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Summary. — Recently it has been shown theoretically, numerically and experimen-
tally that the statistical properties (probability density function of wave amplitude
and wave height) of long crested surface gravity waves depend not only on steepness
but also on the Benjamin-Feir Index (BFI), which is the ratio between wave steep-
ness and spectral bandwidth. The computation of this index requires the estimation
of a number of parameters such as the spectral bandwidth and the peak frequency.
For a given time series or a wave spectrum those parameters can be calculated using
different methods, thus leading to different numerical values of the BFI. We analyze
different approaches for computing the BFI and, based on numerical experiments
with simulated spectra, we outline a unique robust methodology for its computation.

PACS 92.10.Hm – Surface waves, tides, and sea level.
PACS 47.35.+i – Hydrodynamic waves.

1. – Introduction

It is well known that a Stokes wave in deep water is unstable to suitable small am-
plitude long perturbations. If a0 is the Stokes amplitude and k0 is its wave number,
then the wave is unstable whenever ak0 is greater than K/(2

√
2k0), where K is the

wave number of the perturbation. This instability, well known in other fields of physics
as the modulational instability, is known in the field of surface gravity waves as the
Benjamin-Feir instability. The effect of this instability is the following: as the Stokes
wave becomes unstable, a single wave in the middle of the group begins to grow at the
expense of the surrounding waves (actually borrowing mass from them), giving rise to
a large amplitude wave. Recently it has been shown theoretically [1], numerically [2-4]
and experimentally [5-7] that, if the wave steepness is sufficiently large and the spec-
tral bandwidth is sufficiently small, this effect can take place also in a random spectra.

(∗) The authors of this paper have agreed to not receive the proofs for correction.
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As a consequence of this instability the statistical properties of the surface elevation,
for example the kurtosis, have been found to be different from the expected Gaussian
values. Deviations from the Gaussian predictions are more pronounced if the ratio of
the steepness and spectral bandwidth, known as the Benjamin-Feir Index (BFI) [1, 3],
is large. Therefore, the BFI has become a parameter that characterizes the statistical
properties of surface gravity waves.

The simplest and probably the most instructive way to introduce formally the Ben-
jamin-Feir Index is to start with the Nonlinear Schroedinger equation (see for exam-
ple [2]). Note that, even though we will define the BFI using the Nonlinear Schroedinger
(NLS) equation, the dependence of the statistical properties of the surface gravity waves
does not rely on the fact that it has been derived from the NLS equation. The NLS
equation represents a perfect framework in which only the basic features of the modu-
lational instability are contained. The equation is a weakly nonlinear, narrow-banded
approximation of the fully nonlinear irrotational and inviscid water wave equations. It
is the result of the balance between nonlinearity and dispersion and it has the following
form:
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where A is the complex wave envelope, ν is the correction to the group velocity for finite
depth, α and β are coefficients that in general depend on the water depth, h, on the
dominant wave number, k0, and the corresponding angular frequency, ω0. The general
forms of ν, α and β for arbitrary depth are here reported (see [8] for the derivation):
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In order to derive the BFI we use the standard procedure used to derive for example
the Reynolds number from the Navier-Stokes equation, i.e. we write the equation in
non-dimensional form introducing the following non-dimensional quantities:

A′ =
A

a
, x′ = ∆kx , t′ =

ω0∆k2α

8k2
0

t .

Here ∆k corresponds to a measure of the spectral bandwidth and has the dimensions
of 1/length. Primes denote non-dimensional variables. In a frame of reference moving
with the group velocity the non-dimensional NLS equation becomes (primes have been
now omitted for brevity)
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where ε = k0a is the wave steepness. We define the Benjamin-Feir Index as the square
root of the coefficient that multiplies the nonlinear term:

BFI =
2ε

∆k/k0

√
|β|
α

.

The ratio β/α tends to one as k0h tends to infinity and decreases as the water depth
decreases, becoming negative for values of k0h smaller than 1.36. In such a case the
modulational instability disappears and Stokes waves are stable to perturbations. Note
that if time series (or frequency spectra) are available the following definition should be
used:

(1) BFI =
ε

∆ω/ω0
ν

√
|β|
α

,

where we have used the fact that

∆ω

ω0
=

ν

2
∆k

k0
.

The methodology of computation of the BFI is unique when a Stokes wave is consid-
ered: the characteristic amplitude, a, of the Stokes wave is the amplitude itself and the
spectral bandwidth corresponds to the wave number of the perturbation considered. Here
our goal is to compute the BFI from random waves; therefore the parameters involved in
the definition of the BFI must be estimated from the time series or wave spectrum. For
random waves such as for example those characterized by the JONSWAP spectrum, the
computation of the BFI is not univocally defined, in the sense that different methodolo-
gies can be used to estimate the wave steepness, the spectral bandwidth and the dominant
frequency. In the next section we will analyze critically different methodologies for the
computation of the BFI and as a result of the analysis a unique definition of the BFI for
single-peaked spectra will be given.

An alternative approach is to focus on the mathematical and physical structure of
NLS and to analyze data from the point of view of the inverse scattering transform
solution of the equation [7]. In this approach the application of multidimensional Fourier
methods provides a unique and valuable estimate of the BFI, together with many other
properties of the wave train, including the unique determination of the “unstable modes”
or “rogue wave” basis function in a measured wave train. We have addressed a number
of aspects of this method in Osborne et al. [7].

2. – Estimation of BFI for random waves

The two parameters that are involved in the computation of BFI are the wave steep-
ness and the spectral bandwidth. The steepness requires an estimation of characteristic
wave amplitude and a dominant wave number. The wave amplitude can be estimated as
follows:

(2) a =
Hm0

2
√
2

=
√
2m0 ,
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where

(3) m0 =

∞∫
0

P (f) df

with P (f) the wave spectral density function. Note that for a sinusoidal wave the use of
the definition in eq. (2) leads exactly to the wave amplitude. To evaluate the steepness
it is also necessary to determine the peak frequency and then use the linear dispersion
relation to obtain the dominant wave number. Due to the statistical variability of the
spectral estimate and the discrete frequency resolution of the spectra, the peak frequency
can be considered a stochastic variable. A number of techniques have been proposed for
its computation and of the confidence interval [9-12]. Young [13] has critically reviewed
these proposals and found that the most reliable technique involves the use of a weighted
integral of the form of

(4) f̂p =

∞∫
0

f P 4 (f) df

∞∫
0

P 4 (f) df

,

f̂p is an estimate of the true peak frequency fp. Young found that the computation
based on eq. (4), as other techniques, slightly overestimates the value of fp and showed
that the 95% confidence limits (which depend on the number of degree of freedom of the
spectral estimate and on the spectral resolution) determined from (4) are

alf̂p � fp � auf̂p ,

where al and au are factors defining the lower and upper 95% confidence limits, respec-
tively. For a given spectral resolution, the al and au factors evaluated by Young remain
practically constant for a number of degree of freedom greater than 50.

Once the dominant frequency (dominant wave number) and the characteristic ampli-
tude have been computed, the wave steepness can be univocally determined. The next
step is the estimation of the spectral bandwidth. The simplest way to do this is to cal-
culate the half-width at half-maximum of the wave spectrum, although it turns out that
the method is not robust especially if one deals with “noisy spectra”; therefore methods
based on integral properties of the wave spectrum are definitely preferred. In the litera-
ture a number of methods to characterize the spectral bandwidth have been introduced
in the past. We will consider three of them that are defined in Goda’s book [14]; the book
contains a comprehensive list of parameters used for characterizing field and laboratory
surface gravity waves (we will use the same nomenclature as in the book). Before giving
the definition of these parameters we will define the spectral moments in the following
way:

mi =

∞∫
0

f iP (f) df .
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The first estimation of the spectral bandwidth is the so-called broadness parameter
defined as

(5) σB =

√
1− m2

2

m0m4
.

It was introduced by Cartwright and Longuet-Higgins [15]. A spectrum is considered
to be narrow banded if sB tends to zero. The second method was again introduced by
Longuet-Higgins [16] and is known as the narrowness parameter

(6) σN =
√

m0m2

m2
1

− 1 .

The last definition that we will consider to be the peakedness parameter (or quality
factor) that was introduced by Goda [17]:

(7) Qp =
2

m2
0

∞∫
0

fP 2(f)df .

2.1. Application to a Gaussian spectrum. – In order to have some feeling about the re-
lationship between these parameters, we apply the above definitions to an ideal Gaussian
spectrum:

P (f) =
1

σ
√
2π

exp

[
− (f − fp)

2

2σ2

]

for which its width and frequency peak are well defined. For a Gaussian spectrum the
half-width at half-maximum ∆ is related to σ in the following way:

(8) ∆ = σ
√

2 log(2) ≈ 1.18σ .

It can be shown that the narrowness parameter is related to σ by this simple relation:
σN = σ/fp, i.e. the narrowness. For the broadness parameter the relation is more in-
volved, nevertheless for small ratio of σ/fp, the broadness parameter and the narrowness
parameter are related as follows:

(9) σN =
σ

fp
≈ 1

2
σB .

Concerning the quality factor, we find the following:

Qp =
fp

2
√

πσ

(
1 + Erf

[
fp

σ

])
+

exp
[
− (fp/σ)2

]
2π

≈ fp√
πσ

.(10a)

The last relation is obtained in the case of small σ/fp. Using the previous relations,
the peakedness parameter can be related to the narrowness parameter (or the broadness
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Fig. 1. – Estimated dominant frequency as a function of the enhancement parameter for three
different maximum frequencies (crosses correspond to fmax = 8fp, triangles to fmax = 4fp,
circles to fmax = 3fp). The solid line is relative to the value used in the generation of the power
spectrum.

parameter) for a narrow Gaussian spectrum in the following way:

Qp ≈ 1
σN

√
π

≈ 2
σB

√
π

.(10b)

Note also that using eq. (8) the quality factor can be related to half-width at half-
maximum of the spectrum:

Qp ≈ fp√
π∆

√
2 log(2) .(10c)

In the next section those methods will be applied to a simulated JONSWAP spectra
and the results on the computation of the BFI index will be discussed. We anticipate that,
as explained for example in [14], the value of the narrowness (or broadness parameter) for
a real sea state is very sensitive to the tail of the spectrum and to the cut-off frequency,
therefore the quality factor seems to be a better choice for an estimate of the spectral
bandwidth for a realistic data set. This aspect will be discussed in the following section.

3. – BFI for numerically simulated JONSWAP spectrum

We consider the classical form of the JONSWAP spectrum (see, e.g., [18]):

(11) P (f) =
α

f5
exp

[
−5

4

(
fp

f

)4
]

γ
exp

[
− (f−fp)2

2σ2
0f2

p

]
σ0 = 0.07 f � fp ,
σ0 = 0.09 f � fp .

The parameters α, γ and σ0 were originally obtained by fitting experimental data
from the international JONSWAP experiment conducted during 1968-69 in the North
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Fig. 2. – Estimate f̂p of the peak frequency as a function of δf/fp for γ = 1 (top panel) and
γ = 5 (bottom panel): the solid line is relative to the value used in the generation of the power
spectrum.

Sea. Here fp is the peak frequency, γ is the “enhancement” factor and α is the Phillips
parameter. Those parameters depend on the stage of the wave development. We here
fix, without loss of generality, the peak of the spectrum at 0.1 Hz, the Phillips parameter
is taken to be 0.0081 and σ0 takes on the standard values reported in relation (11). We
then change the enhancement parameter, γ, from 1 to 10, the cut-off frequency, fmax,
from 3fp to 8fp, and the relative spectral resolution from δf/fp = 0.01 to δf/fp = 0.5,
here δf is the spectral resolution.

We compute the peak frequency using relation (4); the aim is to quantify the overes-
timation of fp discussed by Young. Figure 1 reports the values of f̂p as a function of the
enhancement parameter for three different cut-off frequencies: the solid line is relative to
the value used in the generation of the power spectrum. As the values of γ increase (and
the peak becomes more defined), the overestimation of fp decreases from 5 × 10−2 to
5×10−3. Practically speaking for γ � 3 the overestimation of the dominant frequency is
lower than the 95% confidence intervals and this behavior is independent of the number
of degree of freedom considered.

The effects of the spectral resolution on the determination of the spectral peak are
more drastic. For the various values of the enhancement parameter γ we observe that
the estimated f̂p remains constant only in a limited range of the spectral resolution.
Figure 2 shows f̂p as a function of δf/fp for γ = 1 (top panel) and γ = 5 (bottom panel):
there are clear fluctuations that reach 20% of the true fp value, a limit greater than the
expected confidence interval. By considering at the same time the values of γ, the range of
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Fig. 3. – Behavior of the half-width at half-maximum (HFHM) as a function of γ for the
JONSWAP spectrum.

oscillations in the estimate f̂p and the confidence interval (which is maximum for γ = 1),
we conclude that a reliable estimate of fp requires that δf/fp � 0.15, independently of
γ (at least for the values here considered). In this case, from [13], the confidence interval
is given by

γ = 1 : 0.97f̂p � fp � 1.16f̂p and γ > 1 : 0.95f̂p � fp � 1.06f̂p .

We now estimate the spectral width. As a first estimation we show in fig. 3 the half-
width at half-maximum for the JONSWAP spectrum. The spectral bandwidth decreases
as γ increases, especially in the transition γ = 1 to γ = 2. We consider fig. 3 as a
reference to compare with the other methods previously defined. Our aim is to select
a robust methodology insensitive to the cut-off frequency that shows a trend similar to
the one observed in fig. 3. We have evaluated the broadness factor σB, the narrowness
factor σN and the reciprocal of peakedness parameter Qp with three different values of
the cut-off frequency: 3fp, 4fp, 8fp. The results are shown in fig. 4. The peakedness
factor Qp assumes almost the same value, independent of the cut-off frequency, while
the two other parameters decrease with the cut-off frequency, with a relative decrement
of the 21% for σN and 26% for σB for the greater enhancement parameter. Moreover,
while σN and σB decrease much slower with respect to the trend shown in fig. 3, 1/Qp

seems to better reproduce the behaviour of the half-width at half-maximum. Studying
the influence of the spectral resolution on Qp estimates, we find results similar to those
obtained for the frequency peak: with a spectral resolution of 0.15, the relative error on
Qp reaches the maximum value of 4% for the largest γ.

According to the results just shown, using (1), (2) and (10b) we propose that the BFI
be computed from time series (or from frequency spectra) using the following formula:

(12) BFI =
√

m0k̂pQp

√
2πν

√
|β|
α

.
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Fig. 4. – Behavior of the various bandwidth parameters as a function of γ for different maximum
frequency (crosses correspond to fmax = 8fp, triangles to fmax = 4fp, circles to fmax = 3fp).

This expression, based upon the statistical considerations discussed herein, provides
a robust estimate of this parameter in a random sea state.

4. – Conclusions

In recent numerical experimental and theoretical work it has been bound that the
Benjamin-Feir Index can play an important role for the determination of the statistical
properties of the surface elevation of a random wave train. From a theoretical point
of view this definition is unique only if a monochromatic wave is considered or if the



902 M. SERIO, M. ONORATO, A. R. OSBORNE and P. A. E. M. JANSSEN

mathematical structure of the inverse scattering transform is invoked [7]. In the case
of random waves, different methodologies for its computation are available, which of
course would give different numerical estimations of the BFI. This of course could create
some complications if the BFI of different experimental data needs to be compared. In
order to overcome this difficulty we have performed a detailed study on the different
possible methodologies that could be used. Our goal has been to determine a robust
methodology, independent of the spectral resolution and of the cut-off frequency, that
could be used directly from time (space) series or from frequency (wave number) spectra.
We have focused our attention especially on the determination of the spectral bandwidth.
Different methodologies are available for the estimation of the spectral bandwidth: we
have considered the narrowness, the broadness and the peakedness parameters. Those
methods have been applied to a JONSWAP spectrum and it was found that the most
robust method is based on the peakedness parameter Qp.

A second parameter important for the determination of the BFI is the spectral peak
for which we have used the method proposed by Young.

The error on the estimate of the peak frequency and the spectral width does not exceed
the 5% of the values, provided that the spectral resolution is lower than 0.15 times the
peak frequency.
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