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Estimation of emission rate from experimental data

D. R. Roberti(1)(∗), D. Anfossi(2)(∗∗), H. F. de Campos Velho(3)(∗∗∗)
and G. A. Degrazia(1)( ∗∗∗)

(1) Department of Physics, Federal University of Santa Maria (UFSM)
Santa Maria (RS), Brazil

(2) ISAC, CNR - Torino, Italy

(3) LAC, INPE - São José dos Campos (SP), Brazil
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Summary. — The estimation of the source pollutant strength is a relevant issue for
atmospheric environment. This characterizes an inverse problem in the atmospheric
pollution dispersion studies. In the inverse analysis, a time-dependent pollutant
source is considered, where the location of such source term is assumed known.
The inverse problem is formulated as a non-linear optimization approach, whose
objective function is given by the least-square difference between the measured and
simulated by the mathematical model, pollutant concentration, associated with a
regularization operator. The forward problem is addressed by a Lagrangian model,
and a quasi-Newton method is employed for minimizing the objective function. The
second-order Tikhonov regularization is applied and the regularization parameter is
computed by using the L-curve scheme. The inverse-problem methodology is verified
with data from the tracer Copenhagen experiment.

PACS 47.27.tb – Turbulent diffusion.

1. – Introduction

The pollutant dispersion in the atmosphere is a topic with high interest nowadays.
Models for air monitoring are not only important for describing the pollutant impact
over urban or rural areas, or for urban planning consideration, but other issues are also
relevant, such as the pollutant source strength estimation, CO2 diurnal cycle, and to-
tal ozone in the atmosphere. The last three issues are examples of inverse problems in
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atmospheric pollution modelling. Inverse problems are usually solved by an implicit tech-
nique, where the inverse problem is formulated as a constrained non-linear optimization
problem: the forward problem is iteratively solved for successive approximations of the
unknown parameters. The associated forward problem is the solution of the dispersion
model. As pointed out in [1], the major obstacle to a good inversion result is the accuracy
of the dispersion model and the representativeness of the measurements.

The purpose of this paper is to employ an inverse-problem methodology for estimating
the emission rate from a measured dataset in Copenhagen experiment using a Lagrangian
particle model, named LAMBDA [2,3].

2. – Forward model

The Lagrangian particle model LAMBDA was developed to study the transport pro-
cess and pollutants diffusion, starting from the Brownian random walk modelling. This
model is based on a three-dimensional form of the Langevin equation for the random
velocity [4]. LAMBDA was tested against many data sets, and in particular with the
Copenhagen experiment, giving satisfactory results [2, 3].

LAMBDA uses a large number of fictitious particles to simulate the atmospheric
diffusion. Each particle can be marked for a mass, and the spatial distribution of particles
in the computational domain allows calculating the three-dimensional concentration field,
CMod(�r ) = C(x, y, z, t), through the calculation of how many of them lie in a cell or
imaginary volume centred in x, y, z, as follows:

(1) C(x, y, z, t) = mp
Nv

Vc
,

where mp is the mass of each particle, Nv is the particle number in the cell and Vc is the
cell volume. The mass of each particle is determined from

(2) mp =
Q(t)Δt

Np
,

where Q(t) is the emission rate, Δt is the time step and Np is the number of particle
emitted per time step.

3. – Inverse model

In order to set up the inverse analysis, it is assumed that the concentration obtained
with the mathematic model is given by CMod(�r,Q), where Q = Q(t) is the emission
rate and CExp(�r ) are data from experimental data of concentration. The solution of the
inverse problem is a function Q that minimizes the following objective function:

(3) J(λ,Q) =
∥∥CExp(�r ) − CMod(�r,Q)

∥∥2

2
+ λΩ(Q) .

The least-square difference between experimental data and calculated values is repre-
sented by the first term in eq. (3); Ω(Q) is a regularization operator, a a priori piece of
information, that mathematically is a restriction about the function.
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The regularization operator can be expressed by Tikhonov scheme [5]:

(4) Ω(Q) =
p∑

m,j=0

κm,j

∥∥∥Q(m)
∥∥∥2

2
;

here Q(m) denotes the m-th difference. In general the parameter κm,j is chosen as
κm,j = δmj (Kronecker delta) and the regularization is named Tikhonov-j regularization
operator, where j denotes the order of the regularization. Here, the second-order regu-
larization (Tikhonov-2) is employed.

3.1. Optimization algorithm. – The optimization problem is iteratively solved by the
quasi-Newtonian optimiser routine E04UCF, from the NAG Fortran Library. This algo-
rithm is designed to minimize an arbitrary smooth function subject to constraints (simple
bound, linear or non-linear constraints), using a sequential programming method.

This routine has been successfully used in several previous works: in geophysics,
hydrological optics, heat transfer, and meteorology [6-12].

4. – Simulating the Copenhagen experiments with forward problem

The choice of this experiment derives from the amount and quality of the measure-
ments. For each experiment, meteorological information, like wind velocity standard
deviations at the emission height, mixing height and Obukhov length, were available for
each hour; and wind speed and wind direction were available at each 10 min, and at
three levels along a tower. The ground level concentration was measured using an array
of samplers.

Copenhagen tracer dispersion experiments were carried out in the northern part of
Copenhagen [13,14]. In this experiment, the pollutant (SF6) was released without buoy-
ancy from a tower at a height of 115 m, and collected at ground level in three crosswind
arcs located at 2–6 km from the releasing point. The site was mainly residential with
a roughness length of 0.6 m. The Copenhagen region lies on an island. Tracer concen-
trations were measured and an average was computed at each 20 min. We considered
the exercise performed on 19 October 1978, and the concentrations evaluated in the sec-
ond period (12:33h-13:53h). The Copenhagen tracer dispersion experiment used in this
analysis was selected due to the amount and quality of the concentration and meteoro-
logical data set.

Meteorological data, available each 10 min (see table I), were used to create the input
for the simulation in the forward model (LAMBDA). The profiles of wind standard de-
viations (σi, being i = u, v, w), and the Lagrangian decorrelation time scales (τLi

) were
calculated according to the turbulence parameterisation scheme suggested by Degrazia et
al. [15] (figs. 1a and b). The measured wind velocity variances σ2

i (i = v, w) were used to
fit the analytical model for the wind variance. It is worth mentioning that the ratios of
these variances, (σ2

v)Model/(σ2
v)Exp|z=10 m and (σ2

w)Model/(σ2
w)Exp|z=10 m, were found to

be very close to one (1.08, 1.05, respectively), and this gives a further verification of the
good quality of the parameterisations used. The longitudinal wind standard deviation
was set equal, at each height, to the crosswind one. It was verified that the observed
vertical profile of the wind speed U(z) was in a very good agreement with the classical



180 D. R. ROBERTI, D. ANFOSSI, H. F. DE CAMPOS VELHO and G. A. DEGRAZIA

Table I. – Meteorological data.

U (m/s) θ (◦)
hour 10m 120 m 200m 10 m 120m 200 m

12:05 2.6 5.7 5.7 290 310 310

12:15 2.6 5.1 5.7 300 310 310

12:25 2.1 4.6 5.1 280 310 320

12:35 2.1 4.6 5.1 280 310 320

12:45 2.6 5.1 5.7 290 310 310

 

   (a) 

 

   (b) 

Fig. 1. – (a) Wind standard deviations (σi); (b) Lagrangian decorrelation time scales (τLi) from
Copenhagen experiment (12:33h-12:53h, 19/10/1978).
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logarithmic profile, namely

(5) U(z) =
u∗
κ

ln
(

z

z0

)
,

where u∗ is the local friction velocity, κ = 0.4 is the von Karman constant, and z0 the
roughness length. Equation (5) is used to compute u∗ at the three levels. Wind speed for
all levels in the domain was also computed from eq. (5). The wind direction was linearly
interpolated from experimental values. The mixing height zi, Obukhov length L, and
wind standard deviations were only given as values averaged at each 1 hour and, therefore,
were kept constant during the simulation: zi = 1120 m, L = −71 m, σv = 0.85 ms−1 and
σw = 0.68 ms−1. In this experiment the emission rate was constant and equal to 3.2 g/s.

The horizontal LAMBDA domain was determined according to maximum sampler dis-
tance and the vertical domain was set equal to zi. The time step was maintained constant
(Δt = 1 s). One hundred particles were released at each time step during 2880 time steps.
The Gram-Charlier probability density function (PDF) truncated to the third order was
chosen to represent the PDF of the vertical wind velocity [16,17].

Since the meteorological information is available at every 10 min, in the simulation all
the meteorological parameters, except zi and L, were allowed to vary each 10 min. The
simulation starts 28 min before the second sampling period, in order to better mime
the experimental conditions (thus allowing the particles previously emitted to “fill” the
computation domain as it occurred with the tracer in the experiment). To better estimate
the ground level concentration (g.l.c.) in this non-stationary case, g.l.c. is computed 10
times (each 2 min) during each 20 min period, and then the average is computed.

The model performance is shown in table II and figs. 2a and b. Table II presents
the comparison between observed (CExp) and predicted (CMod) values of ground-level
concentration in the samplers. Figure 2a shows the scatter diagram between observed and
predicted concentrations. Table III shows the result of a standard statistical analysis
made with the data presented in table II. The statistical indices are the following:

Normalized Mean Square Error, NMSE = (CExp − CMod)2/CExpCMod;

Fractional Bias, FB = (CExp − CMod)/(0.5(CExp + CMod));
Fractional Standard Deviation, FS = 2(σExp − σMod)/(σExp + σMod);

Correlation Coefficient, COR = (CExp − CExp)(CMod − CMod)/σExpσMod;
Factor 2, FA2 = 0.5 ≤ CExp/CMod ≤ 2,

where σ are concentration standard deviations.
From fig. 2b, the observed and computed g.l.c. at each sampler of the three arcs

is shown, suggesting that the model was able to capture the general behaviour of the
diffusion experiment. However, the simulated plume is wider than the observed one.
Thus the maxima at each arc are lower than the observed ones, whereas at the further
samplers the model computes more concentration than measured.

5. – Results for the emission rate estimation

In the estimation of the emission rates it was assumed that the pollutant emission rate
is changing with time, i.e. Q = Q(t). Actually, in the Copenhagen experiment, the emis-
sion rate is constant and equal to 3.2 gs−1. The pollutant source term is estimated by
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Table II. – Ground-level concentration (CExp) measured during the Copenhagen experiment
(12:33h-12:53h, 19/10/1978) and predicted concentrations (CMod) by LAMBDA model using
turbulence parameterisation given by Degrazia et al. [15].

Number X (m) Y (m) CExp (μg/s) CMod (μg/s)

1 1398 −1312 0 0.721

2 1404 −1214 0 1.350

3 1492 −1131 0 2.271

4 1516 −1044 0.614 3.266

5 1582 −964 1.816 4.478

6 1592 −884 5.455 5.105

7 1602 −798 7.016 5.727

8 1703 −767 6.770 5.582

9 1766 −681 5.472 5.077

10 1800 −593 3.806 4.067

11 1877 −485 1.114 2.842

12 1921 −405 0.919 1.969

13 2067 −371 0.077 1.902

14 2061 −284 0 1.001

15 2055 −180 0 0.463

16 2818 −2134 0 1.400

17 2920 −1987 0.107 1.579

18 3002 −1830 0.840 2.635

19 3075 −1704 1.478 2.691

20 3204 −1629 3.133 2.580

21 3380 −1367 2.563 2.249

22 3448 −1231 2.225 2.033

23 3518 −1093 0.538 1.282

24 3558 −919 0 1.050

25 3729 −787 0 0.361

26 3837 −550 0 0.121

27 4027 −3616 0 0.306

28 4283 −3447 0.018 0.788

29 4390 −3277 0.021 1.087

30 4459 −3010 0.085 1.117
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Table II. – Continued.

31 4572 −2795 0.800 1.552

32 4668 −2514 1.502 1.236

33 4824 −2260 2.035 1.297

34 5029 −2108 1.112 1.063

35 5286 −1939 0.434 0.778

36 5378 −1570 0.053 0.124

37 5395 −1399 0 0.049

38 5375 −1139 0 0.109

39 5323 −913 0 0.047

minimizing the following functional:

(6) F (λ,Q) =
40∑

i=1

[
CMod

i (Q) − CExp
i

]2

+ λ

5∑
k=1

(
Qk+1 − 2Qk + Qk−1

)2
,

CMod being the concentration computed from the Lagrangian model, and CExp
i the

concentration measured by the i-th sensor. The time period for our estimation was
50 minutes. The source term Q(t) is assumed to be constant into the period t ∈
[t, t + 10min]. Therefore, the unknown source term can be represented by the vector:
Q = [Q1, Q2, Q3, Q4, Q5]T, where Qi = Q(t0 + iΔt) with Δt = 10 min.

In order to complete the inverse analysis, the regularization parameter λ must be
determined. This parameter was found by using the procedure proposed by Hansen [18]:
some value on the corner of the L-curve, relating “Regularization operator term × Square
Difference” of the concentration— the second and first terms of the right-hand side of
eq. (6), respectively. Figure 3 displays the L-curve for different regularization parameters,
using the Tikhonov-2 regularization scheme. From the plot, it can be seen that λ = 0.6
is a good choice.

The estimation results are presented in table IV and fig. 4, using the second-order
Tikhonov regularization scheme. It can be realized that the regularization is the very im-
portant issue in the inversion procedure. The estimation without regularization produced
wrong estimation, indicating that the least-square scheme itself is not able to correctly
address the model to find good answers. However, a bad choice of the regularization
parameter (for example, λ = 40) will not produce a good inversion either. Therefore, for
λ → 0 and λ →∝ implies a wrong inverse procedure. The appropriate inverse regular-

Table III. – Statistical indices of the LAMBDA model performance for the Copenhagen experi-
ment simulated.

NMSE COR FA2 FB FS

0.51 0.87 0.36 −0.38 0.19
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      (a) 

 

     (b) 

Fig. 2. – (a) Scatter diagram between observed and predicted samplers ground-level concentra-
tions; (b) experimental and predicted samplers ground-level concentrations (the samplers at the
three arcs are sequentially plotted) from Copenhagen experiment (12:33h-12:53h, 19/10/1978).

Table IV. – Emission rate estimation.

Time Qtrue (gs−1)
Qestimated (gs−1)

(h:min) λ = 0 λ = 0.6 λ = 40

12:05 3.20 3.57 3.185 0.655

12:15 3.20 1.79 3.185 0.595

12:25 3.20 4.82 3.187 0.502

12:35 3.20 2.74 3.188 0.607

12:45 3.20 0.25 3.188 0.704
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Fig. 3. – L-curve for reconstruction of emission rate.

ized solution is only obtained by using a correct value for the regularization parameter,
indicating a good balance between the data adhesion (the square difference term in ex-
pression (6)) and the smoothness (regularization) of the estimated function. Table IV
shows that the inversion with regularization parameter λ = 0.6 presents good results.

6. – Conclusions

An ineluctable feature with dealing with experimental data is the noise associated
of such data. Inverse problems belong to the class of ill-posed problems, where they

 

Fig. 4. – Pollutant source Q(t) estimation: effect of the regularization parameter. Without regu-
larization (λ = 0): oscillatory behavior; strong regularization (λ = 40), only regularization oper-
ator is focused in the minimization process; appropriate value (λ = 0.6), where Q(t) ≈ 3.2 gs−1.
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are unstable in the presence of noise (small variation in the input data implies a wide
variation in the output data). The regularized inverse solution is a strategy to give a
good answer [5]. The methodology used for estimating the emission rate was effective
to produce correct reconstructions of the emission rate. In this paper, these results were
obtained using the second-order Tikhonov regularization.

In this paper it was shown that the inverse procedure yielded good results, even dealing
with data from the real field (the Copenhagen tracer experiment), where some level of
noise in the data is expected. However, one important issue is the determination of the
regularization parameter. The L-curve scheme [18] permitted to find out an appropriated
value for regularization operator.
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