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Summary. — The non-linear stability of inviscid, planar flows with constant rela-
tive vorticity is proved in the context of the quasi-geostrophic shallow-water theory,
for simply connected fluid domains of arbitrary shape. First, the result is obtained
relative to the enstrophy and kinetic energy norms and, then, it is extended to a
“generalised energy” norm which is expressed through the former.

PACS 47.20.Ky — Nonlinearity, bifurcation, and symmetry breaking.
PACS 47.15.ki — Inviscid flows with vorticity.

1. — Introduction

In this paper we study the full non-linear stability of a special class of two-dimensional,
uniformly rotating flows of inviscid, incompressible fluids, governed by the shallow-water
equations in the quasi-geostrophic approximation. The main feature of the considered
basic states is their constant relative vorticity, a problem formally raised by [1], in a
simply connected domain of arbitrary shape. The considered basic flows turn out to
be nonlinearly stable with respect to both the enstrophy and energy norms and hence
to a generalized norm expressed as a function of the former. The stability of constant
vorticity flows has been already considered in the context of Eulerian flows [2]. However,
the results reported here represent a generalization in a context of geophysical relevance.

2. — Model equations

The governing equations of a uniformly rotating, single-layer incompressible and in-
viscid fluid on the f-plane are

ou ou ou an
(2.1) a—ku%—l—va—y—fv——g%,
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In (2.1) and (2.2), n = n(z,y,t) is the free surface elevation while the Coriolis parameter
f is constant. Under the hypothesis

where z = —H represents the flat bottom, and assuming that the horizontal velocity is
depth independent, i.e.

ou Ov
(2.5) F ol 0,

eq. (2.3) can be integrated vertically to yield

(2.6) %4’%' [E(n+H)] =0,

where V is the horizontal gradient operator. The fluid domain D on the f-plane is
closed and simply connected; hence the condition that there is no mass-flux across the
rigid boundary 9D holds, so

(2.7) uw-n=0 along 0D,

where 7 is the unit vector locally normal to D. Then, integration of (2.6) on D with
the aid of the divergence theorem together with (2.7) expresses the conservation of the
total mass of the fluid in the form

d
2. — =0.
(2.8) i/, ndzdy =0

Among all the motions governed by (2.1), (2.2) and (2.6), only a special subset of those
which tend to follow the geostrophic balance are investigated in the present context. To
achieve this, the so-called quasi-geostrophic scaling is applied to (2.1), (2.2) and (2.6)
and the following non-dimensional (primed) variables are introduced:

fUL
125

(2.9) (z,y) = L(z',y), t= gt’, (u,v) =UW' 0", n= .

Then, in terms of the Rossby number Ro = U/fL and under the further assumption
that the Froude number F = f2L?/(gH) = O(Ro), after dropping the primes, the
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non-dimensional governing equations are

ou ou ou on
2.1 — — — ) —v=—-=
(2.10) RO(at +“ax+”ay> VS T

v ov v on
2.11 — - _ - 1
(2.11) R0<8t+u8x+vay>+u y’
(2.12) Ro2%7t7 +V - [u(1+ Ro®n)| = 0.

For instance, in the marine framework, one can take U = O(10"'ms™!), L = O(10° m)
and H = O(10% m), whence Ro = F = 1072
Setting
oy oY

(2.13) u= fa—erO(Ro), v = %4’0(}%0) and 71 =1+ O(Ro),

the governing equation for the stream function ¢ turns out to be (a detailed procedure
is expounded, for instance, in [3])

0

(2.14) o

V2 + J (¢, V) =0,

where, in Cartesian coordinates, the Jacobian determinant J(a,b) = 2296 _ 9a 9b,

Condition (2.7) is equivalent to
(2.15) Y =0 V(z,y) € 0D, Vi,

where the non-dimensional fluid domain D is hereafter understood. Finally, the non-
dimensional version of (2.8) at the geostrophic level of approximation is

d
2.1 — daxdy = 0.
(216) G | wdady =0

3. — A class of time-independent solutions

A particular class of steady solutions of problem (2.14), (2.15) is given by flows with
constant relative vorticity, i.e. such that

(3.1) V2o = Qo,
and
(3.2) Yo=0 V(z,y) € 0D,

where Q) is any constant. Obviously, in this case (2.16) is trivially satisfied. The physical
meaning of the constant @y can be easily derived from (3.1). Multiplication of (3.1) by
1o and the integration on D, together with the use of (3.2), gives

(3.3) /D€7l}o  Vipodady = —Qo/Dwodxdy-
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The Lh.s. of (3.3) is twice the total kinetic energy, per unit of mass, of the flow, say

(3.4) /D Vb - Vapodady = 2K,

On the other hand, the vertical component of the integrated angular momentum per unit
of mass of the flow is

(3.5) My, =k / r x updady,
D

where 7 = xi + yj, with (i, 7, k) right handed, and uo = k x €¢0~ Integration of (3.5)
with the aid of (3.2) yields

(36) Moz = —2/ wodxdy
D

Finally, using (3.4) and (3.6) in (3.3), gives

QoMo,

(3.7) Ko = =2

Equation (3.7) expresses the constant Qo as a function of the ratio between the kinetic
energy and the angular momentum of the flow and implies that My, has the same sign

as Q.
Problem (3.1), (3.2) can be solved analytically if the shape of D is simple enough, for
instance by considering

(3.8) D=[0<z<1x[0<y<1]

In case (3.8), the solution of (3.1), (3.2) is given by [4]

1 1
(393) 1Z)O(xay) = 7Q0/0 /0 G(xayagvA)dgd)\,
where
) sin(wné) sin(mrmA)
(3.9b) G(z,y,€,\) = 42 Z sin(mnx) sin(mmy '

z2 2+ )

Solution (3.9a), (3.9b) looks like a vortex locked onto the largest possible scale con-
sistent with the dynamics and the boundary conditions (see, for example, [5]). Since for
a two-dimensional flow to be dynamically unstable, energy must pass to larger as well as
to smaller scales by the disturbance, thus g is expected to be stable to other eigenmode
perturbations that have smaller scales. This is the main reason why the stability, in
the sense of Lyapunov, of the “basic state” defined implicitly as the solution of prob-
lem (3.1), (3.2) is worthy of investigation. Note also that Arnold’s theorem [6] does not
hold in case (3.1).
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4. — The stability problem

The classical approach of the stability theory [7] starts from the substitution of the
time-dependent perturbed state

(41) 1/’(177%0 = 1[}0(.%, y) + ¢(I,y,t)

into (2.14) and (2.15), thus yielding the following problem for the generic perturbation ¢:

(4.2) O V264 I +6.9%6) =0 ¥(r,y) € D, ¥,
(4.3) =0, VY(z,y)€oD, vt

According to Lyapunov, the basic flow g is stable relatively to a certain norm, say
|| - ||, if the norm of the perturbation ||¢|| is arbitrarily small for all the subsequent times
after that initial, say in ¢ = 0, provided that ||¢|| be small enough initially. In particular,
and this is the case of our interest, stability holds if ||¢|| is conserved in time whatever ¢
may be, that is if

d
(44) Slol=0 voes,

where S is a suitable functional space to which perturbations belong. In fact (4.4) implies

lo)Il = llo0)]] vt >0,

so that ||¢(0)|| < e = ||¢(t)]| < € ¥t > 0, no matter how small € is, and thus the criterion
of Lyapunov is immediately satisfied.

To derive from (4.2) a conservation principle for a suitable norm of the generic distur-
bance ¢, the integrals involving the non-linear part of these equations, i.e. the Jacobian
J(¢,V?¢), must be zero. We anticipate here that this result can be achieved at least in
two ways. The first one makes use of the time-dependent functional

(4.5) Ig]le = ( /D (vw)dedy)l/Q,

which is also named the enstrophy norm, and consists in multiplying both the terms
of (4.2) by V2¢ and then integrating each product on D with the aid of the no mass-flux
boundary condition. The second one makes use of the so-called energy norm,

N N 1/2
(4.6) léllx = ( /D V¢~V¢>dxdy> ,

and consists in multiplying both the terms of (4.2) by 1o+¢, and integrating each product
on D, again with the aid of no mass-flux boundary condition. Once that two separate
conservation principles are obtained, it is possible to introduce a class of equivalent norms
as functions of both ||¢| g and ||¢||k, relatively to which the basic state is stable.
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4°1. Stability in the enstrophy norm. — It is useful to anticipate the following identity:
(4.7 J(a,b) = v (a%b X l%) ,

where k is the unit vector normal to the f-plane. Now, multiplication of (4.2) by V3¢
yields

(4.8) % (920)° + 7 (o + 6, (V29)") = 0

and the integration of (4.8) on D gives

d

(4.9) il

(V26)” dady + / J (1/10 + 6, (v2¢)2) dady = 0.
D
Because of (4.7), the divergence theorem and (2.15)
/ J (wo + 9, (V2¢)2) dxdy:% (Yo + b) 6 (V2¢)2 Xif'ﬁdszf w% (v2¢)2'£d820,
P oD oD

where # is the unit vector locally tangent to dD. Hence (4.9) simplifies into the conser-
vation statement

% A (V2¢)  dedy =0 Vo,

which implies, according to (4.5),

d
(4.10) EH(ZSHE = 0.

Hence, the unconditional non-linear stability of 1 in the enstrophy norm is established
by (4.10).

4°2. Stability in the energy norm. — Multiplication of (4.2) by ¢ = 1o + ¢ gives

(4.11) (o + ) V292 + 27 (42,7%) =0.

By using the identity
aV2 = b2+ V - (aVb - bVa)
and (4.7) in the form
J(aQ,b) —V. (a26b X l%) ,
eq. (4.11) can be written as

00 = ([ 206 0b 12 = A
(412) VAo +9) 5 + V- <wvat - atw) +5V- (627 (V29) x k) =0
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and integration of (4.12) on D with the aid of the divergence theorem together with (2.15)
and (4.3) yields

(4.13) / V2 (¢o + ¢) %dxdy =0.
D ot
Because of (3.1), eq. (4.13) is equivalent to
o¢ 2, 00 _
QO/D adxdy—&—/DV gbadxdy =0,
that is to say

d ~ (0= 10 = 2

Now, because of the steadiness of the basic state, eq. (2.16) implies

d
4.1 i -
(4.15) 5 /D pdady =0

so, using (4.15) in (4.14) and recalling also (4.3), eq. (4.14) takes the form of the conser-
vation statement

d ~ 2
4.1 — =0.
(4.16) dt/D]w‘ dady =0
In terms of (4.6), eq. (4.16) yields

d
(4.17) Sl =o.

We stress that enstrophy conservation is obtained also in [2], eq. (11), as a preliminary
result to achieve the stability in the energy norm. However, unlike (4.4), in [2] an
inequality of the kind

llollx < constant

is invoked to prove stability, but this procedure may be problematic since it is not clear
how d controls € as the classical Lyapunov relation

lp(0)] < 6() = |lp(t)]| <& Vt>0

demands.
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5. — Stability in a generalized energy norm

Statements (4.10) and (4.17) imply that the solution of problem (3.1), (3.2) is stable
both in the norm (4.5) and in the norm (4.6). These results hold in the full non-linear
context and are independent of )y and the shape of the fluid domain D.

As in fluid dynamics no unique norm exists to which the stability /instability of a given
basic flow can be referred, the use of so-called generalized norms is suggested [7,8]. In the
problem here considered, (4.10) and (4.17) can be unified by resorting to a generalized
norm || - || of the kind

(5.1) l6ll = (Callll% + CallolZ) ",

where C; and Cs are non-negative constants and C1Cy > 0. Conservation of ||¢||, and
hence the stability of 1o in norm (5.1), trivially comes from (4.10) and (4.17) whatever
Cy and Cy may be. Inversely, the norms singled out from (5.1) for different values of C4
and Cy are equivalent, so the stability with respect to one of them implies the stability
with respect to all of them.

To prove the equivalence, two of them are considered, say ||¢||(C7,C%) and
loll(CY, CY). By means of the positions

m’ =min{C{,C5}, M' = max{C},C%}, m"” =min{C{,C¥}, M" = max{C{,C4}
and
1/2
(5.2) l8ll(1, 1) = (lol% + I8l1%) "

one observes that

(5.3) m'|[¢]1(1,1) < [|¢]1? (C1, C5) < M'||¢]*(1,1)
and
(5.4) m”||6]?(1,1) < [|¢]* (CF,Cy) < M"||¢[|*(1,1).

Inequalities (5.3) and (5.4) imply

M’ M’
(5.5) 1pl* (C1, Cy) < M'[|]*(1,1) = Wm”H(bIIQ(l, 1) < Wl\sbll2 (CY,C3)
and
2 1 i 14 2 M” / 2 M” 2 ! !
(5.6) lolI* (CY,CF) < M"||9]|*(1,1) = —-m'||$]|*(1,1) < —||¢[|" (C1, C3) -

m/ m/

Finally, inequalities (5.5) and (5.6) prove that each couple of norms of the above-defined
class is constituted by equivalent norms.
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