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Summary. — In the homogeneous model of the wind-driven ocean circulation, the
dynamics of the basin interior is basically governed by the Sverdrup balance and the
related no mass-flux condition on the eastern boundary of the basin, which we as-
sume to be square for conceptual simplicity. In the presence of lateral diffusion of rel-
ative vorticity, the additional condition on the eastern boundary (like the conditions
on the other boundaries) is not demanded on physical grounds but it is arbitrary
to a large extent. Hence, certain choices of such boundary condition can produce
overall solutions which are “far” from that of Sverdrup in the eastern part of the
domain, without any physical reason. In the present note we show that this discrep-
ancy can be strongly reduced if the adopted additional boundary condition has the
same form as that implicitly satisfied by the Sverdrup solution. Unlike the common
approach, a criterion is thus derived which selects a suitable partial slip boundary
condition according to the specific wind-stress field which is taken into account.

PACS 92.10.Fj – Upper ocean and mixed layer processes.
PACS 92.10.Lq – Turbulence, diffusion, and mixing processes in oceanography.

1. – Introduction

In the theory of the wind-driven oceanic circulation on the basin-scale, the turbu-
lent dissipation of vorticity, which is put in the water body by the wind-stress, is an
indispensable dynamical mechanism for the maintenance of a steady circulation. Since
1950, lateral diffusion of relative vorticity has been a common constituent of the pa-
rameterization of turbulence whose adoption, in the case of a bounded fluid domain,
demands additional boundary conditions (hereafter ABCs) to single out a unique model
solution [1]. We stress that the actual form of the ABCs is left partially undefined so a
still open question is posed by the lack of uniqueness of the ABCs: in fact several ABCs
are admissible, each of them having its own kinematical meaning and influence on the
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model solution, but no criterion is known to select the “true” or the “best” condition
according to a shared physical viewpoint. We recall the asymmetric role of the turbulent
dissipation in the western and in the eastern parts of the basin: in the dynamics of the
western boundary layer, turbulent dissipation has the same order of magnitude as the
meridional velocity coupled with the planetary vorticity gradient thus giving rise to the
westward intensification [2] while, in the remaining part of the basin, turbulent dissipa-
tion becomes almost negligible and the same meridional velocity is prevailingly balanced
by the wind-stress curl according to the well-known Sverdrup relation [3]. However, al-
though turbulent dissipation plays a minor role in the eastern part of the basin, the flow
is requested to satisfy a prescribed ABC also at the eastern boundary. On the other
hand, whatever the ABC may be, it is not introduced on basic physical grounds and this
is ultimately the reason of the lack of uniqueness of the ABCs.

Here, we point out a criterion for the selection of the ABC at the eastern boundary in
the framework of the homogeneous model of the wind-driven circulation and, in partic-
ular, we focus our attention to the frictional regime (sect. 2). The investigation is based
on the following considerations. The weak turbulent dissipation and the low inertia of
this regime allow the Sverdrup solution to emerge as the dominant term of the complete
solution in the interior and eastern part of the basin. Once the validity of the Sverdrup
balance in such an area is recognized, the resort to any ABC (which is necessarily de-
manded, no matter how weak lateral diffusion is) seems to be questionable because of the
possible discrepancy arising, in the proximity of the eastern wall, between the Sverdrup
solution and the total solution. In fact, the latter depends critically on the kind of ABC
which is selected at the eastern boundary while the former is quite independent of it
(sect. 3). Even if nothing prevents us from conceiving solutions markedly different from
that of Sverdrup in an appropriate eastern boundary layer, at the same time their lack
of physical grounds should be borne in mind.

In the present note, we show that the above discrepancy can be strongly damped if
the adopted ABC has the same form as one that is implicitly satisfied by the Sverdrup
solution (sect. 4). Finally, we stress that, since the ABCs are left unaffected by non-
linearity, the ABC so derived in the frictional regime still holds, as it stands, in the fully
non-linear mode.

2. – Preliminaries on the homogeneous model

We shortly recall the non-dimensional version of the homogeneous model in the case
of steady circulation and neglecting, for simplicity, bottom friction. The notation and the
meaning of the symbols are those reported in [4].

The governing vorticity equation is

(2.1) (δI/L)2J(ψ,∇2ψ) +
∂ψ

∂x
= wE(x, y) + (δM/L)3∇4ψ ∀(x, y) ∈ D,

where D is the square fluid domain

(2.2) D = [0 ≤ x ≤ 1] × [0 ≤ y ≤ 1]

of a certain β-plane. The no mass-flux condition holds throughout the boundary ∂D
of D, that is

(2.3) ψ = 0 ∀(x, y) ∈ ∂D.
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In particular, δI/L is the non-dimensional width of the inertial boundary layer, while
δM/L is the non-dimensional width of the frictional boundary layer. In the frictional
regime we have

(2.4) δI � δM ,

and the order of magnitude of the length δI cannot be realistically smaller than O(104)
in SI units.

It is known that the non-dimensional O(1) vertical velocity wE induced by the Ekman
pumping matches the wind-stress curl on the sea surface with the geostrophic flow.
Actually, wE(x, y) is the result of a space smoothing of the true wind-stress curl which
preserves only its slowly varying part. This is the reason why wE(x, y) is usually taken
as some simple analytical function of x and y, mostly sinusoidal in y. Widely used
expressions of wE(x, y) for an idealized subtropical gyre are

(2.5) wE(x, y) = − sin(πy),

or

(2.6) wE(x, y) = − sin(πx) sin(πy).

The composite form

(2.7) wE(x, y) = −(α sin(πx) + 1 − α) sin(πy), (0 ≤ α ≤ 1),

which coincides with (2.5) and (2.6) for α = 0 and α = 1, respectively, will also be used
in the subsequent discussion.

The crucial point is that the fourth-order derivatives of ∇4ψ raise the order of the dif-
ferential equation (2.1) and, in order to single out a unique model solution, they demand
additional boundary conditions which are the subject of the present investigation.

Because of (2.4), the strictly linear version of (2.1) takes the form

(2.8)
∂ψ

∂x
= wE(x, y) + (δM/L)3∇4ψ,

where (δM/L)3 = O(10−3), at least, if L = O(106) in SI units.
In the ocean interior (subscript I), both (δI/L)2 and (δM/L)3 are much smaller than

unity, so in (2.1) the O(1) meridional velocity equilibrates alone the O(1) wind-stress
curl, thus yielding the Sverdrup balance

(2.9)
∂ψI

∂x
= wE(x, y).

The interior stream function ψI(x, y), satisfying (2.9), is subject to the no mass-flux
condition at the eastern boundary, i.e.

(2.10) ψI(1, y) = 0,
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so, from (2.9) and (2.10) the Sverdrup solution

(2.11) ψI = −
1∫

x

wE

(
x′, y

)
dx′

follows. We stress again that, in the frictional regime, the Sverdrup solution (2.11) is
recognized to be the dominant part of the complete solution from the interior as far as the
eastern wall. In particular, the meridional velocity vI(1, y) along the eastern boundary
is fully determined by the forcing wE evaluated at the same place, i.e.

(2.12) vI(1, y) ≡
[
∂ψI

∂x

]
x=1

= wE(1, y).

We also recall the energy equation coming from (2.1) and (2.3), which we shall use
in sect. 4 to check the physical consistency of the boundary condition under scrutiny.
Multiplication of (2.1) by −ψ and the subsequent integration on D with the aid of (2.3)
and the repeated use of the divergence theorem yields the equation (see [4] for details)

(2.13)
dK

dt
= −

∫
D

ψwEdxdy + (δM/L)3
∮

∂D

∇2ψ
⇀

∇ψ · n̂ds − (δM/L)3
∫
D

(
∇2ψ

)2dxdy,

where K = (1/2)
∫
D

|
⇀

∇ψ|2dxdy is the integrated kinetic energy of the system, the first

integral on the r.h.s. of (2.13) is the time rate of change of the energy source due to
the wind forcing and it is expressed as a pressure work. The circuit integral on the
r.h.s. of (2.13), where n̂ is the unit vector locally normal to ∂D and ds is the differential
arclength along ∂D, is the problematic part of this equation in the case in which it is
positive. In fact, if the forcing is turned off from a given time on, we expect the kinetic
energy to decrease to zero because of its erosion due to the lateral diffusion of relative vor-
ticity. This situation is favoured by the negative definite term −(δM/L)3

∫
D

(∇2ψ)2dxdy

of (2.13), but a positive contribution from the circuit integral might reverse the sign

of the whole expression −(δM/L)3
∫
D

(∇2ψ)2dxdy + (δM/L)3
∮

∂D

∇2ψ
⇀

∇ψ · n̂ds and hence

the sign of the time rate of change of the kinetic energy. Indeed, the circuit integral is

trivially zero if the no-slip (i.e. n̂ ·
⇀

∇ψ = 0 on ∂D) or the free-slip (i.e. ∇2ψ = 0 on ∂D)
conditions are applied; but its sign is not obvious, for instance, if a partial slip condition

is considered. For future purposes, we report the contribution, say E, to
∮

CD

∇2ψ
⇀

∇ψ · n̂ds

coming from the eastern boundary: with reference to (2.2), it is given by

(2.14) E =

1∫
0

[
∂2ψ

∂x2

∂ψ

∂x

]
x=1

dy.



ON THE ADDITIONAL BOUNDARY CONDITION ETC. 223

0.5 0.6 0.7 0.8 0.9 1

-1.5

-1

-0.5

0

(b)

0.5 0.6 0.7 0.8 0.9 1

-1.5

-1

-0.5

0

(d)

0.5 0.6 0.7 0.8 0.9 1

-1.5

-1

-0.5

0

(a)

0.5 0.6 0.7 0.8 0.9 1

-1.5

-1

-0.5

0

(c)

Fig. 1. – Mid-latitude meridional velocity v (thick line) and Sverdrup meridional velocity vI

(thin line) from the central longitude of the basin to the eastern boundary. Panels (a) and (b)
refer to forcing (2.5), while panels (c) and (d) refer to forcing (2.6). The figure points out the
discrepancy between v and vI whose amount depends on the choice of the ABC which is applied
on the eastern boundary (x = 1) to evaluate v.

3. – Illustrative examples

To illustrate the unphysical discrepancy that can arise between the Sverdrup solution
and the complete solution in the proximity of the eastern wall (in x = 1), we point out
what happens in two cases, using (2.2), (2.3), (2.8) and setting (δM/L)3 = 10−3. We
anticipate that the choice of the free-slip condition on the western boundary is purely
conventional in all the subsequent examples, sect. 4 included.

First case: forcing is (2.5).

a) The ABCs are no slip on the eastern boundary and free slip on the other boundaries.
The mid-latitude meridional velocity v(x, 1/2) is reported in panel (a) of fig. 1 (thick
line) starting from the central longitude of the basin to the eastern boundary. The
thin line represents the constant meridional velocity vI(x, 1/2) evaluated from the
Sverdrup solution (recall (2.12)). Note that, unlike v(x, 1/2), vI(x, 1/2) implicitly
satisfies the free-slip ABC in x = 1. While the departure of v(x, 1/2) from vI(x, 1/2)
far from the eastern boundary is a typical consequence of the beta-plane dynamics,
the departure of v(x, 1/2) from vI(x, 1/2) near the eastern wall is entirely due to the
assumed no-slip ABC.

b) The free-slip ABC is applied also along the eastern boundary. The result is that de-
picted in panel (b) of fig. 1. While the situation is the same as before in the interior,
the tendency of v(x, 1/2) to follow vI(x, 1/2) in the easternmost part of the basin
is evident and it is explained simply by the fact that both v(x, 1/2) and vI(x, 1/2)
now satisfy the same ABC in x = 1.
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Second case: the forcing is (2.6).

c) The ABCs are free slip on all the boundaries. The resulting meridional velocities
v(x, 1/2) (thick line) and vI(x, 1/2) (thin line) are shown in panel (c) of fig. 1. Note
that, unlike v(x, 1/2), here vI(x, 1/2) implicitly satisfies the no-slip ABC in x = 1,
and this is the reason why a net departure of v(x, 1/2) from vI(x, 1/2) is observed
for longitudes close to x = 1.

d) Free slip with the no-slip ABC in x = 1. Velocity v(x, 1/2) goes as in panel (d) of
fig. 1 and a full coincidence of v(x, 1/2) with vI(x, 1/2) is established. As in the first
case, the further departure of v(x, 1/2) from vI(x, 1/2) in the interior is explained
by the beta-effect and it is not heavily affected by the special ABC which is taken
into account.

4. – Additional conditions at the eastern boundary

The above examples give us the hint to derive the boundary conditions that are con-
sistent with the Sverdrup solution starting from the related balance.

From (2.9) and the second x-derivative of the same equation, both evaluated at x = 1,
we trivially obtain [∂ψI

∂x ]x=1 = wE(1, y) and [∂2ψI

∂x2 ]x=1 = [∂wE

∂x ]x=1 respectively, whence
the identity

(4.1)
[
∂wE

∂x

]
x=1

[
∂ψI

∂x

]
x=1

− wE(1, y)
[
∂2ψI

∂x2

]
x=1

= 0

follows. Equation (4.1) has the form of a boundary condition for ψI in x = 1, which is
implicitly verified by ψI . Now, if the total stream function ψ satisfies the ABC

(4.2)
[
∂wE

∂x

]
x=1

[
∂ψ

∂x

]
x=1

− wE(1, y)
[
∂2ψ

∂x2

]
x=1

= 0

which is nothing but (4.1) referred to ψ, then we expect ψ to be very close to ψI in the
proximity of the eastern boundary. In this way the ABC in the form (4.2) arranges the
complete solution in a configuration that, near the eastern boundary, is not “too far”
from that of Sverdrup. Equation (4.2) expresses the criterion proposed in the present
note to select the ABC on the eastern coast of the basin.

The cases pointed out in sect. 3 are easily found again using (4.2). In fact, if the
forcing (2.5) is taken into account, then ∂wE/∂x ≡ 0 and wE(1, y) 	= 0. Hence (4.2)
implies [∂2ψ

∂x2 ]x=1 = 0, that is the free-slip condition appearing in panel (b) of fig. 1.
On the other hand, if the forcing (2.6) is taken into account, then wE(1, y) = 0 and
[∂wE

∂x ]x=1 = −π sin(πy) 	= 0. Hence (4.2) implies [∂ψ
∂x ]x=1 = 0, that is the no-slip condition

appearing in panel (d) of fig. 1.
Moreover, (2.14) gives E = 0 in both cases so the above ABCs do not contribute to

the energy of the flow.
If the forcing (2.7) is taken into account with 0 < α < 1, the ABC (4.2) is a partial

slip, i.e.

(4.3) πα

[
∂ψ

∂x

]
x=1

− (α − 1)
[
∂2ψ

∂x2

]
x=1

= 0
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Fig. 2. – Mid-latitude meridional velocity v (thick line) and Sverdrup meridional velocity vI

(thin line) given by (4.6). Velocity v satisfies the ABC πv(1, π/2) + [ ∂v
∂x

]x=1 = 0, that is (4.5)
which is a special case of (4.2). The plot shows the marked damping of the difference v − vI in
the eastern part of the fluid domain. The zoom in the internal panel details this difference for
longitudes very close to x = 1.

and (2.14) yields

(4.4) E =
α − 1
πα

1∫
0

([
∂2ψ

∂x2

]
x=1

)2

dy.

The r.h.s. of (4.4) shows that, unlike the previous cases (2.5) and (2.6), case (2.7) implies
E < 0: thus also in this case the boundary does not generate energy and therefore (4.3)
is physically consistent.

Example. The forcing is (2.7) with α = 1/2 and the ABCs are (4.3) on the eastern
boundary, that is

(4.5) π

[
∂ψ

∂x

]
x=1

+
[
∂2ψ

∂x2

]
x=1

= 0,

and free slip on the other boundaries. The mid-latitude meridional velocity v(x, 1/2)
resulting from the model in the full longitudinal interval is reported in fig. 2 (thick line).
The thin line represents the meridional velocity

(4.6) vI(x, 1/2) = −(1 + sin(πx))/2

evaluated from the Sverdrup solution. In the internal panel a zoom is depicted to detail
the behaviour of the above velocities in the proximity of the eastern wall. They differ for
a relatively small amount and also the relative vorticities [ ∂v

∂x ]x=1, [∂vI

∂x ]x=1 are almost
the same. This result proves further on the validity of criterion (4.2) to obtain a model
solution close to that of Sverdrup in the eastern region of the fluid domain.

5. – Outline and concluding remarks

1) In the homogeneous model, the dynamics of the basin scale circulation in the ocean
interior is basically funded on the Sverdrup balance (2.9) and the related no mass-flux
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Fig. 3. – Plot of the assumed meridional velocity (5.3) (thick graph) and its best fit from
ansatz (5.4), (5.5) for λ/L = 0.1. For convenience, the zero value is also shown (broken line).

boundary condition (2.10). In the presence of lateral diffusion of relative vorticity, the
application of the ABC (4.2) produces a solution close to that of Sverdrup in the eastern
part of the domain, without any correction ad hoc which would be lacking of physical
grounds. Unlike the common approach, the so obtained ABC does depend on the slowly
varying part of the wind-stress field of the considered model.

2) Apart from the idealized forcing fields (2.5), (2.6) and (2.7), the substitution of (4.2)
into (2.14) gives

(5.1) E =

1∫
0

[(
∂ψ

∂x

)2
∂wE

∂x
/wE

]
x=1

dy,

or

(5.2) E =

1∫
0

[(
∂2ψ

∂x2

)2

wE/
∂wE

∂x

]
x=1

dy.

Equations (5.1) and (5.2) show that the ratio [∂wE

∂x /wE ]x=1 or its reciprocal are crucial to
establish whether E ≤ 0 or not and, in this latter case, the use of the partial slip boundary
condition derived from (4.2) could be problematic. This aspect can be hardly resolved
only by means of theoretical considerations and the inspection of realistic configurations
are in order. For instance, the map of the yearly averaged wind-stress curl of the Atlantic
ocean in the area of the subtropical gyre [5] exhibits, close to the eastern coastline,
positive values of the observed ∂wE/∂x but, at the same time, also the observed wE is,
here and there, positive along the eastern coastline. Nevertheless, this behaviour takes
place on a relatively small length scale λ while, in the remaining area of the basin interior,
wE is strictly negative. Therefore, the space smoothing of the actual wind-stress curl
carried out on the basin scale L 
 λ makes wE everywhere negative and hence E < 0
follows. To clarify this point, let us consider the following situation depicted in fig. 3:

(5.3) wE(observed) ≈

⎧⎪⎨
⎪⎩

1 − 2x/Λ for 0 ≤ x ≤ Λ
−1 for Λ < x < 1 − Λ
1 + 2(x − 1)/Λ for 1 − Λ ≤ x ≤ 1

(Λ = λ/L)
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is best fitted in the class of functions (cf. (2.7))

(5.4) wE(x) = −α sin(πx) − 1 + α,

by choosing

(5.5) α =
(

2Λ +
4
π

(
sin(πΛ)

πΛ
− 1

)) (
3
2
− 4

π

)−1

(Λ = λ/L).

Equation (5.5) implies that α < 1 for 0 < Λ < 0.13, and (4.4) yields E < 0 in this
interval.

3) We go back again to (4.2) which, using (2.9), can be written as

[
∂2ψI

∂x2

∂ψ

∂x
− ∂ψI

∂x

∂2ψ

∂x2

]
x=1

= 0.

The latter equation, in turn, implies

(5.6)
[
∂ψ

∂x

]
x=1

= K(y)
[
∂ψI

∂x

]
x=1

.

Evaluation of (2.8) in x = 1 with the aid of (5.6) yields

(5.7) (K(y) − 1)
[
∂ψI

∂x

]
x=1

= (δM/L)3
[
∇4ψ

]
x=1

,

where, in general,

(5.8) (δM/L)3
[
∇4ψ

]
x=1

= O
(
(δM/L)3

)
.

Now, while (5.6) trivially implies [∂ψI

∂x ]x=1 = 0 ⇒ [∂ψ
∂x ]x=1 = 0 (this is a known result), if

(5.9)
[
∂ψI

∂x

]
x=1

= O(1),

the l.h.s. of (5.7) is O((δM/L)3) as the r.h.s. of the same equation (recall (5.8)) provided
that K(y) − 1 = O((δM/L)3), that is K(y) = O(1). In this case (5.6) yields

(5.10)
[
∂ψ

∂x

]
x=1

= O

([
∂ψI

∂x

]
x=1

)
.

The estimate (5.10) results both in panel (b) of fig. 1 (where v ≈ vI = −1) and in fig. 2
(where v ≈ vI = −1/2).

4) Finally, we remark that criterion (4.2) suffers from two limitations. First, it cannot
work if both wE(1, y) and [∂wE

∂x ]x=1 are zero. However this eventuality is rather special
and not supported by observations. Moreover, it seems to be never taken into account
in the literature. Second, lateral diffusion of relative vorticity can be present also in
unsteady motions, not contemplated by (4.2), for instance in the decay of Rossby waves
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included between a couple of meridional boundaries. But in the latter case the related
dynamics makes rise to a quite different phenomenology, which goes beyond the scope of
the present note and involves prevailingly the formation of the western boundary layer
rather than the eastern one [6, 7].
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