The inclusion of the dispersion model predicted concentrations (CADMD) as input

values of the network means that it must perform a twofold task. The first is to train
the NN starting from a situation close to the actual such as provided by a dispersion
model, which already incorporates emission and turbulence factors. The second task is
linked to the fact that dispersion models perform well under certain hypotheses, while
tending systematically to decrease their performance when reality is far from the ideal
situations.

In this case, the NN functions as a filter of the model allowing to improve the repro-
duction of the real situation.

In substitution of the main variables linked to the turbulence and to the dispersion,
we consider a subset of seven variables, all connected to the spatial resolution, to the
dispersion and advection of pollutants. The variables are more easy to be measured and
they could synthesise the behaviour of the actual variables of the system (meteorological,
turbulence, source emissions, etc.).

2.7. Data pre-elaboration. – In our work, the choice of the best input data to be
provided to the NN model is made empirically through various trials (30 tests). As
evident in table I, at each trial the input net is modified choosing a maximum of 7
variables of interest, and the correlation coefficient between simulated and measured
variable target and the presence of negative predicted concentrations has been calculated.

The 7 input variables concern the spatial resolution of the dispersion model (Distance),
the main meteorological information related to the turbulence (Zi, U∗, Z/L) and the
conventional surface data (W , T ).

At this step, we neglected other variables, such as humidity, air pressure and wind
direction because, as input data to NN, we considered the important variables CADMD,
for which the influence of all environmental factors on air dispersion could be included.
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Table I. – Choice of NN parameters and of the main variables.

Distance CONC(ADMD) Zi U∗ Z/L W speed T C negative R

Test 1 X 0 0.475

Test 2 X 0 0.565

Test 3 X 0 0.417

Test 4 X 0 0.597

Test 5 X 0 0.566

Test 6 X 0 0.615

Test 7 X 0 0.424

Test 8 X X 0 0.753

Test 9 X X 1 0.593

Test 10 X X 0 0.819

Test 11 X X X X 2 0.894

Test 12 X X X X X 4 0.891

Test 13 X X X X X X 4 0.931

Test 14 X X X 1 0.844

Test 15 X X X 3 0.876

Test 16 X X X 0 0.875

Test 17 X X X X 4 0.889

Test 18 X X X 0 0.868

Test 19 X X X 2 0.893

Test 20 X X X 0 0.752

Test 21 X X X 0 0.897

Test 22 X X X X X 3 0.914

Test 23 X X X X X X 7 0.918

Test 24 X X X X X X X 1 0.941

Test 25 X X X X 0 0.909

Test 26 X X X X 2 0.897

Test 27 X X X X 2 0.916

Test 28 X X X X X 1 0.902

Test 29 X X X X 2 0.903

Test 30 X X X X 1 0.893

The purpose of this pre-elaboration regards an optimization procedure of NN applied
to the choice of input variables. This procedure implies the minimization of input data
without loss of information concerning actual plume dispersion.

At this step, the role of the NN inputs is different respect to their conventional use.
Aim of our pre-elaborations is to find those important variables necessary to the

adjustment of the variable CADMD calculated by a deterministic model to reproduce the
pollutants levels.

We consider 100% of data during the training and correlations coefficients are related
to all data set. At this stage, our aim is not to find the best performance of NN, but to
give an indicator of input variables to NN.
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Fig. 1. – Architecture used in the simulation for the ADMD-NN model.

Usually, people choose the NN input variables in order to connect the input/output
and to try to simulate a mathematical relation between themself.

Our task consists of selecting lesser but significant input variables as possible (we
apply the parsimony principle [35]).

Table I shows also some sensitivity studies (Test 1–Test 7) concerning the influence
of every variable standing alone to forecast the observed pollutants levels.

The maximum correlation is verified for the wind speed variables (R = 0.615).
To keep away from our analysis the influence of important variables (that could create

spurious correlation), we neglect as input data those with high and low correlation (Test
6, R = 0.615 and Test 7, R = 0.424). Such choice is coherent with the adjusting of
CADMD as mentioned above.

In our simulation, by table I, the correlation result (Test 25, R = 0.909) seems to
suggest the followings 4 variables as NN input: the mixing height (Hmix), the Monin-
Obukhov Length (Z/L), the downwind distance Source-Receptor (X) and, the most
important ones, the concentration levels predicted by ADMD dispersion model (CADMD).

To select the relevant input data for the NN model, a compromise must be obtained
between the smallest number of input variables and the best simulation performance of
the NN model.

The perceptron model used to forecast the pollutants levels is made up of 3-layer
architecture with 4 neurons in the input layer, 8 in the hidden layer and one output
neuron (containing the concentration levels to be reproduced).

The choice of the hidden layer was investigated by examining 6, 8 and 12 neurons.
The best performances were obtained with 8 hidden neurons.

The our final architecture consists of a 4-8-1 type net (fig. 1). The choice of 8 hidden
neurons is based on two opposite considerations: maximizing the hidden neurons to
increment the NN parameters and minimizing this number in relation with the main
situations linked to the input patterns.

The NN input variables (Z/L, Hmix and X) identify various turbulent regimes and dif-
ferent transport-diffusion scenarios where the air pollution model could present different
behaviours.

Further, it is important to underline that our NN model uses only four variables in
order to forecast the pollutant concentrations in complex situations such as a high-density
urban area.
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Fig. 2. – Distribution of Pasquill atmospheric stability classes.

As marked in the paragraph above, the conventional use of NN should involve the
inclusion of many other input variables (such as all the meteorological factors, the source
emission, the position of all the main sources and receptors, the vertical structure of
turbulence parameters) to obtain the same information included in the CADMD. The
pollutant concentration (calculated by dispersion model) takes into account all effects
on the plume dispersion by other inputs variables (i.e. ground effects, meteorology and
sources characteristic).

The variables CADMD, used as input to NN, optimize the environmental information
to the net so that during the training only the differences between the deterministic model
results and actual situations should be apprehended. In our simulations, we choose to
use results coming from dispersion models. It could be considered as input variable the
difference between the observed and the calculated pollutants. The NN do not make
difference between the two choices. In our simulation we used 371 selected patterns, each
determined by four input variables at some downwind distance and turbulence conditions.

2.8. Predicted concentrations of ADMD against the Indianapolis data set . – The model
ADMD has been validated through the results of the experiments conducted in an urban
area of Indianapolis (Indiana, USA) in the months of September and October 1985
(EPRI [36]). During these experiments a SF6 tracer has been released at the height of 83.8
meters from a source, situated inside the urban area of Indianapolis. The concentrations
have been monitored by ground stations, by a system of 160 receptors situated on arcs to
12 different distances from the source: 0.25, 0.5, 0.75, 1, 1.5, 2, 3, 4, 6, 8, 10 and 12 Km.

The Pasquill turbulence parameters observed during the field campaign at the site
were given in fig. 2. The more representative class was the neutral one (D), followed by
the instability classes (B-C). The stable conditions were measured very few times. The
net prevalence of instability classes is the sign of the presence of heat island effect, typical
of high-density urban area.

The roughness has been valued Z0 = 1 m. The concentration measurements have
been integrated in the cross wind direction. Table II shows the results coming from
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Table II. – Statistical indices related to the application of ADMD.

NMSE FA2 R FB

ADMD 1.26 0.52 0.33 0.52

a comparison of the concentrations observed and those calculated by ADMD considering
all the stability classes and using the statistical indices described by Hanna [37].

By the examination of the statistic indexes, it is evident that the model ADMD
presents poor performances (as expected) in simulating the releases of pollutant in the
urban area of Indianapolis.

In fig. 3 we show the results obtained by the application of ADMD. The systematic
under-prediction of the measured pollutant levels is evident. While the concentrations
predicted by ADMD are within 1000μg/mc, the measured concentrations range up to
6000 μg/mc. This means that ADMD model in the urban case does not succeed to calcu-
late the right maximum plume impact in some turbulence conditions. When the observed
concentration is in the range 1000–3000 μg/mc the model presents good performances.
Taking into consideration the percent errors between predicted and observed ones, the
error distribution presents a strong under-prediction (average of 27%—fig. 4). This be-
haviour is systematic (as evident by the skewness of the error distribution) and the work
of the neural net could be concerned to adjust the performance of the air dispersion
model. This is another crucial point to the elaboration.

The adjustment of our dispersion model by NN filter has meaning only if the model
presents a systematic distortion (under or over prediction). In this case, our approach
can be utilized to adjust those situations that deterministic models do not succeed to
reproduce.

If ADMD did not present systematic errors, we should observe an error distribution
similar to the Gaussian shape.
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Fig. 3. – Comparison of CADMD model with measured pollutant levels.
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Fig. 4. – Error distribution using the ADMD model.

3. – Results and discussion

3.1. Validation results. – To conduct the net training phase we have selected randomly
the 50% of the data. The remaining 50% have been used for the generalization phase
(where the data are independent and different from those used for the training). This
choice should assure to avoid problems with the over-fitting (usually people use more
than 50% during the training). The results always all referred to generalisation phase.

We use during the training phase the conventional activation functions

(6) F (P ) =
1

1 + e−(P−S)
,

where P is the activation potential related to neurons of the different layers, S is the
threshold related to the inner neurons layer and calculated by the bias neurons.

The NN weights correction was performed using two methods: the conjugate gradient
and the popular back propagation algorithms.

The best NN results were obtained with the conjugate gradient method [34]. Output
results were obtained using 30000 epochs during training phase and we operate with the
batch corrections of weights.

In the environmental study, some typical statistical descriptors are used in order to
evaluate models performances.

In our work we utilize the conventional descriptors suggest by Hanna [37]. Applying
the NN model and calculating all the main statistical indexes, we obtain the results as in
table III. To check the goodness of NN during training phase, we show also the indexes
at this step. The table gives results for the pollutant calculated by ADMD and filtered
by NN (ADMD + NN) in relation with the training and test phases.
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Table III. – Statistical indices related to application integrated model (ADMD+NN) for train
and test phase.

NMSE FA2 R FB

ADMD+NN(Train) 0.47 0.61 0.88 −0.52

ADMD+NN(Test) 0.38 0.68 0.77 −0.41

The improvement obtained by our methodology could be deduced by the comparison
of table II and table III.

During the training phase a good correlation coefficient was obtained (R = 0.88), while
for the generalization a value of R = 0.77 was achieved. In fig. 5 the results coming from
the generalisation are shown. It is important to underline that this NN model presents
a good reproduction for all pollutants range. The FB indicates a low overestimation
(FB = −0.41) of pollutants when NN is upstream to the dispersion model. Statistical
indexes calculated by the air dispersion model ADMD alone (table II), show that the
model does not succeed to reproduce adequately the pollutant levels and the inclusion
of NN improves all these parameters.

When we calculate the error between the forecasting and measured levels, the er-
ror distribution (fig. 6) shows a net improvement respect to the error distribution ob-
tained with ADMD model. A decrease of skweness can also be noticed respect to the
ADMD alone.

The application of NN as a filter of deterministic models appears to have to be suc-
cessful for these applications. In fact, the combined approach adequately reproduces
the pollutant levels, despite the urban system can be considered as complex situations.
Besides, to evaluate if the input variable CADMD was useful to improve the accuracy of
results, we have run the same net without the concentration derived by the dispersion
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model (CADMD). In the generalization phase a correlation coefficient of R = 0.68 was
found (to be compared with R = 0.77 obtained with the combined approach). Therefore
the choice of using the concentrations predicted by the deterministic model (CADMD) is
discriminating for the quality of results.

3.2. Plume impact evaluation study . – While the results coming from deterministic
models are easily to link with the effects on the plume by atmospheric dispersion, in
general the NN are not necessarily connected with the physics of the system.

The question concerns if the NN results have some explanation by means of typical
turbulence parameters.

As far as the physics related to the atmospheric dispersion is concerned, in the case
of tall sources, it is recognized that: the concentration has to decrease with the distance;
models have to reproduce for the pollution levels the same trend with the atmospheric
stability classes (the pollution decreases from unstable to stable turbulence conditions);
the distance of the maximum concentrations increases with the stability classes (from A
to F) when we applied the deterministic models.

In order to verify the above features we run again new simulations fixing the internal
neural net parameters as derived by the ADMD+NN model. We have considered in the
simulations, as NN input, the Monin-Obukhov length, linked to the Pasquill Stability
Classes (PSC) and three values of the mixing height (Zi = 400 m, 1000 m, 2000 m).

In this case as air pollution model, in order to estimate the ground maximum concen-
tration (Cmax), we used the well-known EPA ISCST model [38, 39]. The ground max-
imum concentrations are more easy to calculate from ISCST model respect to ADMD.
ISCST is a reference model used worldwide for impact assessment applications. Con-
versely, ADMD is an advanced research model which uses turbulence parameters (such
as the K-profiles) which are often not available for conventional applications. At this
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Table IV. – Value of the maximum pollutant levels (Cmax) and the maximum distance (Dmax)
as calculated by a short-term Gaussian model (ISCST).

1/L Dmax RD Cmax RC

(m−1) PSC (ISCST) (ISCST) (ISCST) (ISCST)
(m) (μg/m3)

−0.0875 A 700 1.00 2.64 1.00

−0.0389 B 1500 2.14 1.64 0.62

−0.0081 C 2900 4.14 1.29 0.49

0.0000 D 11300 16.14 0.58 0.22

0.0081 E 33000 47.14 0.21 0.08

0.0389 F 183000 261.43 0.06 0.02

step, we need to calculate the behaviour of the plume impact at the ground as obtained
by an air dispersion model easy to run. For the above reasons, ISCST was selected as a
comparative model to evaluate the maximum plume impact.

The ratio distance (RD) and concentration (RC) are adimensional fractions, defined
by us, between the maximum distance (Dmax) or concentration (Cmax) corresponding to
A stability classes and all the others (from B to F). As is recognized, for the Gaussian
model the levels Cmax decrease with the stability classes (from A to F) and the impact
distance Dmax quickly grows.

For all simulations (ADMD-NN and ISCST), we have calculated the maximum pol-
lutant levels (Cmax) and the related maximum distance from the emission (Dmax). The
results for the typical Gaussian models (ISCST) are shown in table IV.

We can observe the rapid increase of the maximum impact distance (Dmax) with
stability classes from A to F and the corresponding decrease of the ground pollutants.
Taking as reference the values 700 m and 2.64 μg/m3 and normalizing respect to these
values (corresponding to A stability classes), we calculated the adimensional RD and RC.
These values assumed for all the stability classes are typical of the dispersion models and
reflect that plume impact increases with stability turbulence.

Once fixed the neural-network parameters, a NN simulation has been made to estimate
the position of the maximum concentration Dmax using three values of the mixing height
(400–1000 m and 2000 m) in the input net variables.

In order to calculate the Monin-Obukhov length (as input for NN) we used the values
from Golder diagram [40] that relates the Pasquill stability classes to the Monin-Obukhov
length (MO). In this way, the typical MO length linked to the main Pasquill stability
classes (from A to F) was obtained.

Table V shows relations between Pasquill-Gilford and the MO length used by us in
the simulations as NN input (take the roughness length of 1 meter).

We simulate for all the Pasquill stability classes and for all upwind distances the
ground impact as coming from the ADMD-NN model.

Further it is important to underline that these simulations concern data never sighted
by NN (e.q. we investigate the NN performance in connection with the extrapo-
lated data).



AIR POLLUTION MODEL AND NEURAL NETWORK ETC. 269

Table V. – Value of the maximum pollutant levels (Cmax) and the maximum distance (Dmax)
as calculated by ADMD+NN model.

PSC Hmix Dmax RD Cmax RC

(ADMD) (ADMD) (ADMD) (ADMD) (ADMD)

(m) (km) (μg/m3)

A 400 7.031 1.00 7038.1 1.00

B 400 6.24 0.89 7323.7 1.04

C 400 6.635 0.94 4244 0.60

D 400 7.031 1.00 3876.6 0.55

E 400 7.031 1.00 3601.5 0.51

F 400 5.052 0.72 3360.5 0.48

A 1000 12.302 1.00 6637.4 1.00

B 1000 6.635 0.54 5999.1 0.90

C 1000 7.427 0.60 1839.3 0.28

D 1000 3.073 0.25 1587.9 0.24

E 1000 3.073 0.25 1639.2 0.25

F 1000 3.073 0.25 2062 0.31

A 2000 4.656 1.00 5713.4 1.00

B 2000 5.052 1.09 5166.1 0.90

C 2000 2.281 0.49 1098.9 0.19

D 2000 1.517 0.33 1009.4 0.18

E 2000 1.517 0.33 1058.4 0.19

F 2000 2.001 0.43 1468 0.26

The results for 1000 m mixing height are given in fig. 7 and for the Paquill-Gillford
stability classes.

The ground concentrations levels predicted by NN resulted similar to the classic air
dispersion model (with a well-defined maximum ground impact for different atmospheric
stability).

The reproducibility of the shape ground distribution similar to the classic one is an
important result and absolutely not an obvious consequence. In fact, the NN are non-
linear mathematical models and when we change the internal NN parameters, the shape
obtained in fig. 7 is sharply modified.

Behaviour with a well-defined maximum plume impact was generally not observed
with training phase different from the chosen one. Mostly, the trend of NN increases
with the upwind distance, coherently with the non-linear mathematical model inside the
NN.

The Dmax results obtained with the ADMD + NN are shown in table V.
In comparison to the Gaussian dispersion model (ISCST), the model ADMD + NN

produces the same decrement of the pollutant concentrations with the stability classes
(compare RC(ISCST) and RC(ADMD+NN)). Furthermore, when the mixing layer is low
(400 m), the concentration levels are higher, while the calculated levels when the mixing
layer is higher (1000–2000 m) are close to those derived from the Gaussian dispersion
model (as evident by the RC trend).
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Fig. 7. – Concentrations calculated by ADMD-NN model (fixing Zi = 1000m) at different
stability classes.

The results obtained for the Dmax are very interesting (as evident by the ratio
RD(ADMD + NN)). We found that the simulated maximum distance decreases with
the atmospheric stability (from A to F), in contrast with the behaviour of Gaussian
model (see RD(ISCST)). This result is attractive, because it could be the main reason
of unsatisfactory bad performances of Gaussian models in urban case.

Figures 8 and 9 synthesize the results as coming from tables IV and V. The figures
show the ratio RC among the maximum concentrations and the ratio RD among the
maximum distances of impact for different atmospheric stability.
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Respect to the Gaussian dispersion model, the model ADMD-NN produces the same
decrement of the pollutant relationship with the downwind distance (fig. 8). When the
mixing layer is low (400 m), the ratios RC are higher with respect to those calculated for
1000 m and 2000 m. When the mixing layer is higher (1000–2000 m) they are close to
those derived from the Gaussian dispersion model. However, the trend for RC, derived by
ADMD-NN model, is similar to the Gaussian models (they decrease with the atmospheric
stability).

As evident in fig. 9, the maximum concentration distance RD simulated by the NN
decreases with the atmospheric stability (from A to F), in contrast with the behaviour
of Gaussian model. This fact means that ADMD-NN model succeeds to correct the per-
formance of the deterministic model and suggests which could be the physical correction
to be apportioned to the classical dispersion model.

The urban situation would involve an increasing of the concentration levels during
stable conditions in comparison to the simple Gaussian model. At the moment, it is very
difficult for a deterministic model to reproduce a similar trend for RD. The observed
effects could be explained with the decrease of mean wind speed and the increase of
surface drag due to the buildings height and the following wake turbulence.

4. – Conclusions

We have applied for a complex urban situation a mixed model composed by a de-
terministic model and a NN network. The mixed model, validated using the urban
Indianapolis dataset, shows good performances. However, in the literature there are
NN applications in forecasting residual values (between forecast and measured values)
instead of real values [41].

A net improving of all main statistical indexes is observed, decreasing the error be-
tween the calculated values and the measured ones and we reproduce the same decrement,
predicted by Gaussian models, of the pollutant ratio RC with the stability classes. By
using the ADMD+NN model, we obtained for the ratio RD a trend in contrast with the
Gaussian model.
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The urban profile seems to involve a decrease of the plume impact during stable
conditions in comparison to the simple Gaussian model.

Our study seems to suggest that the neural network can be considered as an alternative
model approach to calculate the pollutant levels, most especially in complex situations.

The more evident advantage in the use of NN resides in building a model starting
from direct variables related to the phenomenology and to the non-linear contributions
to air pollution dispersion.

In the classic use of NN, the target of the model concerns to link input variables with
the output one. The input variables are determined by measurements and they can be
completely different by the ones used in the deterministic models.

In our approach, we tested as input variables of NN some typical results coming from
the application of the deterministic model or air dispersion model.

The use of an integrated model seems to suggest the direction to follow to improve
the performances of deterministic models in complex areas as urban ones. The results
of our methodology seem to suggest that (in urban cases) it could be necessary to find a
model in which the ground plume impact falls more close to the source emission during
the stable turbulence scenario respect to the instable one. The concentrations levels
predicted by the dispersion model could carry on the same trend with the atmospheric
stability.

Further applications on NN to real urban situations need be done to verify the good-
ness of our approach and validate the physical inference derived by our simulation.
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